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Gene co-expression in the interactome: moving from
correlation toward causation via an integrated approach

to disease module discovery

Paola Paci@®'®, Giulia Fiscon (>, Federica Conte?, Rui-Sheng Wang*, Lorenzo Farina' and Joseph Loscalzo

In this study, we integrate the outcomes of co-expression network analysis with the human interactome network to predict novel
putative disease genes and modules. We first apply the SWitch Miner (SWIM) methodology, which predicts important (switch)
genes within the co-expression network that regulate disease state transitions, then map them to the human protein-protein
interaction network (PP, or interactome) to predict novel disease-disease relationships (i.e., a SWIM-informed diseasome). Although
the relevance of switch genes to an observed phenotype has been recently assessed, their performance at the system or network
level constitutes a new, potentially fascinating territory yet to be explored. Quantifying the interplay between switch genes and
human diseases in the interactome network, we found that switch genes associated with specific disorders are closer to each other
than to other nodes in the network, and tend to form localized connected subnetworks. These subnetworks overlap between
similar diseases and are situated in different neighborhoods for pathologically distinct phenotypes, consistent with the well-known
topological proximity property of disease genes. These findings allow us to demonstrate how SWIM-based correlation network
analysis can serve as a useful tool for efficient screening of potentially new disease gene associations. When integrated with an
interactome-based network analysis, it not only identifies novel candidate disease genes, but also may offer testable hypotheses by

which to elucidate the molecular underpinnings of human disease and reveal commonalities between seemingly unrelated

diseases.
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INTRODUCTION

The new emerging paradigm of network medicine has been
dramatically changing the way we define and analyze human
diseases. Rather than view a disease as an independent entity,
the network medicine approach recognizes the interplay of
multiple molecular processes in expressing the pathopheno-
type'™. By proposing a holistic approach according to which
characterizing the behavior of the network as a whole is
essential for understanding disease complexity®, network med-
icine sets the stage for exploring disease complexity at the
cellular and molecular levels, and for studying the relationships
among apparently different pathophenotypes. A key goal of
network medicine is to gain a better understanding of how
perturbations propagate through the system by identifying and
characterizing potential network modules that can be targeted
for clinical intervention. Although introduced relatively recently,
scientific research in the network medicine field has been
growing rapidly as witnessed by the number of evolving
methods designed to interrogate disease etiology, model
molecular and genetic interactions, identify potential biomar-
kers, and design therapeutic interventions, including both drug
discovery and drug repurposing’>~'8,

The two key issues that each network-based algorithm has to
address are the identification of the critical entities in the system
under investigation (nodes), and the nature of the interactions
between these entities (edges). This information depends on the
study design, the phenotype under investigation, the biological

question of interest, the molecular entities measured, and the type
and size of the available datasets. Thus, tools developed within the
field of network medicine are highly customized to leverage these
biomedical data with respect to the given biological or disease
context. Several of these algorithms®” make use of the human
protein—protein interaction (PPI) network, also denoted the human
interactome, which is a network of proteins (nodes) in which the
edges are the physical and functional interactions occurring
between them. Despite the fundamental insights PPl networks
provide about the topological features of specific protein
interactions within them, their intrinsic immutable nature renders
them void of context-specific information (i.e., cell-, tissue-, or
disease-specificity). Moreover, the incompleteness of the current
interactome and the partial knowledge of the number of genes
associated with various diseases make mining disease-specific
interactions via the PPl network a very demanding task. To
overcome all of these shortcomings, novel in silico strategies are
necessary to overlay the interactome with this additional,
important biomedical information.

Gene expression networks (GENs) are context-specific by
definition, as they directly leverage phenotype-specific gene
expression data in network construction by calculating correla-
tions between the expression profiles of each gene pair. The basic
premise of this exercise is that, even though correlation is not
causation, co-expressed genes are functionally coordinated in
response to an external stimulus, implying that they may be part
of the same complexes or pathways, and may influence each
other or may be influenced by the same underlying mechanism(s).
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For example, SWitch Miner (SWIM)'® is a new, promising
methodology that considers differentially expressed genes within
the co-expression network framework in order to predict
important genes affected by a disease of interest, and combines
this information with a structured network of correlated patterns.
Considering the topological properties of the nodes and assessing
their functional roles according to their ability to convey
information within and between modules in the network, SWIM
identifies a small pool of genes (known as switch genes) that are
associated with intriguing patterns of molecular co-abundance
and play a crucial role in the observed phenotype (transitions). The
phenotype-specific applications of SWIM are broad and include
the identification of switch genes in both complex diseases and
cancers'®?3, and as well as in grapevine berry maturation (Vitis
vinifera)®*.

In cancer research, SWIM network analysis has been gainfully
applied to a large panel of TCGA (The Cancer Genome Atlas)
cancer datasets®” in order to characterize disease etiologies and
identify potential therapeutic targets'®. SWIM has also been used
to investigate glioblastoma multiforme and to uncover new
insights into the molecular mechanism determining the stem-like
phenotype of glioblastoma cells®®. [Stem-like cells determine
tumor aggressiveness by sustaining tumor growth and causing
relapse and metastasis by their resistance to conventional cancer
therapies®®] In particular, the role of FOSL1 was explored and
found to be a repressor of a core of four master neurodevelop-
mental transcription factors whose induction is sufficient to
reprogram fully differentiated glioblastoma cells into stem-like
cells?”. This result could have a significant impact on personalized
healthcare, since promoting differentiation and restraining tumor
growth may support rational, personalized planning of disease
prevention or treatment.

