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A B S T R A C T   

Purpose: We aimed to integrate MR radiomics and dynamic hematological factors to build a model 
to predict pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in 
esophageal squamous cell carcinoma (ESCC). 
Methods: Patients with ESCC receiving NCRT and esophagectomy between September 2014 and 
September 2022 were retrospectively included. All patients underwent pre-treatment T2- 
weighted imaging as well as pre-treatment and post-treatment blood tests. Patients were 
randomly divided to training set and testing set at a ratio of 7:3. Machine learning models were 
constructed based on MR radiomics and hematological factors to predict pCR, respectively. A 
nomogram model was developed to integrate MR radiomics and hematological factors. Model 
performances were evaluated by areas under curves (AUCs), sensitivity, specificity, positive 
predictive value and negative. 
Results: A total of 82 patients were included, of whom 39 (47.6 %) achieved pCR. The hemato-
logical model built with four hematological factors had an AUC of 0.628 (95%CI 0.391–0.852) in 
the testing set. Two out of 1106 extracted features were selected to build the radiomics model 
with an AUC of 0.821 (95%CI 0.641–0.981). The nomogram model integrating hematological 
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factors and MR radiomics had best predictive performance, with an AUC of 0.904 (95%CI 
0.770–1.000) in the testing set. 
Conclusion: An integrated model using dynamic hematological factors and MR radiomics is con-
structed to accurately predicted pCR to NCRT in ESCC, which may be potentially useful to assist 
individualized preservation treatment of the esophagus.   

1. Introduction 

For esophageal squamous cell carcinoma (ESCC), neoadjuvant chemoradiotherapy (NCRT) followed by surgery has become a 
standard of care, with improved survival and surgical outcomes compared to surgery alone [1,2]. Randomized controlled trials showed 
the pathological complete response (pCR) rate of more than 40 % for ESCC after neoadjuvant chemoradiotherapy [1,2]. For those 
patients, active surveillance instead of instant esophagectomy can be a proper option to preserve organ function with the guarantee of 
salvage surgery, which has similar survival compared to trimodality treatment [3]. Besides, pCR has been proved to be a most valuable 
prognostic factor with significant correlation with survival outcomes [4,5]. Therefore, early prediction of pCR is of great importance to 
guide individualized treatment. 

Although previous efforts using clinical factors and medical images has been made to predict pCR of ESCC receiving NCRT, none of 
those methods can be applied to clinical practice due to unsatisfactory accuracy [6]. For instance, CT scans have demonstrated a 
sensitivity of only 33%–55 % and a specificity of 50%–70 % for detecting pCR, according to a systematic review [7]. Similarly, a 
meta-analysis of 44 studies indicated that endoscopy with biopsy had a specificity of just 33 %, while quantitative PET-CT analysis 
yielded pooled sensitivity and specificity of around 70 % [6]. In contrast, radiomics, which involves the quantitative extraction of 
features from medical images to produce high-dimensional, analyzable data, has shown significant promise in developing personalized 
treatment plans and understanding disease mechanisms [8]. In predicting pCR after NCRT for esophageal cancer, radiomics based on 
CT and PET/CT improved predictive performance with areas under the curves (AUCs) reaching approximately 0.8(9). However, those 
studies used traditional imaging modalities like CT and PET-CT, which have low soft-tissue resolution, reducing the amount of detailed 
tumor information available. Besides, the accuracy of these methods has not been satisfactory enough to meet clinical demands. 

Emerging evidence has shown the high value of MR in predicting neoadjuvant treatment response. It is broadly studied in breast 
and rectal cancer that radiomics using MR can predict pCR after NCRT accurately, with satisfactory reproductivity [9–12]. Preliminary 
research focusing on esophageal cancer suggested that MRI sequences, such as T2-weighted imaging (T2WI) and diffusion-weighted 
imaging (DWI), might be valuable tools for predicting pCR, with AUCs between 0.7 and 0.9 [13, 14]. However, those studies relying 
solely on imaging may overlook important information about the overall body status and response. While existing imaging studies 
have provided valuable insights, they haven’t fully explored the integration of other biomarkers. 

