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Many organs have internal structures with spatially differenti-
ated and sometimes temporally synchronized groups of cells.
The mechanisms leading to such differentiation and coordina-
tion are not well understood. Here we design a diffusion-limited
microfluidic system to mimic a multicellular organ structure with
peripheral blood flow and test whether a group of individually
oscillating yeast cells could form subpopulations of spatially dif-
ferentiated and temporally synchronized cells. Upon substrate
addition, the dynamic response at single-cell level shows gly-
colytic oscillations, leading to wave fronts traveling through the
monolayered population and to synchronized communities at
well-defined positions in the cell chamber. A detailed mechanis-
tic model with the architectural structure of the flow chamber
incorporated successfully predicts the spatial-temporal experi-
mental data, and allows for a molecular understanding of the
observed phenomena. The intricate interplay of intracellular bio-
chemical reaction networks leading to the oscillations, combined
with intercellular communication via metabolic intermediates and
fluid dynamics of the reaction chamber, is responsible for the
generation of the subpopulations of synchronized cells. This
mechanism, as analyzed from the model simulations, is experi-
mentally tested using different concentrations of cyanide stress
solutions. The results are reproducible and stable, despite cellu-
lar heterogeneity, and the spontaneous community development
is reminiscent of a zoned cell differentiation often observed in
multicellular organs.

cell–cell communication | synchronization waves | glycolytic oscillations

In early studies on synchronized glycolytic oscillations of yeast
populations, acetaldehyde (ACA) was proposed as the inter-

cellular chemical mediator (1). ACA is a metabolite either
produced by the yeast cells themselves (2) or externally supplied
(3) and needs to be constrained at intermediate concentra-
tions for effective communication. This is possible by working
at high biomass concentrations, to keep ACA above a lower
threshold level, combined with the addition of cyanide (CN−),
which binds ACA, to keep ACA below an upper threshold
level. By local addition of glucose (GLC), macroscopic gly-
colytic synchronization waves can be induced (4–6) but not
resolved at the single-cell level. Only recently, single-cell anal-
ysis has been achieved by using fixed cells on coated microscope
slides (7, 8) and in alginate microparticles (9). While these
approaches manage to obtain biochemical information at the
single-cell level, their limited control on the environment pre-
vents a full characterization of the interactions between the
cells. Recently, we have used microfluidics to precisely control
the flow fields and chemical concentrations surrounding yeast
cells. This has permitted us to externally entrain the oscilla-
tions of single yeast cells by the periodic injection of ACA or
CN− (10, 11). However, the flow present in these microfluidic
systems removes cell secretions, including the ACA mediator

required to achieve cell–cell communication. While such an
approach is important to study oscillations in isolated cells, it
prevents studying the process leading to synchronization, which
is dependent on intercellular communication. Similar balancing
between flow and intercellular communication is necessary for
the coordinated functioning of multicellular organs, where zonal
differentiation into different cell types coexists with a peripheral
blood flow. In recent years, microfluidic systems have been suc-
cessfully applied in so-called organ-on-chip initiatives, where a
well-defined environment with controlled convection terms and
shearing forces enable differentiation of three-dimensional (3D)
tissue (12, 13).

Here we implement a custom-designed diffusion-limited
microfluidic chamber to host a mesoscopic cell culture. Such a
design represents a wide range of diffusion-dependent human
organs, i.e., the liver, kidneys, or pancreatic tissue. While con-
trolling the extracellular environment to trigger the oscillatory
behavior, we acquire biochemical information from every sin-
gle cell. We observe glycolytic synchronization waves and, by
employing tools from graph theory, identify the emergence of
coupled subpopulations. By integrating a mechanistic model that
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incorporates the physical geometry and hydrodynamic conditions
in the microfluidic chamber as well as the detailed biochem-
ical intracellular reactions (11, 14, 15), we analyze how the
diffusion and reaction of intercellular metabolites couple the
oscillation phases of neighboring cells. This coupling leads to
the appearance of waves and subpopulations. The mechanis-
tic understanding of the spatiotemporal behavior of the model
organism gives insights into the possible role of cellular synchro-
nization in collective cell behavior, as observed, for example, in
insulin secretion regulation (16–18).

