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Public interest in complementary and alternative medicine has been increased worldwide, due to its wide
applications in cancer prevention and treatment. Cordycepin is one of the most common and crucial
types of complementary and alternative medicine. Cordycepin (3’-deoxyadenosine), a derivative of ade-
nosine, was first isolated from medicine drug Cordyceps militaris. Cordycepin has been widely used as one
compound for antitumor, which has been found to exert antiangiogenic, anti-metastatic, and antiprolif-
erative effects, as well as inducing apoptosis. However, the mechanism of its anti-tumor activity is not

'é?r'g’ocrgsgn well known. This review will clarify anti-tumor mechanisms of Cordycepin, which regulate signaling
Anti—{urr[l)or pathways related with tumor growth and metastasis. Cordycepin inhibit tumor growth via upregulating

tumor apoptosis, inducing cell cycle arrest and targeting cancer stem cells (CSCs). Cordycepin regulates
tumor microenvironment via suppressing tumor metastasis-related pathways. Thus, Cordycepins may
be one of important supplement or substitute medicine drug for cancer treatment.
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1. Introduction

The number of people suffering from cancer in the world will
continue to grow steadily, according to the latest report about
the trend of global cancer released by the World Health Organiza-
tion (WHO). It is estimated that the number of newly-increased
cancer patients will reach 19 million or even more by 2025. Cancer
is the second killer of human death in the world (Anderson and
Flanigan, 2015). Cancer is caused by an imbalance between the
progression of cell cycle and programmed cell death (Apoptosis)
(Lowe et al., 2004). Therefore, the majority of anticancer medical
drugs exert their anti-proliferative activity through cell cycle arrest
and induction of apoptosis (Bai et al., 2017; Evan and Vousden,
2001). The cytotoxic nucleoside analogues were the first
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chemotherapeutic agents used for the therapy of cancer. The some
researched cytotoxic nucleoside analogues are isolated from Cordy-
ceps militaris (Tian et al., 2015).

Cordycepin was first found from the fermented broth of the
medicinal mushroom Cordyceps militaris, which is the fungus that
grows parasitically on lepidopteron larvae and insect pupae
(Cunningham et al., 1950). The genus Cordyceps is well-known in
traditional Chinese medicine and exhibits a variety of clinical
health effects including immunomodulatory, anticancer, antioxi-
dant, anti-inflammatory and anti-microbial activities (Tuli et al.,
2014; Yue et al., 2013). Recently, more and more studies have
demonstrated Cordycepin, as one bioactive compound of Cordyceps
militaris, have abroad roles of anti-tumor (Hsu et al., 2017; Hwang
et al.,, 2017a; Wang et al., 2017a, 2017b; Zeng et al., 2017). How-
ever, little is known about the active ingredients as well as the
mechanism underlying these roles. The review summarizes the
anti-tumor mechanism of Cordycepin.

2. Main active components of Cordyceps militaris
2.1. Chemical features of cordycepin
The structure of Cordycepin is very much similar with cellular

nucleoside, adenosine and acts like a nucleoside analogue
(Li et al., 2015). The structure of cordycepin comprises a purine
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Fig. 1. The difference of chemical structures between Cordycepin and adenosine.

(adenine) nucleoside molecule attached to one ribose sugar moi-
ety. The chemical synthesis of cordycepin is completed mainly
through the replacement of the OH group at the 3’-position in
the ribofuranosyl moiety with H, generating a deoxy analogue of
adenosine (Fig. 1) (Tuli et al., 2013).

2.2. Function of cordycepin

Cordycepin has many biological and pharmacological actions in
immunological, hepatic, renal, cardiovascular systems as well as an
anti-cancer agent. Those functions are related to its structure (Tuli
et al., 2014). During the process of RNA synthesis (transcription),
some enzymes are not able to distinguish between an adenosine
and Cordycepin which leads to incorporation of Cordycepin to
induce premature termination of transcription (Chen et al., 2008;
Holbein et al., 2009). In addition, The IC50 (the concentration at
which 50% inhibition of cell growth was achieved) of cordycepin
in human gallbladder cancer cell lines NOZ and GBC-SD cells at
48 h was approximately 19.2 pg/mL and 398.1 pg/mL, respectively
(Wang et al., 2014). For human lung cancer cell lines. IC50 of cordy-
cepin was 60 pg/ml (Hwang et al., 2017b). The function of Cordy-
cepin treatment in tumor is dependent on tumor types and
concentration (Cho and Kang, 2018; Fong et al., 2018).