Dynamic hematological factors derived from multi-timepoint blood tests indicate inflammation and nutritional status and have 
been associated with treatment responses and prognoses in various cancer types, including ESCC [15–17]. However, although these 
studies have established correlations, the precise predictive value of these hematological factors in cancer outcomes remains to be 
conclusively determined. 

Few studies have explored the potential of MR radiomics in predicting the response to neoadjuvant treatment in ESCC [18]. 
Furthermore, the potential additive value of hematological factors alongside radiomics remains an area ripe for investigation. Our 
study aimed to bridge this gap by combining MR radiomics and dynamic hematological factors to develop and validate a model to 
precisely predict pCR to NCRT in ESCC, potentially offering a more comprehensive and accurate tool for treatment planning and 
prognosis assessment in this patient population. 

2. Method 

2.1. Patients 

Clinical and image records of ESCC patients between September 2014 and September 2022 were reviewed. In patients received MR 
scanning, most only had sequences of plain T1WI and T2WI. However, given the enhanced sensitivity of T2WI in detecting and 
characterizing tumor tissues, it was selected as the primary imaging modality for our analysis. Patients were enrolled based on the 
following inclusion criteria [1]: histological confirmation of esophageal or gastro-esophageal junction squamous cell carcinoma [2]; 
underwent neoadjuvant chemoradiation followed by esophagectomy [3]; had pretreatment T2WI, and [4] were aged between 18 and 
80. This study was approved by the institutional review boards and the patient informed consent was waived for the retrospective 
design. 

Patients were randomly divided into the training and testing set at a ratio of 7:3. 

2.2. Treatment and Histopathological response evaluation 

Platinum plus paclitaxel based or 5-fluorouracil based regimen were adopted. Radiotherapy was administered using intensity- 
modulated radiation therapy or volumetric modulated arc therapy technique, with prescribed dose of 2Gy per fraction (PTV) by 
20~25 fractions or 2.14Gy (PGTV)/1.8Gy (PTV) per fraction by 20~23 fractions. 
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Patients received curative esophagectomy within 16 weeks after the completion of NCRT. Each patient’s surgical specimens were 
assessed by at least two pathologists specialized in esophageal cancer and pCR was defined as ypT0N0. 

2.3. Measures of hematological factors 

The blood samples of patients were collected at two time points: within 1 month prior to NCRT and within 1 week prior to surgery 
after NCRT. The following items were recorded: white blood cell count, neutrophil count, lymphocyte count, monocyte count, platelet 
count, and albumin. The definitions for the ratios and indices were calculated as follows: neutrophil to lymphocyte ratio (NLR) =
neutrophil counts/lymphocyte counts; monocyte to lymphocyte ratio (MLR) = monocyte counts/lymphocyte counts; platelet to 
lymphocyte ratio (PLR) = platelet counts/lymphocyte counts; systemic immune-inflammation index (SII) = platelet counts ×
neutrophil counts/lymphocyte counts; prognostic nutritional index (PNI) = albumin level + 5 × total lymphocyte counts. The values of 
pre-NCRT, post-NCRT and delta-NCRT (values of post-NCRT minus pre-NCRT) of albumin, NLR, MLR, PLR, SII, and PNI were used as 
hematological factors for further analysis. These factors resulted in a total of 18 variables (eTable 1). 

MR image acquisition and Regions of interest (ROIs) 
MR scanning was performed within two weeks prior to the initiation of treatment. T2WI were scanned on either two MR scanners: 

GE Discovery MR750w (3.0 T, TR/TE: 11250/88 ms, echo train length: 32, flip angel: 90◦/142◦) and GE Discovery MR750 (3.0 T, TR/ 
TE: 18000/99 ms, echo train length: 32, flip angel: 90◦). The primary tumor was delineated on axial T2WI by two experienced ra-
diologists (L.Y. and H. Z.) to generate 3D-ROIs on ITK-SNAP. Ten randomly selected patients in the training set were independently 
segmented by another experienced radiologist (Z. M.) to calculate inter-class coefficients (ICC). 