Results
Glycolytic Oscillations in a Microfluidic Environment. We designed
a microfluidic environment to trigger and track glycolytic oscil-
lations in an array of yeast cells (Saccharomyces cerevisiae) with
single-cell resolution (Materials and Methods). Fig. 1A shows an
image of the microfluidic chip with five chambers, one of which is
highlighted by the black box and zoomed in on in Fig. 1B. The use
of a single microfluidic device with multiple chambers permits
us to load cells from a single batch and expose them to a range
of stress solution concentrations in parallel, thus avoiding arti-
facts that might arise when performing experiments sequentially
due to confounding factors such as cell storing time. As shown in
Fig. 1A, each cell chamber has an inlet channel (shaded in yel-
low), which we use to load the yeast cells into the chamber, and

Fig. 1. Glycolytic oscillations are affected by cell position in the microflu-
idic chamber. (A) Yeast cells from a single batch culture are loaded through
the yellow-shaded inlet channels of the diffusion chambers. They are then
exposed to GLC and different concentrations of CN− (weighted blue shades)
and NADH autofluorescence signals are detected in individual cells. The
length bar is 200 µm. (B) Zoom-in of a loaded cell chamber highlighting
four representative individual cells at different locations. The length bar is
20 µm. (C) For illustration purposes, the processed time series of the NADH
concentration at the representative cells color-coded in B is shown to exem-
plify the influence of location on the metabolic signals. The data correspond
to a 12 mM CN− exposure case, and the intensity of the signals is shifted
along the y axis for visualization purposes. The amplitude bursts of the rep-
resentative NADH signals at different time points indicate relative delays
between cells located in the upper and lower parts of the chamber. The
strong oscillations start from about 100 s in the orange cell, while the cyan
and blue cells start around 300 s, and finally, the red cell at the bottom of
the chamber starts approximately at 500 s.

a perfusion channel (shaded in blue), which we use to expose the
cells to a GLC and CN− solution with various concentrations
of CN− (indicated by the different shades of blue). Importantly,
the perfusion occurs by diffusion in quasi-static flow conditions
through a series of diffusion apertures between the perfusion
channel and the cell chamber, as can be seen in Fig. 1B. In this
diffusion-limited cell chamber, the ACA produced by the cells
is not washed away by convection and can mediate the cell–cell
interactions.

Fig. 1B zooms in on a loaded cell chamber where the single
yeast cells can be clearly seen. We grow, harvest, and starve the
yeast cells to obtain a strong oscillatory behavior in response
to GLC addition (Cell Preparation). The cells are loaded at a
controlled density in all cell chambers using a precision multisy-
ringe pump. Afterward, we inject the stress solutions containing
40 mM GLC with 8, 12, 16, 20, or 24 mM CN− using a second
multisyringe pump. We provide a constant stress solution supply
for 20 min; during this time, GLC and CN− diffuse into the cell
chambers through the diffusion apertures and are progressively
consumed by the cells leading to an initial concentration gradient
that decreases over time. GLC consumption is linked to the pro-
duction of reduced nicotinamide adenine dinucleotide (NADH),
an intermediate metabolite, which can be detected on an individ-
ual cell basis due to its autofluorescence (Materials and Methods
and SI Appendix, Movie S1). These measurements can be used to
track other coupled metabolite signals such as ACA (11).

Depending on the cells’ position in the chamber, they start to
oscillate at different times. To illustrate this time delay between
the metabolic signals across the chamber, NADH time series of
four representative cells in a 12 mM CN− case are shown in
Fig. 1C. The orange cell is located next to a diffusion aperture
and starts to show oscillations with a transient increase in the
amplitude about 100 s after the stress solution injection; the cyan
and blue cells are located farther away from the diffusion aper-
tures, and they display sustained oscillations with an amplitude
increase at about 300 s; and the red cell is even farther away
from the diffusion apertures, and its strong oscillations appear
only after about 500 s. The fluctuations of these NADH signals
reflect the periodicity of the glycolytic metabolic cycles. The sig-
nal amplitude is affected by the local CN− concentration (1, 15,
19, 20), which follows the diffusion gradient away from the diffu-
sion apertures: the amplitude of the orange cell signal is smaller
than those of the cyan and blue cells, which in turn are smaller
than that of the red cell.

Finally, local synchronization between cells occurs because of
their secretion and exchange of ACA, which determines the local
cell–cell coupling (14, 15). For example, the cyan and blue cells
are close to each other, and thus, their signals are highly synchro-
nized for the whole duration of the experiment. For the 12 mM
CN− case in Fig. 1B, all cells are induced to transient oscilla-
tory states where the oscillation intervals and amplitude strength
depend on the cell location in the chamber. This is due to the
CN− and ACA concentration exposure of the cells, as previously
reported (10).