Recently, SWIM methodology has been successfully applied to
chronic obstructive pulmonary disease (COPD)??, a severe lung
disease characterized by progressive and incompletely reversible
airflow obstruction. COPD is a heterogeneous and complex
syndrome influenced by both genetic and environmental
determinants, and is one of the main causes of morbidity and
mortality worldwide. COPD switch genes appear to form localized
connected subnetworks displaying an intriguingly common
pattern of upregulation in COPD cases compared with controls.
A more sophisticated analysis revealed that they were not only
topologically related, but also functionally relevant to the
observed phenotype as witnessed by their enrichment in the
regulation of inflammatory and immune responses. The results
obtained in COPD were compared with those obtained in the
acute respiratory distress syndrome (ARDS), another severe lung
disease with an inflammatory component. Interestingly, ARDS
switch genes were different from COPD switch genes, but the
major pathways affected in the two diseases were similar,
emphasizing that different diseases often have common under-
lying mechanisms and share intermediate endophenotypes
(convergent phenotypes)®?®. Moreover, the two lists of switch
genes, when mapped to the human interactome, appear to form
non-overlapping modules and to be situated in different network
neighborhoods. This observation demonstrates that even though
different diseases can share similar endophenotypes, the mole-
cular network determinants responsible for them are disease-
specific. This observation is also fully consistent with the
fundamental principles of network medicine, where disease
proteins are assumed not to be randomly scattered, but
agglomerate in specific regions of the molecular interactome,
suggesting the existence of specific disease network modules for
each disease.

Inspired by the results obtained by SWIM network analysis of
cancers and COPD, here we investigated three other complex
diseases for a more generalizable understanding of the highly
interconnected nature of human diseases. Specifically, two cardiac
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disorders, ischemic and non-ischemic cardiomyopathy, and one
neurodegenerative disorder, Alzheimer's disease (AD), were
analyzed. These new results, together with the previously
obtained analyses from the application of SWIM to ten tumor
types and COPD, were mapped to the human interactome in order
to overlay the PPI network with disease information derived from
SWIM-based disease correlation networks.

Our goal is to assess the utility of SWIM network analysis in
classifying several different disorders and in understanding their
complex interconnections in the human interactome. In particular,
through the construction of a SWIM-informed human disease
network (SHDN) by analogy with ref. 5 we test whether or not
switch genes of a specific disease tend to localize in a critical
module in the interactome that is functionally relevant to the
observed phenotype.

RESULTS

Workflow of the analysis

In this study, we combined the topological properties of the
human interactome with disease information derived from SWIM-
based correlation network analysis. The baseline networks of our
analysis are SWIM-based GENs and the outcome network is an
SHDN, by analogy with a previous study®. The workflow of our
study design is depicted in Fig. 1.

Identification of disease-specific switch genes

The SWIM algorithm was applied to a specific group of diseases of
interest to build disease-specific GENs (Supplementary Data 1) and
extract a list of switch genes for each disease through an accurate
topological analysis (Supplementary Table 2). The analyzed human
diseases were:

(i) ten tumor types (i.e., BLCA, BRCA, CHOL, COAD, HNSC, KIRP,
LUAD, LUSC, PRAD, and UCEC) available from TCGA, whose
corresponding lists of switch genes were retrieved from our
previous study'’;

(i) one pulmonary disease (COPD), whose corresponding list of
switch genes was retrieved from our previous study'®;

(iii) ischemic cardiomyopathy (IC), whose list of switch genes
was obtained by applying SWIM correlation network
analysis to RNA-sequencing data from ischemic human
failing versus non-failing control hearts; and

(iv) non-ischemic cardiomyopathy (NIC), whose list of switch
genes was obtained by applying SWIM correlation network
analysis to RNA-sequencing data from non-ischemic human
failing versus non-failing control hearts;

(v) AD, whose list of switch genes was obtained by applying
SWIM correlation network analysis to microarray expression
data related to AD patients versus controls.

Identification of SWIM-informed disease modules

Actually, members (nodes, proteins, or genes) of a network
module are more functionally and topologically related to each
other than to other nodes in the network. Thus, the lists of switch
genes for the 14 analyzed diseases were mapped onto the human
interactome to investigate whether or not they tend to
agglomerate in local neighborhoods and constitute statistically
significant disease-specific modules. To do so, for each disease,
the corresponding switch genes subnetwork was extracted and
the following three metrics were computed: (i) the total number of
interactions (edges); (i) the size of the largest connected
component (LCC); and (iii) the number of edges in the LCC. In
order to complement these metrics with a measure of statistical
significance, we computed module significance, which measures
the probability that a given list of switch genes is localized within
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Fig. 1 Workflow of the analysis. Our analysis takes as input the transcriptomic data of the 14 diseases of interest and the human interactome
network. The analysis begins with the application of the SWIM algorithm to construct the disease-specific Gene Expression Networks (GENs),
and, hence, to identify the disease-specific switch genes. Next, by mapping the disease-specific switch genes to the human interactome, the
analysis next proceeds with an interactome-based network analysis, which reveals the SWIM-informed disease modules and the SWIM-
informed Human Disease Network (SHDN), in which nodes are now diseases, and a link occurs if the corresponding switch gene modules were

found to overlap.