The high dosage of Cordycepin can block mTOR (mammalian
target of rapamycin) signaling pathway (Wong et al., 2010). The
name mTOR has been derived from the drug rapamycin, because
the drug inhibits mTOR activity. Some of mTOR inhibitors have
been tested as anti-cancer drugs, since they suppress cancer
through mTOR signaling pathway (Bjornsti and Houghton, 2004;
Sabatini, 2006). The study found that Cordycepin can activate
AMPK which blocks the activity of mTORC1/mTORC2 complex.
The inactivated complex cannot activate AKT 1 kinase fully, which
suppress mTOR signal transduction inhibiting translation, and fur-
ther cell proliferation and growth (Wong et al., 2010). Those func-
tions of Cordycepin elucidate their structure-function relationship,
and further explain the anti-tumor roles of the compound. Cordy-
cepin had been shown to regulate AMPK/mTORC1 signaling path-
way to down-regulate multiple drug resistant to HIF-1ot in GBC-
SD gallbladder cancer cells (Wu et al., 2014). The anti-tumor roles
and mechanisms of Cordycepin are descripted detail below.

3. Cordycepin inhibits tumor growth

Many complementary and alternative medicine are developed
in applications of cancer prevention and therapy due to
chemotherapy resistance and metastasis (Wong et al., 2017). Tra-
ditional Chinese medicine is one treatment for complementary
and alternative therapy (Wong et al., 2015; Ye et al., 2018). Cordy-
cepin is an active compound and has been used in cancer treat-
ment in past studies.

3.1. Induction of tumor apoptosis

Cordycepin can induce cancer cell apoptosis in caspase-
dependent pathways. Apoptosis of Human liver cancer (HepG2)
cells were induced by the activation of caspase, interaction
between Fas and FADD, and modulation of the protein levels of
Bid and tBid (Shao et al., 2016). Cordycepin also decreased human
bladder carcinoma cells (T24 cells) survival, which was regulated
by the activation of A3 adenosine receptor and the subsequent
inactivation of Akt pathways, leading to the increases in cleaved
Caspase-3 and apoptosis (Cao et al., 2017). In addition, Cordycepin
reduced cell viability, inhibited cell proliferation, and enhanced
lactate dehydrogenase release and reactive oxygen species (ROS)
accumulation of human breast cancer cell (MCF-7 and MDA-MB-
231 cells) through up-regulating the activation of pro-apoptotic
proteins, such as caspase-3, 8, 9 and suppressing the expression
of the anti-apoptotic protein, B-cell lymphoma 2 (Bcl-2) (Wang
et al., 2016).

Cordycepin induced the apoptosis of human renal cancer cells
by triggering the MKK7-JNK signaling pathway through inhibition
of anti-apoptotic protein cellular caspase 8 (FLICE)-like inhibitory
protein (c-FLIP) expression and the consequent activation of the
Bax/caspase-3/PARP-mediated pathway (Hwang et al., 2017a). In
human Non-Small Cell Lung Cancer (NSCLC), Cordycepin-induced
apoptosis was also associated with down-regulation of protein c-
FLIP, which inhibited the activity of caspase-8. Cordycepin inhib-
ited cell growth by inducing apoptosis and autophagy. The
cordycepin-stimulated autophagy were mediated by suppressing
mTOR signaling pathway in lung cancer cells. In addition, suppres-
sion of autophagy could also elevate the protein level of c-FLIP
which indicated cordycepin-triggered autophagy promoted the
degradation of c-FLIP. Therefore, Cordycepin induced apoptosis
through autophagy-mediated downregulation of c-FLIP in human
NSCLC cells. In addition, cordycepin also inhibits the ERK/Slug sig-
naling pathway through the activation of GSK3B which, upregu-
lates Bax to result in apoptosis of lung cancer cells (Hwang et al.,
2017b). Taken together, cordycepin may serve as one promising
therapeutic compound, which acts on multiple molecular targets
in lung cancer treatment (Yu et al., 2017).

