
1Scientific Reports | 6:22904 | DOI: 10.1038/srep22904

www.nature.com/scientificreports

Experimental phase determination 
of the structure factor from Kossel 
line profile
G. Faigel, G. Bortel & M. Tegze

Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by 
the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: 
phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although 
this was known for a long time, experimental realization has not been presented. In this work we 
demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. 
These measurements are interesting not only theoretically, but they would facilitate structure solution 
of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic 
fields and extremely short times. The parallel measurement of many diffraction lines on a stationary 
sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron 
lasers (XFELs).

Traditionally, the atomic order in crystalline substances is determined by x-ray diffraction. Measuring diffraction 
peaks, we obtain the magnitude of the scattered waves, but the phase information is lost. However, for direct 
structure determination both the magnitude and the phase of the structure factors should be known. In practice, 
the loss of phase information is compensated by additional knowledge, such as atomicity, positivity of electron 
density, known part of the structure, composition, etc. Clever algorithms, like direct1, Patterson2, dual space3 
methods, have been developed to incorporate and use our extra knowledge to solve the structure. Nevertheless, 
from time to time scientists tried to work out methods that allow experimental determination of the phase. The 
reason of this “quest” is that the knowledge of phase would greatly facilitate structure solution, especially in 
the case of non-centrosymmetric crystals. The best known approach is the controlled variation of the structure 
factor by various methods4–7. However, in this case special sample must be prepared, which limits applicability. 
Another approach is the three-beam diffraction, where three reflections are simultaneously excited8,9. Although 
it was shown that this method works, the practical application is not widespread, due to experimental difficulties. 
Another possibility is atomic resolution holography using inside sources or detectors10–12. This method can give 
the local atomic arrangement in orientationally ordered samples by a direct transformation of the holographic 
pattern which contains the phase. However, the measurement of x-ray holograms are technically complicated, 
time consuming and only relatively simple structures (10–100 atoms) can be determined.

Hutton, Trammell and Hannon13 and in an independent work Stephan et al.14 suggested the use of Kossel 
line patterns as source of phase information of diffraction peaks produced by inside x-ray sources. Hutton and 
co-workers based their method on the analysis of the fine structure of individual Kossel lines. They gave a theo-
retical prediction for the angular dependence of the Kossel line profile. They showed that in the Bragg case and 
in special conditions13 the line shape strongly depends on the phase of the structure factor (see Supplementary 
Movie 1). Although they described the necessary experimental conditions in detail, there has been no experi-
mental work measuring a Kossel pattern (i.e. many Kossel lines in parallel) and determine the fine structure of 
all lines, so far. There has been a pioneering experiment15, in which the fine structure of a single Kossel line was 
measured, and its phase was determined, within very special conditions. The reason, why these type of meas-
urements are scarce is the technical difficulties (see Supplementary Information, “Design Considerations of the 
Experimental Setup” and Ref. 16). In this paper we present experimental evidence for the direct determination of 
the phase of structure factors from the fine structure of measured Kossel lines. Further, we show that the special 
conditions given in Refs 13,15 can be relaxed, leading to wider applicability. We also discuss the unique possibili-
ties given by the Kossel technique, i.e. obtaining structural data on a steady sample at extreme conditions such as 
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very high pressures, temperatures or magnetic fields within a very short period of time. With these extensions this 
method will allow to solve presently intractable problems in diverse areas of natural sciences.

Theory
Kossel lines are formed when atoms of a single crystal emit x-ray photons and these are scattered by the crystal 
itself. For easy visualization of this process, we depicted schematically the formation of Kossel lines in Fig. 1a. The 
regions of the Kossel cone corresponding to the “Laue case” (often called transmission geometry) and “Bragg case” 
(often called reflection geometry) in the terminology of dynamical diffraction are explained with the help of the 
crystal surface, the crystallographic layers and the beam directions (Fig. 1b). Since these geometries are important 
in the evaluation process of our experiment, we refer to this figure later. We point out here that the geometrical 
difference between the two cases leads to a significant difference in the phase change of the diffracted wave, going 
through the reflection region. The phase of the diffracted wave changes π  in the Bragg case while much less in the 
Laue case (about twice the phase angle connected to the anomalous correction). This shows up in the different 
angular dependence of the Bragg and Laue case Kossel lines profiles (see later equations (1) and (2)). The for-
mation of Kossel lines was experimentally shown by Kossel, Loeck and Voges17 and theoretical description was 
given by Laue18. Detailed theoretical description of the fine structure of these lines was given by Hutton, Trammell 
and Hannon13. Applying the theory of dynamical diffraction for the inside source case for thick single crystals 
in which the position of fluorescent atoms are restricted close to the top surface of the sample (close means less 
than the extinction length), they concluded that the angular dependence of the intensity crossing a Kossel line is 
characteristic to the phase of the structure factor involved (see Supplementary Movie 1). Their description was 