a certain network neighborhood more than expected by chance.
For each disease, we randomly selected groups of proteins of the
same size and degree distribution as the original list of switch
genes in the human interactome. We then extracted the
corresponding subnetwork and we computed: (i) the total number
of its interactions; (ii) the size of the LCC; and (iii) the number of
edges in the LCC. This procedure was repeated 1000 times. [As
reported in the majority of state-of-the-art approaches®>~”, 1000
permutations is commonly used for estimating the power of a
randomization test, showing it that can be considered as a
reasonable number of permutations for a test at the 5% level of
significance.] Finally, we derived three distributions for all three
metrics corresponding to the subgraph induced by the random
gene set. The three metrics calculated for the original list of switch
genes were z-score-normalized with respect to the corresponding
reference random distribution. Subsequently, the p-value for the
given z statistic was calculated. We found that all of the analyzed
sets of switch genes form statistically significant modules (i.e., all
three metrics were statistically significant) in the human
interactome that are disease-specific (Fig. 2 and Supplementary
Data 3).

Overlap estimation of SWIM-informed disease modules

In order to evaluate the extent to which two disease-specific
modules (A, B) of switch genes are in the immediate vicinity of
each other in the human interactome, we leveraged the module
separation parameter defined in Eq. (1) (cf. “Methods”) that
measures the separation or overlap of two modules®, and we
applied a degree-preserving randomization procedure to assess
the statistical significance of each separation value. By analyzing
the topological structure of the identified SWIM-informed disease
modules, we found that three topologically different situations
came to light:

1. two given modules overlap more than expected by chance
(i.e, s<0 and p-value <0.05), hereafter denoted cognate
modules;

2. two given modules separate more than expected by chance
(i.e, s>0 and p-value <0.05), hereafter denoted non-
cognate modules; and
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3. there is insufficient evidence to support the hypothesis that
two given modules overlap or separate more than expected
by chance (i.e., p-value > 0.05), hereafter denoted modules of
uncertain overlap.

In particular, we observed that diseases displaying a pathobio-
logical similarity (such as cancers or cardiomyopathies) shared a
substantial number of switch genes reflected by overlapping
disease modules (cognate modules), whereas diseases character-
ized by different pathological phenotypes (such as inflammatory
lung diseases and AD) showed specific switch genes reflected in
non-overlapping disease modules (non-cognate modules). These
two situations are presented in Fig. 3a, where the projection of
disease-specific switch gene products (disease-specific switch
proteins) on the PPI network, denoted the Disease Switch Gene
Network (DSGN), is represented. In the DSGN, disease-specific
switch proteins with their corresponding interactions are colored
based on the disorder class to which they belong, and all cognate
modules (sharing a substantial number of disease-specific switch
proteins) are represented as one coalesced module colored with a
less intense color corresponding to the disease class. It is worth
noting that the specificity of the DSGN is twofold: it is constructed
starting from genes (1) that are predicted to have a key role in
transcriptional rewiring (co-expression analysis) for a tissue-
specific experiment (the “specific” side of the DSGN), and (2) that
are related by interactions on the PPl network that are identified
using various techniques under different specific experimental
and biological conditions (the “universal” part of the DSGN).

Functional enrichment analysis of overlapping SWIM-
informed disease modules

DSGN provides an intuitive visualization of the phenotypic
relatedness among diseases, clearly showing how, for example,
the broad tumor disease module, encompassing several over-
lapping cancer-related modules, is well-separated from the COPD
module, as well as from the cardiomyopathies disease module and
the AD module (Fig. 3a). To provide a biological interpretation of
these findings, we extracted the overlapping switch genes within
the disease modules related to tumor and cardiomyopathies
classes, and we performed a functional enrichment analysis by
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Fig.2 Examples of SWIM-informed disease module. From left to right: Distribution of the number of total interactions, the size of the largest
connected component (LCC), and the number of edges in the LCC in the subgraph induced by a randomly selected gene set of the same size
and degree distribution as the original disease list of the switch genes in the human interactome. Dashed red lines correspond to the
observed values of each metric computed for the list of switch genes mapped to the interactome. All p-values were calculated by using a one-

tailed z test.

querying both KEGG pathways®® and Gene Ontology (GO)*°
databases.

Among the tumor class, we found a prevalent set of 26 switch
genes recurring across multiple tumors that were all over-
expressed in tumor tissues (Supplementary Data 2) and appeared
primarily involved in the regulation of cell cycle, which is a
fundamental and tightly controlled process under physiological
circumstances. Specifically, these tumor-recurring switch genes
appeared functionally enriched (adjusted p-value <0.05) in the
cell cycle and progesterone-mediated oocyte maturation KEGG
pathways, and include cyclin A2 (CCNA2), cyclin B2 (CCNB2), and
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polo-like kinase 1 (PLK1); as well as in the G2/M phase transition
and the mitotic spindle checkpoint GO biological processes,
including the forkhead transcription factor (FOXM1), MYB proto-
oncogene like 2 (MYBL2), the NIMA related kinase 2 (NEK2), the
BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B),
Aurora B kinase (AURKB), centromere protein F (CENPF), and the
dual specificity protein kinase (TTK). Moreover, by evaluating the
enrichment of known binding motifs in their promoter regions,
this set of 26 tumor-recurring switch genes appeared to be
putatively co-regulated by the nuclear transcription factor Y (NF-Y)
family (NF-YA, NF-YB) and the E2F transcription factor family