Cordycepin also induces cancer cell apoptosis in caspase-
independent pathways. Cordycepin decreased cell mitosis and
EGFR signaling in one murine oral tumor mouse model. In accor-
dance, the treatment distinctly reduced the levels of ki-67 and
EGFR signaling molecules to induce cancer cell apoptosis (Hsu
et al., 2017). For human lung adenocarcinoma, Cordycepin induced
cancer cell apoptosis by caveolin-1-upregulated JNK/Foxo3a sig-
naling pathway, and significantly decreased tumor volume in nude
mice (Joo et al., 2017). Cordycepin also increase ROS levels and
induce apoptosis in MA-10 mouse Leydig tumor cells but not cause
cell death of primary mouse Leydig cells on moderate concentra-
tion through down-regulating the p38 MAPK and PI3K/AKT signal-
ing pathways (Pan et al., 2015) (Table 1).

3.2. Cell cycle arrest

Cordycepin incorporates mitochondrial-mediated apoptosis in
gastric cancer cell (SGC 7901 cells) with regulating mitochondrial
extrinsic pathways by inhibition of A; adenosine receptor (AsAR)
and drive activation of death receptor DR3, which promote the
activation of PI3K/Akt protein expression as well as collapse of
mitochondrial membrane potential (MMP). Phosphorylation of
PI3K/Akt and DNA damage by cordycepin induced the production
of ROS and regulated SGC 7901 cell cycle cessation at S phase
(Nasser et al., 2017). Cordycepin also increased radio-sensitivity
in human uterine cervical cancer cells, such as ME180 and HelLa
cells, and induced the increased number of those tumor cells in
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Table 1
Inhibition roles of Cordycepin on tumor growth.
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Tumor types (cell lines)

Mechanism of anti-tumor

Molecular targets

References

Human gastric cancer (SGC-7901)

Human non-small cell lung cancer cells

Human liver cancer (HepG2)

Human renal cancer cells (TK-10)

Human uterine cervical cancer cell (ME180 and HeLa cell)
Human Leukemia cells (NB-4 and U937 cells)

Human Bladder cancer (T-24)

Human bladder cancer cell (5637 and T-24 cells)

Human breast cancer cells (MCF-7 and MDA-MB-231)

Induction of apoptosis

Induction of apoptosis/autophagy
Induction of apoptosis

Induction of apoptosis

Induction of G2/M arrest

Induction of apoptosis/cell cycle arrest
Induction of apoptosis

G2/M cell cycle arrest

Induction of apoptosis

PI3K/AKTT

c-FLIPL|

Caspase-8, Fas, FADD|

MKK?7, JNKT

Cyclin A2]

Cyclin A2, cyclin E, and CDK2| p537
A3 adenosine receptors?
Phosphorylation of c-Jun
Caspase-3,8,91, BCL-2|

Nasser et al., 2017)
Yu et al.,, 2017)

Shao et al., 2016)
Hwang et al., 2017a)
Seong da et al., 2016)
Liao et al., 2015)

Cao et al., 2017)

Lee et al., 2009)
Wang et al., 2016)

Murine oral cancer (4NAOC-1)

Induction of apoptosis, decrease

Caspase-31 EGFR, IL-17RA| Hsu et al., 2017)

cell mitosis and EGFR signaling

Murine Leydig tumor cell (MA-10)

Induction of apoptosis

p38 MAPK? (Hsu et al., 2017)

the G2/M phase, which is related to the induction of p53-mediated
apoptosis and modulation of the expression of cell cycle check-
point molecules (Seong da et al., 2016). The increased expression
of p53 by Cordycepin treatment promoted the release of cyto-
chrome ¢ from mitochondria to the cytosol, to further activate
caspase-9 and promote the apoptosis of leukemia cells (NB-4 and
U937 cells) (Liao et al., 2015). In addition, cordycepin inhibits the
expression of cyclin A2, cyclin E, and CDK2, which leads to the
accumulation of those leukemia cells in S-phase through the acti-
vation of Chk2-Cdc25A pathway (Liao et al., 2015).