Cell–cell synchronization. For the synchronization analysis of the
NADH signals, we extract instantaneous phases of the discrete
Hilbert transforms of the time series (color-coded phase plots
in Fig. 2). From these phases we calculate the time-dependent
order parameter r(t) (21) (Materials and Methods). The order
parameter quantifies the degree of synchronization and is nor-
malized between 0 and 1, where a value of 1 means that the entire
cell array oscillates in phase (lower plot in each of the panels
of Fig. 2).

When the concentration of CN− in the stress solution is suf-
ficiently high (12 mM [Fig. 2A] and 16 mM [Fig. 2B]), the
majority of the cells exhibit sustained oscillatory behavior and
synchronization, which is shown by the fact that r(t) describes
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Fig. 2. Coupling between the glycolytic signals of the single cells. Instan-
taneous phases (–π to π) of the NADH autofluorescent signals for all cells
(Top) and normalized order parameter r(t) (Bottom) when glycolytic oscil-
lations in yeast cells are triggered using (A) 12, (B) 16, and (C) 20 mM CN−

combined with 40 mM GLC. (A and B) At 12 and 16 mM CN− concentra-
tions, the instantaneous cell phases feature global patterns across the cell
array corresponding to r(t)≈ 1. The closer the order parameter r(t) to 1, the
higher the temporal cell synchronization, while a lower order parameter
describes cell desynchronization. (C) At high CN− concentrations, this syn-
chronization is lost, reflected in the low values of the order parameter. Each
panel shows a representative example from in total five experiments (see SI
Appendix, Figs. S3–S7, for the repeat experiments).

intervals very close to 1. In both cases, r(t) features some min-
ima, which reflect temporary incoherent behavior between the
oscillating cells.

At higher CN− concentrations (e.g., 20 mM CN−; Fig. 2C),
the cells still oscillate, but the phase plot does not show any
global synchronization between them, which is reflected in the
fact that r(t) is consistently smaller than 1 and fluctuates for
the whole duration of the experiment. Under these conditions,
the higher rate of binding to cyanide lowers the CA concen-
tration, which leads to a decrease in the coupling between the
cells, disrupting the synchronization. The results for the 8 and
24 mM CN− experiments are shown in SI Appendix, Fig. S2, and

four additional repeat experiments are shown in SI Appendix,
Figs. S3–S7.

Synchronization Communities. To test for the existence of locally
synchronized communities within the population, we make use
of graph theory and community analysis (Graph Construction
and Community Analysis). Using a technique that is commonly
employed in studying connectivity between brain regions (22),
we determine the coupling strength between cells based on
the degree of synchrony in their glycolytic signals. The result-
ing graph can be represented as a series of nodes (cells, each
one tagged with a number used for identification purposes) and
edges (correlation) (Fig. 3A) or, more conveniently for analy-
sis purposes, as an adjacency matrix (Fig. 3B). The latter is a
square matrix where each entry represents the strength of the
connection between the nodes corresponding to its row and
column indices.

A graph can be divided into communities so that the nodes
within each community are more strongly connected with each
other than with the rest of the graph. We identify the commu-
nities using the Louvain algorithm (23). For example, we show
the color-coded communities on the schematic of the graph in
Fig. 3A and on the adjacency matrix in Fig. 3B.

Fig. 3 C–E show the adjacency matrices and the corresponding
communities overlaid on the cell images for cell arrays exposed
to different CN− concentrations. When exposed to 12 mM CN−

(Fig. 3C), three well-defined communities form. The commu-
nity in yellow covering half of the circular chamber is radially
exposed to the stress solution through the diffusion apertures.
Hence, these cells experience simultaneous triggering of the
oscillations. The community in red is triggered by the result-
ing concentration of the stress solution that passes through the
yellow community and the lateral diffusion apertures. Conse-
quently, the oscillations appear with a delay with respect to those
of the yellow community. Finally, the cells in blue are not directly
exposed to the diffusion apertures. This community shows the
longest delay and will be exposed to lower concentrations of
GLC and CN− than the two prior communities. Each of the
communities remains synchronized due to the local exchange
of ACA.

When the CN− concentration is increased to 16 mM (Fig. 3D),
the boundaries between the communities become less defined.
The yellow community (top half) forms similarly to the 12 mM
scenario. However, a second community (red) appears with scat-
tered cells at different locations in the top half of the cell
chamber. At 16 mM CN−, the higher rate of binding of ACA
to CN− leads to a lower ACA concentration, which reduces
the coupling between the cells. With a less defined boundary, a
third community (blue) appears where cells are not exposed to
diffusion apertures.

At 20 mM CN− (Fig. 3E), the coupling between the cells
is reduced even more, resulting in uncorrelated behavior, and
the community structure breaks down. SI Appendix, Figs. S3–
S7, show the community structures for the repeat experiments,
where the overall spatial distribution is consistent for each CN−

concentration.