Published in partnership with the Systems Biology Institute
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Fig. 3 Results of the analysis. a Disease Switch Gene Network (DSGN). Schematic representation of disease modules informed by switch
genes in the human interactome. Switch gene products (switch proteins) were colored based on the disorder class to which they belong. Gray
nodes and the corresponding links are theoretical and represent non-switch proteins hypothetically connected to switch proteins within the
interactome. b Generalized measure of the module separation. The function f(x) is the generalized version of module separation defined in
Eq. (3) (cf “Methods”). This function approaches its maximum value when the disease modules are significantly well-separated (p-value < 0.05),
whereas it approaches its minimum value when the disease modules significantly overlap (p-value < 0.05). The value of a = 0.3 was chosen to
have f(x) close to zero for statistically insignificant p-values (i.e., f(x) in [-0.1, 0.1] as highlighted by the red circle). The blue bars represent the
frequency of x values, ranging from —1 and 1.6, Supplementary Data for statistically insignificant p-values, ranging from 0.09 and
1 (Supplementary Data 4). ¢ SWIM-based disease dendrogram and symmetrical heatmap. The diseases modules identified by the disease-
specific switch proteins in the human interactome are clustered by a complete linkage hierarchical clustering algorithm and by using the
separation metric as a distance metric. Heatmap colors refer to the generalized separation metric, increasing from blue to red: shades of blue
refer to cognate disease modules (i.e., s <0, p-value < 0.05); shades of red refer to non-cognate disease modules (i.e., s >0, p-value < 0.05); and
shades of yellow refer to uncertain disease modules (i.e., p-value > 0.05). d SWIM-informed Human Disease Network (SHDN). In the SHDN, each
node corresponds to a distinct disorder, colored based on the disorder class to which it belongs. Labeled nodes correspond to the 14 diseases
analyzed in this study, while unlabeled nodes are artificial and represent other diseases or developmental endotypes to be investigated. The
size of each node is proportional to the number of switch genes involved in the corresponding disorder. A link between two diseases occurs if
they share a substantial number of switch genes. AD Alzheimer’s disease, BLCA bladder urothelial carcinoma, BRCA invasive breast carcinoma,
CHOL cholangiocarcinoma, COAD colon adenocarcinoma, COPD chronic obstructive pulmonary disease, HNSC head and neck squamous cell
carcinoma, IC ischemic cardiomyopathies, KIRP kidney renal papillary cell carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell
carcinoma, NIC non-ischemic cardiomyopathies, PRAD prostate adenocarcinoma, UCEC uterine corpus endometrial carcinoma.

(E2F4/E2F6), known to participate in the regulation of progression
through the cell cycle.

By contrast, we found a set of 29 switch genes shared
between the two cardiomyopathies that were all downregu-
lated in the disease (Supplementary Data 2) and appeared

the ubiquinol-cytochrome c reductase core protein 1 (UQCRC1),
and cytochrome c1 (CYC1).

SWIM-based estimation of disease relationships

functionally enriched (adjusted p-value <0.05) in the cardiac
muscle contraction KEGG pathway, including cardiac-type
troponin T2 (TNNT2), myosin light chain 3 (MYL3), the subunits
5A and 7B of the cytochrome c oxidase (COX5A and COX7B),

Published in partnership with the Systems Biology Institute

In order to distinguish better among the three topologically
different situations (cognate, non-cognate, and modules of
uncertain overlap), we combined the module separation defined
in Eqg. (1) and its statistical significance (p-value) into a generalized

npj Systems Biology and Applications (2021) 3
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Fig. 4 Comparison between SWIM-informed and interactome-based disease modules. The plots show the values of the non-Euclidean
separation distance (Eq. 1, cf. “Methods”) computed between the interactome-based disease module corresponding to the disease reported in
the title and SWIM-informed (blue bars) or interactome-based (red bars) disease modules, for all the diseases included in this study. We
applied a degree-preserving randomization procedure to assess the statistical significance of each separation value, and we calculated all
p-values by applying a two-tailed z test. The stars flag levels of significance for three of the most commonly used levels: p-value <0.05 is
flagged with one star (*); p-value <0.01 is flagged with two stars (**); and p-value < 0.001 is flagged with three stars (**¥).

measure of module separation defined in Eq. (3). This generalized
version s of module separation (Fig. 3b) was used to elucidate
better the relationships among diseases. In fact, we performed a
hierarchical clustering of the 14 analyzed diseases using the
module separation measure as a distance metric, with the
generalized s coded by color scale as illustrated in the associated
heatmap (Fig. 3c and Supplementary Data 4). Shades of yellow
refer to poorly informative interactions between diseases,
corresponding to modules of uncertain overlap in the inter-
actome; shades of blue associate with strictly linked diseases,
corresponding to overlapping modules in the interactome
(cognate modules); and shades of red quantify the distance
between diseases whose corresponding modules are distant from
each other in the interactome (non-cognate modules). We found
two main clusters: one including all tumor datasets (violet in
Fig. 3¢), and one including the two cardiomyopathies (dark blue in
Fig. 3¢c) along with AD and COPD datasets as isolated branches,
showing a direct relation between the pathobiological similarity of
diseases and their relative distance in the human interactome.

Building the SHDN
Using the generalized separation measure, the SHDN was built,
where each node corresponds to a distinct disorder and the
occurrence of a link between two disorders depends on the extent
to which their corresponding modules are in the immediate
vicinity of each other (Fig. 3d). The underlying hypothesis is that
disease modules closer to each other than to other network
components are more likely to share common switch genes and
etiology mechanisms.