Table 1 
Patients’ characteristics.  

Characteristics Training set P-value Testing set P-value 

pCR (N = 27) Non-pCR (N =
30) 

pCR (N = 12) Non-pCR (N =
13) 

Age, years (median, IQR) 64 (55, 66) 59 (55, 65) 0.128 63 (59, 70) 62 (59, 69) 0.841 
Sex   0.167   >0.999 

Female 7 (25.9) 3 (10.0)  3 (25.0) 3 (23.1)  
Male 20(74.1) 27 (90.0)  9 (75.0) 10 (76.9)  

ECOG PS   >0.999   0.238 
1 16 (59.3) 18 (60.0)  5 (41.7) 9 (69.2)  
0 11 (40.7) 12 (40.0)  7 (53.8) 4 (30.8)  

Location   0.793   0.861 
Upper thoracic 4 (14.8) 2 (6.7)  2 (16.7) 1 (7.7)  
Middle thoracic 10 (37.0) 11 (36.7)  4 (33.3) 4 (30.8)  
Lower thoracic 12 (44.4) 16 (53.3)  6 (50.0) 8 (61.5)  
GEJ 1 (3.7) 1 (3.3)  0 (0.0) 0 (0.0)  
Length, cm (median, IQR) 5.0 (4.0, 6.0) 5.5 (4.0, 7.0) 0.438 6.0 (4.0, 6.0) 5.0 (4.5, 6.0) 0.836 

cT   0.761   0.140 
1 0 (0.0) 1 (2.3)  0 (0.0) 1 (7.7)  
2 2 (7.4) 2 (6.7)  0 (0.0) 0 (0.0)  
3 16 (59.3) 21 (70.0)  6 (50.0) 10 (76.9)  
4 9 (33.3) 7 (23.3)  6 (50.0) 2 (15.4)  

cN   0.975   0.809 
0 3 (11.1) 4 (13.3)  1 (8.3) 1 (7.7)  
1 7 (25.9) 9 (30.0)  4 (33.3) 2 (15.4)  
2 14 (51.9) 15 (50.0)  5 (41.7) 8 (61.5)  
3 3 (11.1) 2 (6.7)  2 (16.7) 2 (15.4)  

cM   0.599   >0.999 
0 25 (92.6) 29 (96.7)  11 (91.7) 11 (84.6)  
1 2 (7.4) 1 (3.3)  1 (8.3) 2 (15.4)  

Chemotherapy regimen   >0.999   >0.999 
Platinum and paclitaxel based 22 (81.5) 24 (80.0)  8 (66.7) 8 (61.5)  
5-fluorouracil based 5 (18.5) 6 (20.0)  4 (33.3) 5 (38.5)  

Radiotherapy technique   >0.999   >0.999 
IMRT 4 (14.8) 5 (16.7)  2 (16.7) 2 (15.4)  
VMAT 23 (85.2) 25 (83.3)  10 (83.3) 11 (84.6)  

Radiation dose, Gy (median, IQR) 41.4 (37.8, 
41.4) 

41.4 (37.4, 41.4) 0.430 41.4 (37.8, 
41.4) 

41.4 (37.8, 46.9) 0.836 

Application of SIB radiation 18 (66.7) 25 (83.3) 0.218 10 (83.3) 10 (76.9) >0.999 
Interval between NCRT and surgery, days (median, 