Glycolytic Synchronization Waves. SI Appendix, Movie S1, shows
the NADH autofluorescence spatiotemporal distribution across
the cell array. To obtain a temporal description of the arising gly-
colytic wave, we calculate the autocorrelation function of every
NADH signal within a community of cells identified with the
modularity analysis. The gray lines in Fig. 4A show the autocor-
relation curves of the individual cells and the black line their
mean value for the community located in the middle region
of a cell array exposed to 12 mM CN− (dark gray in Fig. 4B
and outlined by the black line in Fig. 4C). The indicated time
interval contains three periods of oscillation at a fixed position,
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Fig. 3. Synchronization communities. (A) In a functional graph analysis, the signal correlation between different nodes provides a measure of the strength
of connectivity between them. In the resulting graph, it is possible to identify communities of nodes (colored subgraphs) that are well connected with each
other but poorly connected to nodes belonging to different communities. (B) Such community structure is reflected in the adjacency matrix representing
the graph. Note that the order of the nodes has been rearranged to more clearly highlight the community structure. (C–E) Similarly, from the NADH
autofluorescent signals of the cells (each tagged with a number used for identification purposes), we construct adjacency matrices and overlay the resulting
communities on the images of the corresponding cell arrays for (C) 12, (D) 16, and (E) 20 mM CN−. The figure shows a representative example from five
experiments (see SI Appendix, Figs. S3–S7, for the repeat experiments).

revealing the inherent frequency of the glycolytic oscillation.
Then, we characterize the traveling wave by calculating the
delayed cross-correlation between the NADH signals in one
community of cells and the rest of the cell array (Graph
Construction and Community Analysis).

The resulting wave describes the transition between the com-
munities as a function of their relative delays, giving a phase
relation between them. Fig. 4B shows the delay at maximum
correlation as a function of the vertical position of the individ-
ual cells (top to bottom). The linear behavior of this relation
portrays a constant velocity, Vexp ≈3.5 µm/s, of the wave prop-
agating down the chamber. Fig. 4C shows five specific frames of
the spatiotemporal evolution in a cell array exposed to 12 mM
CN−. SI Appendix, Figs. S8–S9, show the corresponding results
for communities 1 and 3 (top and bottom), respectively, when
a cell array is exposed to 12 mM CN−. The high values of the
normalized cross-correlations (dark red) travel from the region
mostly exposed to the diffusion apertures, to the region contain-
ing the cells farther away from the direct exposure to the stress
solution. The transition from a minimum in a community average
correlation (Fig. 4C, I) to the next minimum (Fig. 4C, V ) gives
the spatial description of a traveling wave across the chamber as
a function of the relative delay.

Due to the cell heterogeneity and the discrete nature of the
cell monolayer, local cell–cell interactions show small variations
in the wave front shape. However, the overall synchronization
wave can be tracked despite these deviations. For more detailed
description of the wave propagation, the transition between
intermediate delay values can be seen in SI Appendix, Movie S4.

Simulations. We simulate a 2D array of cells with the same struc-
ture as the experimental one. We calculate the time-dependent
concentrations of GLC, CN−, ACA, and ethanol (ETOH)

(SI Appendix, Movie S2) together with all of the intracellular
metabolites.

To test the ACA coupling, we use a previously published
detailed enzyme mechanistic model (15) to simulate glycolysis in
each cell as a set of ordinary differential equations. Transport
and diffusion of extracellular metabolites are simulated using
partial differential equations with the physical characteristics of
the microfluidic chamber determining the boundary conditions
(Numerical Simulations). We then extract the glycolytic signals
(NADH concentration) for each cell and analyze them as in
the experimental data (Synchronization Analysis and Graph Con-
struction and Community Analysis). SI Appendix, Fig. S1, shows
the NADH instantaneous phase distribution and the community
structure for the simulated cases of 20, 24, and 28 mM CN−. As
the CN− concentration is increased in the cell chamber, the com-
munities show less defined boundaries, in good agreement with
the experimental data (Fig. 3), albeit that slightly higher cyanide
concentrations are used in the simulations. CN− concentrations
of 24 and 28 mM induce transient oscillations leading to a steady
state (SI Appendix, Fig. S1 B and C).