To correct the problem of not having a fully connected network,
we define a threshold on the values the generalized separation

npj Systems Biology and Applications (2021) 3

measure can assume that directly reflects the existence or not of a
link between two nodes. Thus, given a module, the generalized
separation measure with another module must be less than the
75th percentile of the distribution of the negative values of the
generalized separation measure between the given module and
all others in order to produce a link between the two
corresponding diseases. Nodes in this network are colored based
on the disorder class to which they belong.

Comparison between SWIM-informed and interactome-based
disease modules

In order to analyze how the SWIM-informed disease modules (i.e.,
nodes in SHDN) are related to the interactome-based disease
modules derived from disease genes in databases, we computed
the non-Euclidean separation distance (Eq. 1) between the SWIM-
informed disease modules and the interactome-based disease
modules for each disease included in this study. We first retrieved
the lists of disease genes from the DisGeNET database?, then built
interactome-based disease modules and compared their distance
from the modules in SHDN. We observed that SWIM-informed
disease modules do not overlap with the interactome-based
disease modules for the same disorder class (Fig. 4 and
Supplementary Data 5), whereas they do among themselves. It
is worth noting that although SWIM-informed disease modules do
not overlap with interactome-based disease modules for the
diseases analyzed, they do have lower separation values than
those observed among interactome-based disease modules
themselves. The lack of overlap between SWIM modules and
interactome-based disease modules may reflect the partial
knowledge of the number of genes associated with various
diseases as well as the current incompleteness of the human

Published in partnership with the Systems Biology Institute



interactome. An alternative explanation may lie in the differences
in scale and influence across the interactome. The SWIM modules,
by virtue of their basis in correlation among switch genes whose
expression could be regulated by common transcription factors,
reflect actions that may also occur “at-a-distance” in the
interactome (i.e, long-range interactions), likely reflecting con-
comitant modulation of functionally distinct and separate
submodules that inform phenotype. By contrast, the
interactome-based disease modules are, instead, strictly defined
on the basis of physical interactions among disease proteins in
proximity to one another a local neighborhood of the PPI (i.e.,
short-range interactions), without reflecting the longer-range
influences of hierarchical regulatory features. With regard to
diseases characterized by different pathological phenotypes (such
as COPD vs Alzheimer's or Cardiomyopathies), the separations
between SWIM modules and interactome-based disease modules
or among interactome-based disease modules are similar.

DISCUSSION

The present study allowed us to demonstrate the relevance of
switch genes in the context of network medicine and, in particular,
their relation to the definition of disease genes. As broadly
established'?, disease genes have unique, quantifiable character-
istics that distinguish them from other genes. From a network
perspective, this observation translates into the verification that
disease genes do not map randomly to the interactome, but,
rather, manifest detectable correlations between their location
and their network topology. This observation has led to a series of
widely used hypotheses and organizing principles that tie the
interactome to human diseases. These are summarized as follows:
(i) the local hypothesis, according to which proteins involved in the
same disease have an increased tendency to interact with each
other; (ii) the disease module hypothesis, according to which
proteins involved in the same disease show a tendency to cluster
in connected subnetworks (or connected components), within
which one of them is often much larger than the others (LCC); (iii)
the functional coherence hypothesis, according to which genes in a
disease module are often involved in the same biological process
(es); and (iv) the shared components hypothesis, according to which
related diseases are located in the same interactome neighbor-
hood from which unrelated diseases are separated. We will
next discuss how the results presented in this study support the
validity and applications of those hypotheses with respect to
switch genes.

Local hypothesis. Our work over the last decade demonstrated
that switch genes appear consistently co-expressed in each
disease studied thus far, showing coherent patterns of correlation
that could presuppose possible co-regulation. Here, we have
systematically demonstrated that these co-expression patterns
turned into disease-specific subgraphs when mapped to the PPI
network, whose nodes show a higher tendency to interact with
each other more frequently than expected by chance (Fig. 2 and
Supplementary Data 3). This observation confirms a fundamental
hypothesis of interactome-based approaches to human disease,
the local hypothesis, that genes associated with the same disease
are not scattered randomly in the interactome, but aggregate in
local, disease-specific neighborhoods.

Disease module hypothesis. By exploring the structural and
topological properties of these disease-specific neighborhoods,
we observed that they were composed of a dominant connected
component, viz, to the LCC, whose size is significantly greater
than expected by chance (Fig. 2 and Supplementary Data 3). This
dominant component constitutes a highly connected and locally
dense subgraph of the interactome, as witnessed by the number
of its interactions, which are greater than expected by chance
(Fig. 2 and Supplementary Data 3). We conclude that the LCC of
each disease-specific subnetwork, built starting from switch genes,
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corresponds to their specific disease modules, fulfilling the disease
module hypothesis.

Functional coherence hypothesis. We next extracted the switch
genes within the disease modules, and, performed a functional
enrichment analysis by querying both KEGG pathways>® and GO*°
databases. Among the tumor class, we found a prevalent set of
26 switch genes recurring across multiple tumors that were all
overexpressed in tumor tissues and appeared primary involved in
the regulation of cell cycle.