IQR) 
55 (49, 83) 58 (47, 81) 0.797 56 (48, 78) 58 (47, 78) 0.758 

Data are the number of patients and those in parentheses are percentages unless otherwise indicated. pCR, pathological complete response; IQR, 
interquartile range; ECOG PS, Eastern Cooperative Oncology Group Performance Status; GEJ, gastroesophageal junction; cT, clinical T stage; cN, 
clinical N stage; cM, clinical M stage; IMRT, Intensity-Modulated Radiation Therapy; VMAT, Volumetric Modulated Arc Therapy; SIB, simultaneously 
integrated boost; NCRT, neoadjuvant chemoradiotherapy. 
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2.4. Radiomics analysis 

All images were resampled to isotropic voxel-dimensions of 1 × 1 × 1 mm with normalization of density distribution using Z-scores 
method. Feature extraction was performed by PyRadiomics package on Python 3.9. Radiomics features were extracted from each 
region of interest (ROI), including shape features (e.g., volume, surface area), first-order features (e.g., mean intensity, standard de-
viation), Neighborhood Gray Tone Difference Matrix features, Gray Level Co-occurrence Matrix features, Gray Level Run Length 
Matrix features, Gray Level Size Zone Matrix features, Gray Level Dependence Matrix features, wavelet features, and Laplacian of 
Gaussian features (eTable 2). Feature selection was performed independently in the training set. First, features with low reproductivity 
(i.e., ICC<0.75) were removed. The remaining features were then subjected to a selection process using Random Forest-Recursive 
Feature Elimination (RF-RFE). This method involves recursively removing the least important features based on their importance 
scores until the optimal subset of features is obtained. The selection aimed to retain the top two most predictive features, as determined 
by their ability to distinguish between classes, following the dimensionality guidelines stipulated in the ARISE guideline [19] to 
prevent overfitting given the instances of each class in the training set. A radiomics model using random forest was trained based on the 
final two features, with 5-fold cross-validation in the training set to tune the hyperparameters using the Grid-search method. 

2.4.1. Integrated model construction 
Clinical and hematological factors were filter using Mann-Whittney U test with a threshold of P < 0.1 to construct a hematological 

model. The probability of pCR predicted by the radiomics model was calculated as RFprob. We combined the filtered hematological 
factors with RFprob to develop an integrated nomogram model by multivariable logistic regression. The workflow of study process is 
depicted in Fig. 1. 

2.5. Statistical analysis 

Statistical analysis was conducted using Python 3.9 and R 4.1.2 software. To compare differences between two groups, Fisher exact 
test was used for categorical variables and the Mann-Whitney U test for continuous variables. Receiver operating characteristics (ROC) 
curve and AUC were utilized to assess model performance. The optimal cut-offs were determined based on the top-left method, which 
allowed for the calculation of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Calibration 
curves were used to assess the calibration performance and decision curve analysis (DCA) was used to quantify the clinical benefits. To 
generate the 95 % confidence interval (95 % CI), 1000 bootstrap samples were utilized. Logistic regression analysis was applied to 
calculate the odds of achieving pCR. A two-tailed P < 0.05 was considered statistically significant. 

3. Results 

3.1. Patient characteristics 

Eighty-two patients were enrolled, including 57 in the training group and 25 in the testing group, respectively. Baseline charac-
teristics were summarized in Table 1 and eTable 3. Among all included patients, 16 (19.5 %) were female and 66 (80.5 %) were male, 
with median age of 62 (interquartile range 56–67). Sixty-two(75.6 %) patients received platinum-based chemotherapy and 63 (76.8 
%) patients received simultaneously integrated boost radiotherapy. pCR rates were 47.4 % (27/57) and 48.0 % (12/25) in the training 
and testing sets, respectively. None of the clinical factors were significantly different between pCR and non-pCR groups in both training 
and testing sets. 

3.2. Predictive performance of hematological model 

Based on the Mann-Whitney U test (P < 0.1), the hematological model was constructed with post-NCRT NLR (NLRpost), post- 
treatment minus pre-treatment value of MLR (deltaMLR), post-treatment minus pre-treatment value of PLR (deltaPLR) and post- 
treatment minus pre-treatment value of SII (deltaSII). In the training set, the model showed an AUC of 0.990 (95 % CI 

Table 2 
Predictive performance of different models.   