Figure 1.  (a) Formation of Kossel lines. Fluorescent radiation emitted by the atoms (A0) in the sample 
interferes with its Bragg reflection (AB) resulting in strong intensity modulations (I =  |A0 +  AB|2) in the vicinity 
of cones defined by the normal of the diffracting plane (hkl) and the Bragg angle (θB). The viewing direction is 
in the diffracting planes (grey lines) but the cone is illustrated with an ellipse. Arrows indicate relevant direct 
(thick arrows) and reflected (thin arrows) plane-wave components of the spherical-wave fluorescent radiation. 
(b) Bragg and Laue case of Kossel lines. k0 and k1 wave vectors (see text for definition) are located on the same 
side of crystal surface for the Bragg case (red), while on the opposite sides for Laue case (blue). There exist pure 
Bragg, pure Laue and mixed Bragg-Laue cones (shown in the figure) depending on θB and ϕs (the angle between 
qhkl and the crystal surface normal). For more details see Supplementary Movie 2.
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given for the Bragg case lines (see Fig. 1 and Supplementary Movie 2). In practice, the above restrictions severely 
limit the usability of the approach. First, one needs a special sample or a special geometry to have emitters only 
in the top surface. Secondly, Bragg case lines in our geometry are usually weak, because one needs high Bragg 
angles to satisfy the Bragg case condition. The most intense Kossel lines are most often produced in the Laue case 
(see Fig. 1 and Supplementary Movie 2). However, in the Laue case no simple closed analytical form exists for the 
description of the fine structure of Kossel lines. A more elaborate treatment of the geometry of the experiment 
is needed. Therefore we turned to earlier works on the inside source problem developed for nuclear sources and 
scatterers19–21. The theory worked out in these papers included the more general case of polarization mixing by 
the scattering medium and higher multipolarity inside sources. Since in our case the sources are isotropic E1 
emitters and the scattering is by the electrons (i.e. electric dipole), we used a simplified form of the expressions 
given in these papers. For simplicity, we omitted polarization, which has negligible effects. Further, we applied the 
formulas for the general case when the full sample volume contains emitters. We resorted to numerical solutions 
both in the Laue and in the Bragg case. With these modifications, our measurements could be analyzed and the 
phases for the measured reflections could be obtained. We give here only the final formulas used in the evaluation 
(for derivation of these formulas see Refs 19–21 and the Supplementary Information, “Derivation of Equations 
(1) and (2)”). Our notation mostly follows the convention of19–21 for easier understanding.

The contribution of a source atom located at rj in the Mj-th layer to the reflection hkl, at a given wavelength λ 
is given by 2 separate formulas for the Bragg and the Laue cases.

For the Laue case:
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δ is related to the angular deviation from the kinematical Bragg angle θB; Mj is the serial number of the layer 
containing the source atom below the upper surface of the crystal, M is the total number of layers, k0 is the direct 
wave wave-vector, k1 is the wave-vector of the wave which is scattered into k0 satisfying the Bragg condition 
(k0 =  k1 +  qhkl where qhkl is the reciprocal lattice vector of the reflection under consideration and the scattering 
is elastic; |k0| = |k1| = 2π /λ ), g is the projection of k0 to the normal of the crystal surface, rj is the position of the 
source atom relative to the origin of the unit cell, B is a normalization factor, which describes the intensity of the 
Kossel line relative to the total off-Bragg intensity and can be calculated from the fluorescent yields. θB is the Bragg 
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angle, θ is the rocking angle, ϕ1 (ϕ0) is the angle between k1 (k0) and the crystal surface, d is the interplanar spac-
ing, F00, F11, F01 and F10 are the planar scattering amplitudes (for definition see equations (7) and (8) in Ref. 20).

The total intensity variation is calculated by summing the contributions of all layers containing source atoms. 
Since our goal is to determine the phase (Φ) of the structure factor we invoke here the dependence of F01 on  
Φ: F01 =  R eiΦ where R is a real constant20. Note, that in traditional crystallography the origin choice of the unit 
cell affects the phase of reflections via a phase-factor. In our measurement the source atom fixes the origin and 
through this the phases of the Kossel lines. When comparing the phases obtained from our measurements (Φm) 
and the phases calculated from the known structure of GaAs (Φc), we placed the origin to the Ga or As sites 
according to the experimental conditions, and corrected the measured values by the corresponding phase factors.