For cardiomyopathies, we found a prevalent set of 29 switch
genes shared between the two cardiomyopathies that were all
downregulated in the disease and appeared functionally enriched
in the cardiac muscle contraction KEGG pathway. Among them,
we found TNNT2, a tropomyosin-binding subunit of the troponin
complex that is located on the thin filament of striated muscles
and regulates muscle contraction in response to alterations in
intracellular calcium ion concentration; MYL3, referred to also as
the ventricular isoform, whose mutations have been identified as a
cause of mid-left ventricular chamber-type hypertrophic cardio-
myopathy; and the ubiquinol-cytochrome ¢ oxidoreductase
complex that is part of the mitochondrial electron transport
chain, which drives oxidative phosphorylation, playing an
important role in the mitochondrial respiratory chain. This
observation confirms that disease-specific switch genes fulfill the
functional coherence hypothesis, being involved in closely disease-
related cellular functions.

Shared components hypothesis. We have shown that switch
genes may also belong to several disease modules, implying that
disease modules may overlap, and, thus, perturbations in one
disease module can disrupt pathways of other interlinked disease
modules, as well. By building the SHDN, in which nodes are
diseases and a link occurs if they share a substantial number of
common switch genes, we quantified and visualized the overlap
between the disease-associated switch gene modules (Fig. 3d).
Although the SHDN was generated independent of any a priori
knowledge of disease category, the resulting network is visibly
clustered according to major disease classes, where cancers and
cardiomyopathies represent the most connected disease classes,
in contrast to COPD and AD, which appear as individual disorders.
Clustering of nodes of similar color (denoting the same disease
class) reflected the fact that similar pathophenotypes have a
higher likelihood of sharing genes than do pathophenotypes that
belong to different disease classes (Fig. 3d). For example, cancers
formed a tightly interconnected and easily detectable cluster,
which was held together by a small group of genes that were
associated with multiple cancers. Therefore, the SHDN clearly
shows how network modules identified by switch genes are highly
specific for each disease category and tend to group according to
similar pathobiological phenotypes, implying that disease-
associated switch gene modules fulfill the shared components
hypothesis.

The set of 26 tumor-recurring switch genes across multiple
tumors showed a marked functional annotation enrichment in
cell-cycle-related terms, specifically regulation of the G2-to-M
transition. Among them, we found FOXM1, which is a transcription
factor with a crucial, central role in cancer development*'. Indeed,
FOXM1 overexpression was detected in a variety of human
cancers and is associated with poor clinical prognosis***?; it drives
the expression of critical genes involved in the regulation of
different cancer hallmarks including high proliferation, invasion,
drug resistance, and angiogenesis. In particular, a very recent
study demonstrated that FOXM1 physically interacts with the
architectural transcription factor HMGA1 to promote tumor
angiogenesis cooperatively both in vitro and in vivo models**.

Interestingly, among the positive nearest neighbors of FOXM1
in the GENs identified by SWIM methodology, we found both
HMGAT1 and several well-known pro-angiogenic factors*>*® such
as tumor necrosis factors (TNFs), fibroblast growth factor (FGF), the
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matrix metalloproteinases (MMPs), together with other genes
involved in the regulation of angiogenesis such as ADM2, ESM1,
E2F7, E2F8, and E2F2. Yet, the negative nearest neighbors of
FOXM1 included genes functionally related to metabolic process,
as a well appreciated mark of tumor transformation®’.

This set of 26 tumor-recurrent switch genes appeared
coregulated by two major transcription factors (viz., E2F and NF-
Y), already known to play key roles in cell cycle regulation and
transformation. In particular, the role of NF-Y in controlling cell
proliferation has been widely established based on the following
findings*®>": it controls the expression of several key regulators of
the cell cycle; NF-Y silencing impairs G2/M progression and
induces apoptosis; widespread activation of G2/M and anti-
apoptotic genes requires NF-Y; NF-Y and mutant p53 physically
interact, upregulating the expression of many cell-cycle-related
genes in response to DNA damage; and NF-Y overexpression
increases cell proliferation. Yet, E2F4 may function as an activator
of genes implicated in positive regulation of the cell cycle,
including MYBL2 (ref. %), whose overexpression in transgenic mice
leads to the development of tumors, and mutated E2F4, which has
been reported in various human tumors, providing evidence for its
oncogenic activity>>~>°.

Taken together, these findings suggest a model wherein NF-Y,
in collaboration with E2F4 and/or MYBL2 complex, binds to and
activates transcription of E2F/NF-Y-dependent switch genes
accelerating the late phase of the cell cycle by promoting
angiogenesis with a consequent increase of cancer progression,
together with a rewiring of some metabolic pathways, hallmarks
of the malignant transformation.

These results support the hypothesis that correlation-based
network analysis may move toward causation highlighting
functionally coordinated genes whose common perturbations in
expression pattern and abundance may contribute to the
pathobiological phenotype. In addition, this approach may aid in
the identification of biologically significant PPls (e,
HMGA1-FOXM1 interaction) of the human interactome, which
remains incomplete at the current time.

By definition, disease genes refer to genes with mutations that
are known to have a phenotypic impact, e.g., sequence alterations
that are causal for Mendelian diseases or variants that increase the
susceptibility to complex diseases or cancers®**>>5~% However,
fundamental insights toward the discovery of disease biomarkers
can also stem from measuring transcript abundance or gene
expression patterns for given phenotypes (case-control) across
multiple samples, whose changes could reveal tissue/cell-specific
co-expression relationships in the context of the disease®>.