Recently, Lee at al found that Cordycepin causes p21WAF1-
mediated G2/M cell cycle arrest by upregulating c-Jun N-terminal
kinase activation in human bladder cancer cells. They blocked
JNK function using JNK-specific inhibitor and small interfering
RNA of JNK to rescue cordycepin-dependent p21WAF1 expression
and decrease of cell cycle proteins (Lee et al., 2009). These results
suggest that cordycepin could be an effective treatment for bladder
cancer.

3.3. Resistance of cancer stem cell

Cancer stem cells (CSCs) are a limitless cell source for the initi-
ation and maintenance of cancer cells. CSCs can generate cancer
cells through the stem cell processes of self-renewal and differen-
tiation into multiple tumor cell types (Batlle and Clevers, 2017;
Visvader, 2011). Thus, The intrinsic resistance of CSCs to conven-
tional therapy is regarded as a potential therapeutic target of can-
cer (Reya et al.,, 2001). Activation of the Wnt/B-catenin pathway is
required for the survival and development of CSCs, such as leuke-
mia stem cells (LSCs) (Nusse and Clevers, 2017). Therefore, target-
ing B-catenin is considered a therapeutic strategy for the treatment
of leukemia. cordycepin can block the effect of B-catenin in leuke-
mia cells by regulating GSK-3p to inhibit the growth of LSCs (Ko
et al., 2013). CSCs escape chemotherapy and lead to chemo-
resistance due to the induction of TGF-B. Cordycepin efficiently
inhibited cell viability, the percentage of ovarian cancer stem cells,
and the levels of matrix metalloproteinases (MMPs) in TGF-beta-
induced SKOV-3 ovarian cancer cells. Thus, cordycepin acted as a
complementary agent for ovarian cancer therapy that against
chemoresistance (Wang et al., 2017c).

4. Regulation of cordycepin on tumor microenvironment
4.1. Inhibition of migration and invasion of tumor cell

Cordycepin inhibited the migration and invasion of human oral
squamous cell carcinoma (OSCC) cell through upregulating E-
cadherin and downregulating N-cadherin protein expression,
implying the inhibition of Cordycepin on epithelial-mesenchymal
transition (EMT) (Yu et al., 2017). In addition, Cordycepin have

been shown to suppress the migration of the human glioblastoma
cell lines US87MG and LN229 in transwell and wound healing
assays in vitro, since Cordycepin decreased protein expression of
integrin o1, focal adhesion kinase (FAK), p-FAK, paxillin and p-
paxillin. The lysosomal inhibitor NH4Cl can block the ability of
cordycepin to inhibit focal adhesion protein expression and glioma
cell migration. The protein phosphatase inhibitors Calyculin A and
okadaic acid also blocked the cordycepin-mediated reduction in p-
Akt, p-FAK and further suppress tumor cell line migration. Hema-
toxylin and eosin staining of mouse xenografts demonstrated that
brain tumor sizes were reduced after Cordycepin treatment in vivo.
Thus, cordycepin inhibited the migration and invasion of human
glioblastoma cells by affecting lysosomal degradation and protein
phosphatase activation (Hueng et al., 2017). These data are in con-
sistent with the finding that cordycepin inhibits the migration and
invasion of LNCaP cells (human prostate carcinoma cells). Cordy-
cepin significantly downregulated the activity of tight junctions
and suppressed the expression and activity of MMP-2 and MMP-
9, which regulated tumor metastasis. These anti-metastatic roles
were mediated by inactivation of the phosphoinositide 3-kinase
(PI3K)/Akt pathway in LNCaP cells (Jeong et al., 2012).

4.2. Blockage of tumor metastasis

Anti-metastatic activities of cordycepin were demonstrated in
mouse models where cordycepin inhibited B16 mouse melanoma
liver metastasis in vivo (Kubo et al.,, 2010). The potential roles of
cordycepin in melanoma cell metastasis and the underlying molec-
ular mechanisms were addressed further. Zhang et al. found that
cordycepin could suppress melanoma invasion via MMPs and
metastasis via actomyosin machinery through LXR/RXR
activation-dependent upregulation of miR-33b. Cordycepin also
suppressed the expressions of HMGA2, Twist1 and ZEB1 through
miR-33b. The up-regulation of miR-33b by cordycepin inhibited
melanoma metastasis in vivo (Zhang et al., 2015). In another
in vivo mouse melanoma studies, Yoshikawa at al demonstrated
that adenosine-5'-diphosphate (ADP)-induced platelet aggrega-
tions accelerated lung metastasis on mouse melanoma. Cordycepin
treatment reduced the number of metastatic lung nodules through
blocking ADP-induced platelet aggregations (Yoshikawa et al.,
2009). Those data indicated that cordycepin inhibit melanoma
metastasis through different anti-metastatic mechanismes.