AUC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Hematological model 
Training set 0.990 (0.970–1.000) 94.7 (91.2–100) 96.3 (88.9–100) 93.3 (86.7–100) 92.9 (87.1–100) 96.6 (90.0–100) 
Testing set 0.628 (0.391–0.853) 64.0 (52.0–84.0) 66.7 (41.7–100) 61.5 (38.5–100) 61.5 (50.0–100) 66.7 (53.9–100) 
Radiomics model 
Training set 0.984 (0.953–1.000) 92.9 (89.5–100) 96.2 (85.2–100) 90.0 (86.7–100) 89.7 (86.7–100) 96.4 (88.2–100) 
Testing set 0.821 (0.641–0.981) 82.2(72.0–96.0) 91.7 (83.3–100) 76.9 (46.2–92.3) 78.6 (63.2–92.3) 84.0 (76.9–100) 
Nomogram 
Training set 0.991 (0.973–1.000) 96.5 (93.0–100) 96.3 (88.9–100) 96.7 (86.7–100) 96.3 (87.1–100) 96.7 (90.9–100) 
Testing set 0.904 (0.770–1.000) 84.0 (76.0–96.1) 83.3 (74.8–100) 84.6 (61.5–100) 83.3 (70.6–100) 84.6 (75.0–100) 

Data in brackets are 95 % CIs. AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value. 
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0.970–1.000), with a sensitivity of 96.3 % (95 % CI 88.9–100 %) and specificity of 93.3 % (95 % CI 86.7–100 %). In the testing set, the 
model showed an AUC of 0.628 (95%CI 0.391–0.853), with sensitivity of 66.7 % (95%CI 41.7–100 %) and specificity of 61.5 % (95%CI 
38.5–100 %) (Fig. 2, Table 2). 

Fig. 1. Workflow of the study. ROI, regions of interest; NLR, neutrophil to lymphocyte ratio; MLR, monocyte to lymphocyte ratio; PLR, platelet to 
lymphocyte ratio; SII, systemic immune-inflammation index; PNI, prognostic nutritional index; ICC, inter-class coefficients. 
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3.3. Predictive performance of radiomics model 

Totally 1106 features were extracted for each patient, of which 928 exhibited satisfactory reproductivity according to ICC. Based on 
the rank of features’ predictive value by RF-RFE, top two features were retained for model construction using random forest (eTable 4). 
The radimics model achieved AUCs of 0.984 (95%CI 0.953–1.000) in the training set and 0.821 (95%CI 0.641–0.981) in the testing set 
(Fig. 3, Table 2). In the testing set, the sensitivity, specificity, PPV and NPV were 91.7 % (95%CI 83.3–100 %), 76.9 % (95%CI 
46.2–92.3 %), 78.6 % (95%CI 63.2–92.3 %) and 84.0 % (95%CI 76.9–100 %). The predicted probabilities of pCR in both the training 
and testing sets were recorded as RFprob. 

3.4. Predictive performance of nomogram 

The nomogram integrating five variables, including RFprob, NLRpost, deltaMLR, deltaPLR, and deltaSII, was constructed (Fig. 4), 
achieving an AUC of 0.991 (95 % CI 0.973–1.000) in the training set and 0.904 (95 % CI 0.770–1.000) in the testing set (Fig. 5, 
Table 2). The confusion matrix demonstrated accurate predictions in both the training and testing sets, correctly identifying 55 out of 
57 patients in the training set and 21 out of 25 patients in the testing set (eFig. 1). In the training set, the sensitivity, specificity, PPV and 
NPV were 96.3 % (95%CI 88.9–100 %), 96.7 % (95%CI 86.7–100 %), 96.3 % (95%CI 87.1–100 %) and 96.7 % (95%CI 90.9–100 %). In 
the testing set, the sensitivity, specificity, PPV and NPV were 83.3 % (95%CI 74.8–100 %), 84.6 % (95%CI 61.5–100 %), 83.3 % (95% 
CI 70.6–100 %) and 84.6 % (75.0–100 %). The nomogram was significantly associated with the odds of achieving pCR (OR 39.73, 95 % 
CI 3.90–513.00, P = 0.005) (eTable 5). Favorable correspondence was show between true probability and predicted probability in 
calibration curves (eFig. 2) and clinical benefit was demonstrated through DCA curves (eFig. 3). 