Experiment
The Kossel patterns were taken at ESRF at the ID18 beamline. We have built a special setup to collect the patterns. 
The details of the setup are described in Ref. 16 and the Supplementary Information, “Experimental Setup”. Here 
we give those parameters, which are special to the present experiment only. First, the choice of sample material: 
for a demonstration experiment the best sample is a relatively simple, well known crystal. However, at the same 
time, it should have structure factors with non-trivial phases, so that many different phases could be obtained, 
reflecting the strength of the method. Finally, a practical condition is the crystal quality, which should be good 
enough not to broaden too much the diffraction lines allowing the line shape analysis. All these requirements are 
satisfied by a GaAs single crystal. GaAs has a cubic zinc blende structure with space group F m43 . This structure 
consists of two interpenetrating face-centered cubic lattices, one for Ga and one for As. There are single 
non-equivalent sites for Ga and As in the unit cell. This simplifies the evaluation procedure, since having more 
non-equivalent source atoms in the unit cell would require the determination of the relative position of these 
atoms before the phase analysis. The choice of GaAs as a test sample gives a further advantage, the possibility of 
simultaneously measuring both the Ga and the As Kossel lines, since the beamline (ID18) is optimized for the 
14.4 keV radiation, which is just above the absorption edges of both elements. Since well-separated emission energies 
give separated Kossel profiles, this allows a multiple check of the results. The geometry of the experiment is shown in 
Fig. 2. Since the size of our detector was small (25 ×  25 mm2 active area, with pixel size 50 ×  50 μm2) we carried out 
two sets of measurements: one with the detector close to the sample (160 mm) and another one at a larger detector 
distance (370 mm). The first set covered larger solid angles by combining 3 adjacent images, showing more lines but 
with moderate angular resolution (Fig. 3a). This pattern is used to find the orientation and index the lines. The second 
set (Fig. 3b) – with higher angular resolution – provides the angular profiles of some selected lines. We chose this area 
to include lines having different phases. Figure 3 shows the Kossel line pattern after removing the general fluorescent 
background, and correcting for the detector segment and pixel inhomogeneity. Detailed description of the 
pre-processing of the measured patterns is given in Ref. 20 and the Supplementary Information, “Pattern Processing”.

Result
We could identify 26 Kossel lines; 14 of these were produced by Ga and 12 by As source atoms. From the 14 Ga 
lines 10 were Ga Kα1 and Kα2 flourescence, while 4 were Ga Kβ fluorescence. From the 12 As lines 9 were As Kα1 
and Kα2 flourescence, while 3 were As Kβ fluorescence. The angular distance of Kα1 and Kα2 lines is comparable 
to the broadened width of the Kossel profile requiring their simultaneous description, while the Kβ lines are 
well separated and can be treated separately. The Kossel line profiles for each reflection and emission energies 
were extracted by averaging measured intensities along narrow concentric cones of the given Kossel cone. This 
is a non-trivial procedure, because for non-symmetric reflections (i.e. the axis of the cone is not perpendicular 
to the surface of the crystal) the profile parameters depend on the position where we cross the cone, or even it 
can change the case from Bragg to Laue or vice-versa. (see Fig. 1 and Supplementary Movie 2). However, this 
dependence is a slowly varying function of the azimuthal angle; therefore we could take the profile constant in 

Figure 2.  Experimental setup. A focused monochromatic synchrotron x-ray beam was used to excite atoms 
in the sample. The emitted fluorescent radiation (modulated by the interference between the direct and 
Bragg reflected beams) were recorded with a 2D pixel detector. To increase the solid angle covered by the 
measurement, the detector assembly can be moved.
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the small angular range covered by our detector. Sorting the lines by cases they correspond to 2 Bragg and 24 
Laue case lines. Profiles were fitted to these lines according to equations (1) and (2). In principle, there are four 
parameters to fit: F01, F10, F00 and F11. Examining equations (1) and (2) we see that F00 and F11 forward scattering 
amplitudes determine the shift of the diffraction lines relative to the kinematical Bragg angle. Their absolute value 
is proportional to the number of electrons in the unit cell, and their imaginary part is determined by the absorp-
tion. These values are known, given by the sample composition22. In general, their values are small; the shifts are 
in the arcsec range. Since we cannot measure absolute angular positions with this precision by our setup, there 
is a systematic error in the peak positions determined by the uncertainty in the geometry of the detector-sample 
assembly. Therefore we have to fit the position of the peaks, in spite of knowing F00 and F11. However, this way the 
fitted values of the peak positions cannot be used as a consistency check for F 00 and F11. In what follows we do not 
draw any conclusions from the fitted position parameters. For phase determination, the important parameters are 
F01 and F10. Their phase determines the shape of the Kossel lines. By definition, F01 and F10 are not independent; 
F01 =  A0/sin(ϕ1) ×  eiΦ while F10 =  A0/sin(ϕ0) ×  e−iΦ where A0 is the magnitude of the structure factor and Φ is its 
phase. This means that we have to fit the Kossel line profile by a minimum of 3 parameters: A0, Φ and a position 
parameter. However, in practice we have one more fitting parameter determined by the experimental conditions: 
the line broadening. It comes from three factors: the energy width of the fluorescent lines, the imperfection of 
the crystal, and the angular resolution of the experimental setup. The energy width of the fluorescent lines can 
be precisely given but the other two factors change from line to line depending on the geometry and in practice 
they cannot be easily derived. Estimating their contributions we found that the crystal imperfection dominates, 
followed by the angular resolution of the setup, and the smallest contribution comes from the energy width of 
the fluorescent lines. We took into account the line broadening by convoluting the theoretical lines (given by 
equations (1) and (2)) with a Gaussian. In the fitting procedure we obtained 20–100 times total broadening of 
the theoretical line width. It is important to point out here, that the line broadening and A0 are correlated in the 