The simulated time-dependent ACA distributions for exter-
nal and internal concentrations (SI Appendix, Movie S2) reflect
an adaptation to traveling waves. The initial oscillations dis-
play uncorrelated behavior that gradually transforms to peri-
odic propagation across the cell array. To have a quantitative
comparison with the experiments that displays a clear wave for-
mation, the wave velocity was extracted for the 12 mM CN−

case (Vsim ≈ 3.1 µm/s) (SI Appendix, Fig. S10)). The simula-
tion results are in good agreement with the experimental results
although wave fronts in the simulations show a more continuous
profile than is observed in the experimental data. This is most
likely due to an incomplete capture of cellular heterogeneity in
the model.
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Fig. 4. Temporal and spatial propagation of a glycolytic synchronization wave. (A) The autocorrelation function of a single community (outlined by the
black line in C, III), shows the temporal description of oscillatory behavior at a specific region in the chamber exposed to 12 mM CN−. The gray lines show
the autocorrelation functions of each cell in the community, and the black line is their average. (B) The linear behavior of the delays at maximum correlation
with respect to the second community (dark gray) as a function of the vertical position of the cells (top to bottom), confirms the spatial evolution of a
traveling wave. Furthermore, the slope of the linear fit corresponds to the inverse of the wave velocity, where Vexp≈ 3.5 µm/s. (C) The spatiotemporal
evolution can be displayed using the average delayed and normalized cross-correlations between the second community of synchronized cells (enclosed
with black line) and every cell present in the chamber (red circles) for a cell array exposed to 12 mM CN−. The delayed Pearson correlations are calculated
with delays from –20 to +20 s (indicated by I to V in A) and feature a series of maxima that propagate from top to bottom. The shape of this glycolytic wave
depends on the chemical diffusion profiles of stress solution and secreted metabolites, and it is influenced by the geometrical constraints of the device. See
also SI Appendix, Movie S4.

The high external GLC concentration supply (40 mM) induces
a fast diffusion until homogeneous covering of the complete
monolayer (SI Appendix, Movie S3). In contrast, the diffusion
of CN− shows a quasi-constant distribution profile to which
the ACA wave front shapes adapt. The periodic fluctuations
given by the external ACA and CN− reaction show negligible
influence on the CN− levels as it has a much higher absolute
concentration.

Discussion
We studied the coupling between individually oscillating cells
in yeast at a single-cell level. First, we detected the single-cell
metabolic responses from yeast cells in a microfluidic device,
designed to resemble a diffusion-based mechanism in human
organs. Second, we identified synchronized communities and
tracked the synchronization waves using graph theory. Third, the
underlying mechanism for cell–cell communication was tested in
a validated mechanistic model for individually oscillating yeast
cells, where each glycolytic network is linked to the architecture
and physics of the microfluidic system.

The implemented microfluidic device permits us to control
the concentration of extracellular chemicals required to trigger
glycolytic oscillations, ensuring a constant supply of GLC and
CN− by direct diffusion. After addition of the stress solution,
the start of oscillations in individual cells is dependent on their
position in the cell chamber. The spatiotemporal distribution of
the CN− concentration influences the overall degree of synchro-
nization, which is reflected in the time evolution of the extracted
instantaneous phases and order parameter. Furthermore, even
in the presence of low overall values of synchronization, there
can be communities of cells that are synchronized at the local
level, which we have identified using graph theory analysis. In

addition, we have shown that the lateral metabolic coupling
between individual cells can induce metabolic synchronization
waves.

In ref. 11, it was demonstrated, through experimental obser-
vation and analyses using a detailed mechanistic model, that
single oscillating cells can adapt their phases to external ACA
signals. These signals are transduced through the system of
cofactors that regulates the activity of phosphofructokinase and
leads to a phase shift to allow synchronization. For globally cou-
pled diffusion-reaction oscillators, cluster patterns (24) can be
used to describe the behavior of such a system. When combined
with diffusion, cluster patterns also display zones of identical
behavior but still rely on global coupling. In our system, as
the concentration of the coupling agent is regulated by the gly-
colytic cycle, the entrainment of the oscillation phase propagates
across the chamber. Therefore, the coupling mechanism pre-
sented herein can be described by a traveling wave. In addition,
our findings corroborate the observations of previous studies on
macroscopic glycolytic waves (4–6, 25) and explain these waves
in terms of metabolic coupling between individually oscillat-
ing cells. However, the wave velocity discrepancies between our
study and these population-level experiments can be attributed
to the distinct hydrodynamic conditions influencing ACA and
CN− transport during the experimental procedures. Here we
show that the spatiotemporal dynamics of synchronization waves
in a population are well described by the detailed mechanistic
model (constrained to the physical conditions of the cells in the
microfluidic chamber) showing that the proposed ACA coupling
between the cells is sufficient for the observed collective behav-
ior. The presented numerical simulations describe how syn-
chronized cell communities can exist in complex arrangements
and architectures resembling organs and lead to function-based
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zonation. The simulations give a general description of the mech-
anism behind synchronization and community structure forma-
tion between single cells. The obtained wave velocities from the
simulations are in good agreement with the experimental analy-
sis, even though they do not replicate exactly the results observed
in the heterogeneous conditions present in the experimental sce-
nario. This is also reflected on the slight spatial deviations in the
synchronized subpopulation arrangement.