Cordycepin can suppress mitochondrial fusion-induced EMT in
ovarian carcinoma cells through inhibiting estrogen-related recep-
tor (ERR)-a,, which is a co-transcription factor for gene expressions
associated with mitochondrial fusion Thus, cordycepin suppresses
metastasis and migration of ovarian carcinoma cells via inhibiting
mitochondrial activity (Wang et al.,, 2017b). In addition, Cordy-
cepin also blocked EMT through regulating TGF-B (Wang et al.,
2017¢).
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Table 2
Inhibition roles of Cordycepin on tumor migration and metastasis.
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Tumor types (cell lines) Anti-metastatic mechanism

Molecular targets References

Human oral squamous cell carcinoma

Human hepatocellular carcinoma (HepG2)

Human glioblastoma cell (U87MG and LN229) Inhibition of tumor cell motility

Human prostate carcinoma (LNCaP)
of tumor

Human ovarian carcinoma (OVCAR-3) EMT

Human melanoma

Inhibition of epithelial-mesenchymal transition (EMT)
Anti-metastatic and anti-angiogenic

Inhibition of migration and invasion

Inhibition of invasion and metastasis

E-cadherin, N-cadherin| (Su et al., 2017)
(Lu et al., 2014)
Lysosomal degradation, protein (Hueng et al., 2017)
phosphatase activation
AKT| (Jeong et al., 2012)
Mitochondrial activity|,

Estrogen-related receptor o]

miR-33b|, HMGA2, Twist1, ZEB17

(Wang et al., 2017b)

(Zhang et al., 2015)

Solid tumors grow fast if they induce the development of new
blood vessels, a process known as tumor angiogenesis, which is
the main process of tumor growth and metastasis (Carmeliet and
Jain, 2000, 2011). Angiogenesis was assessed using a tube forma-
tion assay (Yang et al., 2008). Anti-angiogenic drugs have been
broadly used for clinical studies to suppress the growth and metas-
tasis of tumors (Ferrara and Adamis, 2016). Cordycepin inhibited
tube formation (total length of tubular structure) of human umbil-
ical vein endothelial cell line (HUVEC) and the migration of those
cells. Cordycepin also efficiently suppressed the invasion and
migration of hepatocellular carcinoma cell line (HepG2) (Lu et al.,
2014) (Table 2).

4.3. Disruption between cancer cells and mesenchymal stromal cells
(MSCs)

Mesenchymal stromal cells (MSCs), as the main cell type of
tumor microenvironment, promote tumor growth and metastasis,
and stromal cells support tumor progression and resistance to
chemotherapy (Ridge et al., 2017; Wan et al., 2013). Thus, targeting
the niche-based microenvironment may be one new approach for
cancer therapy (Singh et al., 2018). Cordycepin reduces the num-
bers of CD34+CD38-cells in leukemia such as U937 and K562,
and induces Dkk1 expression to disrupt the association of both leu-
kemia and MSCs. Cordycepin also suppressed cell attachment of
leukemia with MSCs and downregulates N-cadherin in leukemia
and VCAM-1 in MSCs (Liang et al., 2017). Therefore, the results
indicated the potential of cordycepin as a multitarget drug in
anti-metastatic therapy.

5. Conclusion and future prospect

Numerous studies have shown that Cordycepin as one valuable
compound, can inhibit many malignant tumors through different
pathways. Since Cordycepin-induced death of cancer cells are per-
formed via multi-target pathways, it is difficult to some extent for
cancer cells to develop drug resistance. Moreover, another advan-
tage of Cordycepin is that the small side effect is shown when
inhibiting the growth and progression of cancer cells. Therefore,
Cordycepin may be considered as one wonderful drug candidate
for cancer treatment.
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