4. Discussion 

The present study validates that an integrated nomogram built on MR radiomics and dynamic hematological factors can precisely 
predict pCR after NCRT in patients with ESCC accurately. To the best of our knowledge, this is the first study combining MR radiomics 
and hematological factors to predict neoadjuvant therapy response of esophageal cancer. 

Our study selected two radiomics features from 1106 extracted MR radiomics features to build a radiomics model. In consistence 
with previous studies, our radiomics model achieved an AUC of 0.821 in the testing set. By combining four valuable hematological 
factors, the integrated nomogram showed favorable AUC of 0.904 in the testing set, which surpassed those reported in previous studies 
on the same topic [20] and can be potentially helpful to apply to clinical practice. 

Explorations on traditional qualitative or quantitative methods using CT or PET/CT to predict pCR after neoadjuvant chemo-
radiotherapy in ESCC have showed low accuracy, with sensitivity and specificity less than 70 % in most studies [6]. Gene expression 
analysis distinguished several predictive genetic markers but accuracy was not reported or satisfactory in most studies, with the lack of 
validation [21–25]. The recent development of radiomics shed light on the promising role of this new approach in treatment response 
prediction. Hu et al. [26] combined intratumoral and peritumoral radiomics features from CT images to build a support vector machine 
model, with AUC reaching 0.852 in the testing set in predicting pCR. Another study integrated pretreatment CT and PET images of 68 

Fig. 2. Receiver operating characteristic curve analysis of the hematological model. AUC, area under the curve.  
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patients to build a radiomics model with an AUC of 0.87 in internal cross-validation [27]. Wang et al. [28] used contrast-enhanced CT 
images of 112 ESCC patients to develop a radiomics model that achieved an AUC of 0.817 in the testing set. These studies relied solely 
on traditional medical imaging, and enhancing accuracy has proven to be challenging. In contrast, our model demonstrates superior 
performance by leveraging comprehensive information from both novel MR imaging and dynamic hematological factors. 

MR has become increasingly applied for patients with esophageal cancer due to its high soft tissue resolution and abundant types of 
sequences with various information. T2WI is the most common sequence in clinical practice. Although not widely explored, a few 
studies have shown its remarkable predictive value of treatment response. Hou et al. [29] constructed a radiomics model using T2WI, 

Fig. 3. Receiver operating characteristic curve analysis of the radiomics model. AUC, area under the curve.  