The combination of detailed mechanistic models at single-cell
level, with the experimental analyses of collective synchronized
responses at the population level, can also be used for study-
ing the spatiotemporal dynamics present in coordinated organ
functions, such as in insulin production by pancreatic β cells
(16, 26–29). In such a cell system, the coordination of synchro-
nized cells is vital for the required pulsatile insulin secretion.
Furthermore, the presented analysis can be applied to other bio-
logical systems that display synchronization of individual oscil-
lators, e.g., wave propagation in the heart leading to muscle
contraction and synchronized oscillatory phenomena in groups
of neurons.

Materials and Methods
Microfluidic Device Design and Fabrication. Each chamber where the cells
are loaded (diameter 55 µm, height 5 µm; Fig. 1B) is surrounded by a
series of diffusion apertures (width 2 µm). These diffusion apertures are
connected to a perfusion channel (width 65 µm; weighted blue shades in
Fig. 1A), where the stress solution flows through inlet and outlet chan-
nels (width 50 µm). A cylindrical pillar (diameter 10 µm) is placed at the
center of the chamber to prevent the chamber ceiling from bending. The
dimensions of the chamber, diffusion apertures, and central cylindrical pil-
lars were optimized through numerical simulations and experiments. The
chamber dimensions (diameter, height, and perfusion aperture width) had
to 1) encompass enough cells to enable tracking entrained behavior and
wave propagation, 2) ensure a monolayer to limit cell communication to
lateral interactions, and 3) provide sufficient diffusion-based perfusion of
the cell population avoiding mechanical stress. The function of the pillar is
to uphold the cell chamber, fulfilling the microfluidic structure aspect ratio.
The cylindrical geometry of the pillar and its location is intended to ensure
symmetry in the diffusion profile.

Silicon molding masters are fabricated using photolithography. A neg-
ative photoresist (SU-8 3005; MicroChem Corp.) is spin-coated (3,500 rpm,
30 s), soft-baked (2 min at 65◦C; 3 min at 95◦C), UV-exposed (15 mW
cm−2 for 10 s [Suss MicroTec SE] under HardContact pressure mode),
postexposure-baked (3 min at 65◦C; 4 min at 95◦C), and developed (2 min,
SU-8 developer mr-Dev 600; Micro resist technology GmbH).

For the molding procedure, we have followed the established procedure
described in ref. 30. Briefly, polydimethylsiloxane (PDMS) is homogeneously
mixed with a curing agent (Sylgard 184 Silicone Elastomer Kit; Dow Corning
Corp.) in a 15:1 ratio. The mixture is degassed using a vacuum dessicator
(30 min), poured onto the master, and baked (3 h at 90◦C). The resulting
PDMS structure is covalently bonded to a cover glass (thickness no. 1 [0.13
to 0.16 mm], 45 × 60 mm, HECH990/6045, VWR) using oxygen plasma (40 s,
PDC-32G; Harric Plasma).

Cell Preparation. The yeast cell strain used in the experiments is S. cerevisiae
X2180. Cell cultures were grown from single colonies following the same
protocol used in refs. 31, 32. The cells are grown in a carbon source medium
containing 10 g L−1 GLC, 6.7 g L−1 yeast nitrogen base (YNB), and 100 mM
of potassium phthalate at pH 5. The suspensions are cultured in a rotary
shaker at 30◦C until GLC depletion in the media. To achieve the diauxic shift
(GLC starved and switched to a slower exponential growth), the cells are
washed and starved in 100 mM potassium phosphate (pH 6.8) for 3 more
hours in the rotary shaker at 30◦C. Finally, in order to maintain the cells in
the diauxic shift, they are washed and stored at 4◦C until the experiments.
After filling the chamber, the loaded cells cover no more than 50 µm of the
cell inlet below the field of view (corresponding to about 210±20 cells). This
is achieved by injecting a cell solution with an optical density 4 at 600 nm
using a flow rate of 50 nL min−1 for 1 min. A longer injection time, or at a
higher rate, can force the cells through the diffusion apertures.