Here, we demonstrated that switch genes simultaneously satisfy
all of the widely used hypotheses and organizing principles
formalized by the network medicine construct that tie the
interactome to human diseases, in the same way as disease
genes themselves do. Thus, the identification of switch genes
could allow the systematic prediction of novel disease-gene
associations whose perturbations in their expression pattern and
abundance contribute to the pathobiological phenotype, as well.

Being context-specific by definition, switch genes can be used
to integrate the human interactome with the cell-type or tissue-
specific manifestations that characterize many diseases. The
driving principle is to use tissue-specific expression information
arising from switch genes to filter the global interactome for
interactions that are feasible in a given tissue (i.e., both switch
interaction partners are present). Furthermore, SWIM methodol-
ogy may even help in the identification of biologically significant,
yet unmapped, PPIs connecting proteins (i.e., switch gene
products) on the basis of their co-expression profiles and
network-based proximity. In this sense, SWIM supports the link
prediction process aiding in increasing the coverage of the human
interactome, which is incomplete at the current time®.
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Taken together, these observations make the accurate identi-
fication of switch genes an important step toward a systematic
understanding of the networked nature of human pathobiology.
We believe that the SWIM-informed approach to protein
interaction networks presented here, if broadly applied, would
significantly catalyze innovation in the discovery of the determi-
nants of human diseases.

METHODS
SWIM software

In order to identify disease-specific switch genes, we exploited the SWIM
software, a program for gene co-expression network mining developed in
MATLAB with a user-friendly Graphical User Interphase (GUI) and freely
downloadable'.

Consolidated human interactome

To build the comprehensive human interactome, we compiled human
physical molecular interaction data from different sources, including PPIs,
protein complexes, kinase-substrate interactions, and signaling pathways.
PPIs from several high-throughput yeast-two-hybrid studies as well as
high-quality PPIs from the literature were compiled from the CCSB Human
Interactome®®%3, We also collected binary PPIs from other laboratories®*®*.
A protein complex is a group of two or more associated polypeptide chains
linked by non-covalent associations. Protein—protein co-complex interac-
tions were compiled from different high-profile publications®®~2. In
addition, we also incorporated experimental signaling interactions and
kinase-substrate interactions, as well as high-quality literature-based
signaling interactions involved in various biological pathways>~7°, This
new version of the consolidated human interactome has 16,470 proteins
and 233,957 interactions after incorporating the latest reference map of
the human binary protein interactome’’.

Ischemic and non-ischemic cardiomyopathy dataset

This dataset is available through the GEO public repository at accession
number GSE76293 published on February 10, 2014 (ref. ’®). Data include a
complete RNA-sequencing transcriptome profiling from left ventricular
apex tissue from human failing hearts and from non-failing control hearts,
with a total of 40 samples: 16 ischemic subjects, 16 non-ischemic subjects,
and 8 control heart subjects. High-throughput RNA-sequencing data
correspond to normalized expression data created using the reads per
kilobase of transcript per million mapped reads (RPKM) procedure to
perform the normalization. By running SWIM on ischemic (or non-ischemic)
subjects with respect to controls samples, we extracted a list of 81 switch
genes, mapped to 68 proteins in the human interactome (less than the
total number of switch genes owing to the incompleteness of the
interactome).

Alzheimer’s disease dataset

This dataset is available through the GEO public repository at accession
numbers GSE63060 (batch 1) and GSE63061 (batch 2) published on August
05, 2015 (ref. 7). Data include expression profiling by array related to AD
and control samples (CTL) originating from the EU funded AddNeuroMed
Cohort®, which is a large cross-European AD biomarker study relying on
human blood as the source of RNA. In particular, batch 1 (GSE63060)
comes from array A-MEXP-1171-lllumina HumanHT-12 v3.0 Expression
BeadChipm and has a total of 249 samples (145 AD, 104 CTL); whereas
batch 2 (GSE63061) comes from array A-GEOD-10558-lllumina HumanHT-
12 V4.0 expression beadchip and has a total of 273 samples (139 AD and
134 CTL). The probe-sets were mapped to official gene symbols using the
relative platform (GPL6947-13512 for GSE63060 and GPL10558-50081 for
GSE63061) available from the GEO repository. Multiple probe measure-
ments of a given gene were collapsed into a single gene measurement by
considering the mean. By matching genes based on gene symbols, we
created a single merged dataset with both batches; we ran Combat
function from R/Bioconductor package SVA to correct for batch-specific
effects. Finally, we obtained a data matrix of 19,460 gene symbols (rows)
and 522 samples (columns) including 284 AD and 238 CTL. By running
SWIM on AD subjects with respect to controls samples, we extracted a list
of 375 switch genes, mapped to 301 proteins in the human interactome.
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Table 1. Summary of TCGA datasets.