Fig. 4. Nomogram integrating MR radiomics and hematological factors. The nomogram combines the radiomics model and four hematological 
factors. Each predictor is assigned a score on the points scale, and the total score corresponds to the probability of achieving pCR, as indicated on the 
bottom scale. RFprob, probability of pCR predicted by the radiomics model; NLRpost, post-treatment neutrophil to lymphocyte ratio; deltaMLR, 
post-treatment minus pre-treatment value of monocyte to lymphocyte ratio; deltaPLR, post-treatment minus pre-treatment value of platelet to 
lymphocyte ratio; deltaSII, post-treatment minus pre-treatment value of systematic immune-inflammation index; pCR, pathological com-
plete response. 
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which accurately predicted treatment response to definitive chemoradiotherapy assessed by RECIST. Lu et al. [30] utilized 
T2-TSE-BLADE images to construct radiomics model to predict pathological response of neoadjuvant chemotherapy in ESCC with the 
highest AUC of 0.831 using post-treatment images. Our study demonstrated that pre-treatment T2WI with radiomics can be a useful 
biomarker to predict pathological response of neoadjuvant chemoradiotherapy, which is the standard care in locally advanced ESCC 
and more widely adopted in clinical practice. Specifically, the radiomics model utilized Small Area Emphasis features, which quantify 
the distribution of small-sized homogeneous zones and reflect intratumor heterogeneity. These features, extracted from CT images, 
have been shown to be effective in predicting prognosis and response to chemoradiotherapy in lung cancer and gastric cancer [31–33]. 
In our study, these features were identified as the most predictive through the use of RF-RFE and were effectively utilized using reliable 
machine learning methods. Given the high soft-tissue resolution of MR images, our model is likely to capture specific patterns of 
intratumor heterogeneity, which can be instrumental in predicting the response to chemoradiation in ESCC. 

Correlations between hematological factors and prognosis of esophageal cancer has been reported in many studies [34]. Lawati 
et al. [35] found that pre-treatment and post-treatment NLR was associated with OS and DFS in patients with esophageal cancer, most 
of whom received neoadjuvant chemotherapy. MLR, PLR and SII were also found related to pathological response and survival out-
comes of esophageal cancer [17,36,37]. However, performances of predicting pathological response to NCRT using hematological 
factors in independent testing set were not investigated, with only few studies reported AUC of 0.6–0.7 in in the entire patient cohort 
[16,38]. The hematological model in our study had an AUC of 0.628 when predicting pCR, which also indicated limited clinical 
applicability. Zhang et al. [39] demonstrated the added value of hematological factors that combining NLR, MLR, Albumin with 
CT-based radiomics showed superior performance (AUC = 0.857) compared to radiomics alone (AUC = 0.718–0.786). However, their 
study did not utilize dynamic hematological factors, and the field of CT radiomics itself is not new, having been extensively explored 
previously [20]. In our study, dynamic hematological factors were valuable when adding to MR radiomics model, which improved 
AUC from 0.821 to 0.904 in the testing set. This enhancement is likely attributed to the various values that hematological factors reflect 
systematic inflammation and host adaptive immune status [40,41], while MR reveals features of the primary tumor. 

This study has several limitations. Firstly, as an exploratory single-center study with a relatively limited sample size, the gener-
alizability of the findings is not well guaranteed and requires further validation. Secondly, the results may be influenced by potential 
confounding factors such as variations in patient characteristics or treatment protocols. The possibility of false positives/negatives and 
measurement variability of imaging and hematological biomarkers can also affect the reliability. A multi-center prospective study will 
be conducted in the future to further validate the model. Thirdly, contrast-enhanced MR sequences and DWI were not applied in this 
study. These techniques are not standard protocols in the clinical management of ESCC, and have significant time and financial im-
plications, so they were not utilized in the majority of patients in our study. Prospective study with predefined MR sequences will 
integrate multiple sequences to further improve the predictive performance. Fourthly, manual delineation was adopted in this study, 
which was time-consuming and outmoded. Automatic contouring system will be investigated in the future. Fifthly, the radiomics 
approach has its own limitations of dependence on image quality and variability in feature extraction methods, which could affect 
model’s performance and generalization. Lastly, the underlying biological mechanisms of the model’s predictions are not fully un-
derstood. To address this, we plan to integrate gene expression data in future studies to better interpret these mechanisms. 

Fig. 5. Receiver operating characteristic curve analysis of the nomogram. AUC, area under the curve.  
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5. Conclusions 

In conclusion, an integrated model combining hematological factors with MR radiomics was developed to accurately predict pCR to 
NCRT in ESCC, potentially useful in guiding individualized esophageal preservation treatments. However, further validation in larger 
datasets is essential. 
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