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Objectives: Knowledge of the urinary metabolomic profiles of healthy children and
adolescents plays a promising role in the field of pediatrics. Metabolomics has
also been used to diagnose disease, discover novel biomarkers, and elucidate
pathophysiological pathways. Attention-deficit/hyperactivity disorder (ADHD) is one of
the most common psychiatric disorders in childhood. However, large-sample urinary
metabolomic studies in children with ADHD are relatively rare. In this study, we aimed to
identify specific biomarkers for ADHD diagnosis in children and adolescents by urinary
metabolomic profiling.

Methods: We explored the urine metabolome in 363 healthy children aged 1–18 years
and 76 patients with ADHD using high-resolution mass spectrometry.

Results: Metabolic pathways, such as arachidonic acid metabolism, steroid hormone
biosynthesis, and catecholamine biosynthesis, were found to be related to sex and age
in healthy children. The urinary metabolites displaying the largest differences between
patients with ADHD and healthy controls belonged to the tyrosine, leucine, and fatty acid
metabolic pathways. A metabolite panel consisting of FAPy-adenine, 3-methylazelaic
acid, and phenylacetylglutamine was discovered to have good predictive ability for
ADHD, with a receiver operating characteristic area under the curve (ROC–AUC) of
0.918. A panel of FAPy-adenine, N-acetylaspartylglutamic acid, dopamine 4-sulfate,
aminocaproic acid, and asparaginyl-leucine was used to establish a robust model for
ADHD comorbid tic disorders and controls with an AUC of 0.918.
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INTRODUCTION

Metabolomics, an innovative analytical profiling technique, aims
to detect the whole set of metabolites of low molecular weight
present in body fluid. In recent years, it has already shown
great potential in exploring the physiological status of healthy
populations and in discovering subtle metabolic discrepancies in
some specific disorders (1–4).

Urine samples can be collected through non-invasive
protocols. Metabolic phenotyping of urine in a healthy
population reflects the real-time dynamics of growth and
development of the body and documents the physiological status
of individuals (1, 2, 5). Some previous urinary metabolomic
studies have revealed dynamic metabolic changes associated
with age, sex, body mass index (BMI), dietary intake, and
demographics in healthy children (1, 6–8), even in healthy
neonates (2). Researchers have found that sex deeply influences
both quantitative and qualitative urinary organic acid levels in
healthy children aged 1–36 months, and the effect of sex is age-
dependent (5). Metabolites that correlated with age included
creatinine, creatine, glycine, betaine/TMAO, citrate, succinate,
and acetone in children aged 12 years and younger (9). The
metabolite profile of human urine also allows the prediction of
sex and age with high accuracy in adults (10). Sili Fan et al.
found that urinary metabolic signatures were globally distinct
between healthy male and female children, and the levels of
α-ketoglutarate and 4-hydroxybutyric acid increased 2.3-fold
and 4.41-fold in male children compared to female children,
respectively (11). In the urine of adult female children, succinate,
citrate, hippurate, glycine, and malic acid are higher (11, 12),
whereas creatine, stearate, alpha-ketoglutarate, and 4-hydroxy-
butyrate are higher in healthy male children than in female
children (11). Due to rapid growth and development in early
life, the characteristics of the urinary metabolome are different
between children and adults. However, large-scale metabolome
studies in healthy children aged 1–18 years are lacking. A high-
quality urinary metabolome for children of all ages is in great
demand for investigating the metabolic changes in healthy
children at each stage throughout early childhood, characterizing
early-life physical and environmental exposures and assessing
their general health status. Characterizing healthy children’s
urinary metabolic features and their associations with age and
sex can provide a standard reference metabolome, thus helping
to assess disease metabolic disturbances and seek detectable
biomarkers that differentiate health from disease.

Metabolomics has also been widely employed in identifying
specific metabolic fingerprints in neuropsychiatric disorders in
children, such as autism spectrum disorder (ASD) (13, 14) and
attention-deficit/hyperactivity disorder (ADHD) (15). ADHD
is a childhood-onset neurodevelopmental disorder marked by
persistent and impaired inattention, hyperactivity/impulsivity,
or both (16). It is one of the most common psychiatric
disorders in childhood and adolescence, affecting approximately
7% of children worldwide (17), and it is more common in
male children. ADHD adversely affects children’s emotional,
behavioral, cognitive, academic, and social functions (18).
Currently, the diagnosis of ADHD mainly depends on behavioral