Acronym  Tumor name No. of samples No. of switch genes  No. of proteins in human interactome
BLCA Bladder urothelial carcinoma 38 (19 matched-normal) 297 203
BRCA Breast invasive carcinoma 206 (103 matched-normal) 257 223
CHOL Cholangiocarcinoma 18 (9 matched-normal) 324 285
COAD Colon adenocarcinoma 52 (26 matched-normal) 264 217
HNSC Head and neck squamous cell carcinoma 82 (41 matched-normal) 109 96
LUAD Lung adenocarcinoma 36 (18 matched-normal) 366 321
LUSC Lung squamous cell carcinoma 76 (38 matched-normal) 274 254
KIRP Kidney renal papillary cell carcinoma 46 (23 matched-normal) 133 119
PRAD Prostate adenocarcinoma 104 (52 matched-normal) 229 177
UCEC Uterine corpus endometrial carcinoma 14 (7 matched-normal) 395 297

TCGA datasets

A selection of ten tumor types were recovered from the original study'®,
where a collection of tumor expression data from high-throughput RNA-
and miRNA-sequencing were downloaded from the TCGA data portal on
December 6, 2014. High-throughput RNA-sequencing data correspond to
level 3 data (i.e, normalized expression data) from RNASeq Version 2
created using MapSplice to do the alignment and RSEM to perform the
quantification and normalization. MiRNA-sequencing data correspond to
level 3 data (i.e, normalized expression data) created using the RPKM
procedure to perform the normalization. In the original study'®, only
cancer datasets including at least seven patients with tumor and matched-
normal samples (i.e., the matched-normal tissue is defined as the tissue
that is adjacent to the tumor and taken from the same patient) for both
RNA- and miRNA-sequencing experiments were retained for subsequent
analysis. Our selection of ten tumor types, detailed in Table 1, corresponds
to tumor types whose switch genes formed a statistically significant
module in the human interactome (i.e,, showing statistically significant
module significance for all the three measurements: size of LCC, edges of
LCC, and total number of interactions), and showed a statistically
significant (p-value < 0.05) module separation measure in at least 70% of
the comparisons.

COPD dataset

Data for COPD were recovered from the original study®? in which the SWIM
software was applied to the COPD dataset. The dataset is available through
the GEO public repository at accession number GSE76925 published on
March 29, 2017 (ref. 8"). Data include microarray gene expression profiling
of lung or airway tissue from subjects with COPD obtained using
HumanHT-12 BeadChips (lllumina, San Diego, CA). A total of 111 COPD
cases and 40 control smokers with normal lung function were collected; all
subjects were ex-smokers. The probe-sets were mapped to official gene
symbols using the platform GPL10558 (lllumina HumanHT-12 V4.0
expression beadchip) available from the GEO repository. Multiple probe
measurements of a given gene were collapsed into a single gene
measurement by considering the mean. A list of 61 switch genes was
extracted, mapped to 55 proteins in the human interactome.

Module separation

To evaluate disease-disease relationships, we computed the non-
Euclidean separation distance, which measures the disease modules’
overlap®, as follows:

+
s(A,B) :PAB*M m
where, p(A, B) is the module proximity:
1 . .
p(A,B) = EERE] [ZM mind(a,b) + D s mind(b, a)} 2)

and d(a, b) is the shortest distance between switch gene a of module A and
switch gene b of module B. A positive value for the separation measure
indicates that the two lists of switch genes mapped to proteins are
topologically well-separated in the human interactome, whereas a
negative value for the separation measure indicates that two switch gene
sets are located in the same network neighborhood and, thus, form
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overlapping modules with some switch genes belonging to the two
disease modules simultaneously.

To evaluate the significance of the network separation parameter across
two disease-specific modules (A, B) of switch genes, we built a reference
distance distribution corresponding to the expected distance between two
randomly selected groups of proteins of the same size and degree
distribution as the original two sets of switch genes in the human
interactome. The random selection was repeated 1000 times in order to
build the reference distance distribution. The module separation measure
across the two lists of switch genes was z-score-normalized by using the
mean and the standard deviation of the reference distribution. Subse-
quently, the p-value for the given z statistic was calculated. A p-value <
0.05 indicates that the module separation in the human interactome of the
two lists of switch genes is more (or less, see below) than expected by
chance.

Generalized measure of module separation

The module separation defined in Eq. (1) and its statistical significance
(p-value) were combined into a generalized measure of module separation
modeled as the following sigmoidal function:

E(AB) = SAB) 05 (3)

1+ e~ Vparan)

where s(A, B) is the module separation, pval(A, B) is the corresponding p-
value, and a is a smoothing parameter: the greater the g, the steeper the
function (Fig. 3a).

This generalization of s(A, B) is a bounded function returning a value that
monotonically increases from —0.5 to 0.5, and explicitly considers the
statistical significance (i.e., the p-value) of the observed module separation
between each disease pair (A, B): the lower the p-value, the greater the
absolute value of $5(A,B) with 5| approaching 0.5 as the p-value
approaches 0. In particular, we chose a quite small value of a (=0.3) in
order to emphasize better the differences between negative (overlapping
disease modules) and positive (well-separated disease modules) values of s
when the corresponding p-value is small and statistically significant (i.e.,
p-value < 0.05). Note that for statistically insignificant p-values (i.e., p-value
> 0.05), the $(A, B) clearly shows its exponential behavior near zero (Fig.
3a).

Functional and motif enrichment analysis

The functional enrichment analysis was performed using EnrichR web
tool®2. Binding motif enrichment analysis in promoter regions (identified as
genomic regions spanning from —450 to +50 nucleotides with respect to
transcription start sites) was performed using Pscan®, which employs the
JASPAR 2018 motif collection®’. p-Values were adjusted with the
Benjamini-Hochberg method, and a threshold equal to 0.05 was set to
identify functional annotations and regulatory motifs significantly enriched
among the selected switch gene lists.

DATA AVAILABILITY

The accession codes, unique identifiers, or web links for publicly available datasets
are provided in Datasets subsection of “Methods”. Data associated to figures are
provided as supplementary material.
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SWIM code is freely available at www.nature.com/articles/srep44797 (Supplementary
Information).
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