Experimental Procedure. Cells are loaded into the five cell chambers using
250 µL glass syringes connected via polytetrafluoroethylene tubing (inner
diameter 0.012 in.; Cole-Parmer). In order to obtain equal cell densities,

the cell solution is introduced via equal length microfluidic paths and flow
rates (40 nL/min) until the cell chambers are filled. After cell loading, the
experiment is initiated with the injection of 40 mM GLC and 8, 12, 16, and
24 mM CN− stress solutions, which circulate in the perfusion channel sur-
rounding around each cell chamber at 25 nL min−1. These concentration
values were chosen based on previous studies (15). It was shown that vari-
ations in GLC concentrations, as long as they remain above 20 mM, do not
have a significant effect on the oscillatory signal in a flow-based exposure.
In the same study it was reported that CN− concentrations above 5 mM
and below 20 mM are required for sustained glycolytic oscillations in sin-
gle cells. Once the yeast cells are loaded into the microfluidic chamber and
the experiment starts, the cells’ metabolism is induced to an anaerobic fer-
mentation state due to the CN− exposure, producing CO2 as a fermentation
product. The perfusion flow remains constant for the 20 min corresponding
to the complete experimental acquisition. The cell loading and stress injec-
tion are performed using a precision multisyringe pump (CMA 400; CMA
Microdialysis). The presence of captured air bubbles in the diffusion chan-
nels is permeated through the PDMS and dissolved once the fluid pumps are
started and does not affect the substrate perfusion.

Signal Acquisition and Conditioning. Image acquisition is performed using an
inverted microscope (DMi 6000B; Leica Microsystems) with a 100×, NA = 1.33
oil-immersion objective in an epifluorescence configuration. In order to
measure the NADH autofluorescence intensity fluctuations, a 350/54 exci-
tation filter and a 415/64 emission filter (DAPI set) are used together with a
15-W mercury short-arc reflector lamp (EL6000; Leica Microsystems) (33). An
Electron Multiplying Charge-Coupled Device camera (C9100-12; Hamamatsu
Photonics) is used with an exposure time of 400 ms. Images are acquired
every 2 s for a total period of 20 min using an automatized illumination,
positioning, and acquisition routine programmed using OpenLaboratory
(PerkinElmer).

The time series for the individual cells are obtained from the NADH
autofluorescence images. For each cell and frame, the average intensity
xn(t) of cell n is computed over the region of interest corresponding to the
cell area. Using MATLAB, a background signal and a running average of 55
data points are subtracted from the signal to reduce noise and short-term
fluctuations.

Synchronization Analysis. Starting from the glycolythic signals xn(t), the
phase of cell n is calculated as

Φn(t) = arctan
[

H(xn)(t)

xn(t)

]
, [1]

where H(xn)(t) is the Hilbert transform of xn(t) evaluated with the MATLAB
built-in function. These data are shown in Fig. 2 and SI Appendix, Fig. S1
A–C, for the experimental and simulated signals, respectively.

To evaluate synchronization, as standardized in previous works (8, 10),
the time-dependent order parameter r(t) is obtained from the expression

r(t) =

∣∣∣∣∣ 1

N

N∑
n=1

e−iΦn (t)

∣∣∣∣∣ , [2]

where N is the number of cells in the cell chamber and Φn is the instant
phase for each yeast cell. The order parameter is normalized between 0 and
1. When r(t) is large, the individual cells’ phases are synchronized; when
r(t) is small, there is high heterogeneity in the individual cell phases (34,
35). The degree of synchrony is characterized with r values from 0 to 1
where low order parameter translates into high heterogeneity in the instant
phases.

Graph Construction and Community Analysis. By using graph theory, all of
the oscillating cells are considered as nodes of a network with connections
weighted by the correlation of their signals. Synchronization distribution
can then be characterized in terms of the formation of cell communities
showing higher coherence in their signals.

The community structure algorithms aim to optimize the modularity, a
measure of the quality of the community division of the network. In short,
modularity measures the density of the connections within a community
and compares it with what it would be in a given random network. The
more positive modularity indicates a better division of the network into
communities (22).The Louvain algorithm approaches the problem of mod-
ularity maximization by iteratively grouping single nodes into communities
(23). It starts by assigning each node in the network to a separate commu-
nity. By changing the community participation of a node and its neighbors,
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it optimizes the modularity locally throughout the network. This results
in having some community structure in the network. In the second step,
these communities become nodes, and the first step of local modularity
maximization is reapplied. These two steps are repeated until the maxi-
mum modularity is obtained and there are no changes in modularity values
with any new iteration. Finally, the community organization of the step
with maximal modularity is taken to be the real and final community of
the network.