Figure 3.  Measured Kossel patterns. (a) 3 aligned images taken with short detector distance (160 mm) were 
used for indexing the lines and selecting a region (black dashed line box) for the measurement of the line 
profiles. (b) The image taken in the selected region with larger detector distance (370 mm) was used to extract 
the Kossel-line profiles. Cyan and yellow colors indicate strong Ga Kα1 and As Kα1 lines. Other energies and 
reflections are not shown for better visibility of the raw pattern.



www.nature.com/scientificreports/

6Scientific Reports | 6:22904 | DOI: 10.1038/srep22904

fitting procedure. Therefore no conclusive information can be drawn for any one of them. However, this does not 
affect the determination of Φ, which is our goal. We show below, that even with this relatively large broadening the 
line profiles give the phase with about 10° precision, which is less than 3 percent of the range of possible phases.

In the fitting procedure we fitted 4 parameters: line position, line broadening, amplitude of structure factor 
and phase of the structure factor. The procedure was a 3-stage process: first we found approximate starting param-
eters for the iteration. This was done by choosing estimated values for the position, broadening and magnitude of 
the lines, meanwhile mapping the phase (Φ) from 0–360° in 20° steps. We selected the starting phase to the value 
where the line shape was closest to the measured one. In the second stage we fixed the phase and performed a 3 
parameter nonlinear minimization of the sum of squared differences of the measured and calculated profiles. This 
gave the experimental parameters: the width of the Gaussian, the positions and amplitudes of the lines. In the 
third stage, we fixed the experimental parameters and iterated for the phase. We numerically checked the conver-
gence region and uniqueness of the fitted parameters and found that the above process is unbiased (see 
Supplementary Material, “Line-shape, Fitting, Convergence and Uniqueness”). In Fig. 4 four typical profiles are 
shown as illustration. We selected these to include various types of lines and different phases. The fits are reason-
ably good. The other lines are similarly well described, and the phases agree within a few degrees with the theo-
retical values (calculated from the GaAs structure, taking into account the anomalous corrections, too). The 
theoretical (Φc) and the experimentally (Φm) determined phases are given in Table 1. In two cases we have some-
what larger than 10° error (220 and 224Ga lines). We attribute these larger errors to the non-perfect deconvolu-
tion of the background contributions. It should be mentioned here that the error of the phase found at other lines 

Figure 4.  Measured and calculated Kossel-line profiles (dots and solid lines) of 4 selected reflections and 
source energies. Φc and Φm are the calculated and the measured phases of the structure factors. The intensity is 
normalized by the off-Bragg fluorescent background, resulting in a baseline of 1.



www.nature.com/scientificreports/

7Scientific Reports | 6:22904 | DOI: 10.1038/srep22904

is also dominated by the same type of error and not by statistical error. More precise phases could be obtained by 
using better detectors and a stricter control of the background caused by the scattering of the incident beam and 
the fluorescent radiation by the environment (goniometer parts, shielding, air, etc., see a more detailed discussion 
in the Supplementary Material, “Experimental Considerations in XFEL Measurements”). We hope that in the 
near future these technical problems will be solved and this method reaches its full power.

Conclusion
In this work we illustrated the possibility of retrieving quantitative phase information from Kossel line patterns. 
These results show that parallel phase determination of several structure factors can be experimentally realized. 
Using the proper evaluation tools, phases of 26 reflections of a GaAs crystal were obtained. Beside the theoretical 
interest, this measurement opens the way to several applications. One of the most important advantages of this 
experimental arrangement is that a single crystal pattern (many Bragg reflections) can be taken at a single posi-
tion of the sample simultaneously. This allows detailed structural characterization of changes caused by highly 
non-ambient conditions such as high magnetic fields, very high pressures, temperatures etc. Further, setting up 
this experiment at free electron laser sources, one could get a full diffraction pattern from a single pulse. This 
allows the characterization of very short-lived structural features, in the 10–100 fs range, even for irreversible pro-
cesses. All these are applicable if we use only the geometrical information i.e. the position of the Kossel lines. If we 
add the extra phase information, this method can revolutionize structure determination at extreme conditions.
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