By setting a threshold in the correlation coefficient of 0.7, subgroups of
cells showing synchronized behavior are obtained for the different concen-
tration ratios in the stress solution. The functions to perform this process
are adapted from the MATLAB-based software BRAPH (BRain Analysis using
graPH theory) (22). A correlation adjacency matrix weighted with the cor-
relation coefficients can be constructed by rearranging the node indices in
subgroups showing higher connectivity. The indices assigned to each com-
munity can then be mapped based on their original location in the cell array
and display the community spatial distribution.

To map the spatial distribution of the phase in form of wave fronts prop-
agating across the cell array, the average correlation coefficient is calculated
between each cell signal and a reference synchronization community at dif-
ferent delays. The Pearson correlations are calculated using the MATLAB
build-in function corr.

Numerical Simulations. The numerical simulations combine a kinetic model
for single-cell glycolysis (14) with the geometrical and hydrodynamical con-
ditions given by the cell arrangement in the microfluidic chip. The flow
velocity field and the concentration gradients through the device are cal-
culated using the finite-element based interpolation software COMSOL
Multiphysics (COMSOL Inc.). The device geometry is defined with no-slip
boundary conditions, and the nodes for the numerical interpolation are
generated using the extra fine, physics controlled mesh mode. The fluid
inside the device design is considered as Newtonian and incompressible,
which obeys the Navier–Stokes equation for the stationary case:

ρ(u · ∇)u =−∇p + η∇2u + f, [3]

where u is the flow velocity, f represents body force densities—which are
negligible for this case—and the constants ρ and η are the density and
dynamic viscosity, respectively, corresponding to water at room tempera-
ture; finally, p represents the pressure (36). The density and dynamic viscosity
of the fluid is considered as the predefined for water by the software.
To simulate the chemical transport and distribution, the time-dependent
concentration gradients are calculated in order to follow diffusion across
the cell chamber. The relation describing the process is given by the
convection-diffusion equation:

δc

δt
=−∇ · (−D∇c + cu). [4]

Here c is the concentration, and D is the diffusion coefficient. The stress solu-
tion contained GLC and CN− with diffusion coefficients of 6.7× 10−10 m2/s
and 20.7 × 10−10 m2/s, respectively. In addition, the concentration gradi-
ents are calculated for the time-dependent secretions of ETOH and ACA
from the cells, with diffusion coefficients of 1.15 × 10−9 m2/s and 1.3 ×
10−9 m2/s, respectively. Initial concentrations in the chamber are defined
with the minimum values required to guarantee the oscillatory state of
all of the cells (31), with 5 mM CN−, 9 mM GLC, 1 × 10−6 mM ACA, and
1x10−6 mM ETOH.

A total of 210 circular boundaries are defined with sizes in the range of
yeast cells at different ages—between 4 and 10 µm—and are distributed
inside the chamber design in a dense monolayer to emulate the experimen-
tal conditions. Global definitions of the membrane diffusion coefficients are
assigned for ETOH, ACA, and CN− with values of 5.88 × 10−12 m2/s, 5.87 ×
10−12 m2/s, and 5.88 × 10−12 m2/s, respectively. On the other hand, diffu-
sion coefficients inside the cells are defined high enough (1 m2/s) to consider
the chemical concentrations to be homogenous and obtain single values for
each cell geometry. The kinetic model previously described for individual
cells in a microfluidic device (11, 14, 31, 37) is implemented to calculate the
metabolite concentrations inside the cells as well as the secretions of ACA
and ETOH in the chamber. For these calculations, the GLC and CN− total
exposure is defined by the convection-diffusion equation in combination
with the lactonitrile formation from the reaction of CN− with ACA (1, 38).
The initial concentrations inside the cells are defined with a global initial
intracellular GLC level of 3 mM and a heterogeneity of 10 different val-
ues of initial CN−, ACA and ETOH. Similarly, 10 different initial values are
assigned for all of the metabolites taking place in the ordinary differen-
tial equations along the metabolic pathway. The reaction rates taking place
inside the cells are defined for each of the circular domains for GLC, CN−,
ACA, and ETOH (for details on all of the rate equations, see the interac-
tive online model in https://jjj.bio.vu.nl/models/gustavsson5/simulate/). The
resulting concentrations are tracked in time by individual probes inside each
cell and in the extracellular media. Note that in the simulations the initial
phase only is set individually while the whole cell array attains the same fre-
quency. Furthermore, the level of heterogeneity is also much lower as only
the cell sizes (in terms of diffusion rates) are varied and not the intracellular
kinetic parameters.

Data Availability. All study data are included in the article and SI Appendix.
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