analysis, which is subjective and inconsistent, especially for
children. It is imperative to investigate objective laboratory
biomarkers for ADHD diagnosis. Recently, a few studies
have proposed potential serum biomarkers, such as mono-
and polyunsaturated fatty acids and the kynurenine pathway,
in children and adults with ADHD, suggesting a potential
linkage between metabolic characteristics and ADHD disease
pathophysiology (15, 19–21). Bonvicini et al. performed a
systematic review and meta-analysis of 6 biochemical studies
and found lower serum docosahexaenoic acid (DHA) levels
in adults with ADHD (19). Evangelisti et al. examined serum
levels of tryptophan and other metabolites of the kynurenine
pathway in children with ADHD. They found increased serum
levels of tryptophan and kynurenine and reduced levels of
kynurenic acid, anthranilic acid, and xanthurenic acid. The AUC
of anthranilic acid was 0.88 (95% CI = 0.83–0.94) (22). In
contrast to obtaining blood samples, urine is easy to collect
in children due to its non-invasive procedures of collection.
Urine can potentially provide crucial metabolic information.
The applications of urine metabolomics are very promising
in biomarker discovery for disease etiology, diagnosis, and
prognosis (4, 23). However, there have been fewer urinary
metabolomic studies on childhood ADHD.

In this study, we collected urine samples from 363 healthy
children aged 1–18 years and 76 patients with ADHD (with
or without comorbid tic disorders) for non-targeted metabolite
profiling. We sought to (a) define metabolite associations with
demographic factors, age, and sex in healthy children in a
larger sample, (b) evaluate different urine metabolic profiles
between patients with ADHD and healthy controls, and (c)
compare different urine metabolic patterns between ADHD
patients with/without tic disorders. We found that sex and age
can influence interindividual variations in the urine metabolome
of healthy children. Differences in urine metabolites were found
in patients with ADHD. We constructed a differential metabolite
pattern that could simultaneously discriminate three different
types of psychiatric status (normal, ADHD, and ADHD with
tic disorders). Furthermore, we discovered a biomarker panel
that could distinguish ADHD from healthy controls with higher
diagnostic values. Here, to the best of our knowledge, for the first
time, we have identified novel urinary metabolites that could help
to classify children with or without ADHD.

MATERIALS AND METHODS

Cohort
All healthy participants aged 1–18 years were recruited through
school voluntarily. Informed consent forms were obtained
from each participant’s legally authorized representative (parent
or guardian). The online health questionnaires based on
the inclusion and exclusion criteria were completed by their
guardians (24). Healthy volunteers were checked and examined
by trained pediatricians according to standard operating
procedures. All physical examination indices, including routine
urine tests and biochemical tests, were in the normal range. Strict
exclusion criteria, such as all types of genetic diseases and clinical
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laboratory values indicating acute or chronic disease, were
applied. Based on physiological developmental characteristics of
children and a previous study (24), we determined five age-
specific partitions of the enrolled healthy participants for boys
and girls: 1–3 years, 4–6 years, 7–10 years, 11–14 years, and
15–18 years of age.

A senior child psychiatrist interviewed the participants
according to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5), criteria (25). Conners’
parent rating scales were completed by each patient’s parents.
A continuous performance test (CPT) (26) was administered to
all the patients by a technician to obtain behavioral measures
of attention. Patients with ADHD with comorbid tic disorders
were examined by the Yale Global Tic Severity Scale (YGTSS)
(27). Furthermore, experienced child psychiatrists conducted a
neurocognitive assessment and physical examination to exclude
any neurological disorder other than ADHD. Children with brain
damage, a neurological disorder, a genetic disorder, epilepsy, or
any other neurological disorder reported during the collection
of personal history or anamnesis were excluded. Children who
exhibited an IQ of 80 or lower according to the Combined
Raven’s Test (CRT) or who were receiving drug treatment were
also excluded. In this study, 76 outpatients with ADHD were
recruited from Beijing Children’s Hospital. A total of 44 pediatric
patients with ADHD and 32 children with both ADHD and
chronic tic disorder were enrolled and randomly selected as the
training group and validation group. The clinical features of
the training and validation groups were similar. Biomarkers for
ADHD with or without comorbid tic disorder were identified
based on profiling analysis of 31 patients with ADHD, 21 ADHD
patients with a tic disorder, and 46 age- and sex-matched healthy
controls. An independent batch of patients with ADHD (13
ADHD and 11 ADHD with tic) and 17 healthy controls were
used for external validation of the potential biomarkers using
logistic regression.

Urine Sample Collection and
Preprocessing
Urine samples were collected and preprocessed according to
guidelines (28, 29). Throughout the study, all urine samples
were collected from the first urination in the morning under
fasting conditions. In clean, dry specimen tubes from the same
manufacturer, 10 ml of midstream samples were collected.
Samples were centrifuged (3,000 g for 10 min) within 1 h of the
collection; the supernatants were isolated, aliquoted, and stored at
−80◦C until analysis. Samples were shipped at cold temperatures.
Freeze–thaw cycles were avoided.

Urine Sample Preparation
Urine samples were prepared using the method described in
our previous study (30). Briefly, 200 µl morning midstream
urine samples were mixed with 400 µl acetonitrile to precipitate
proteins. The mixture was vortexed for 30 s and centrifuged
at 14,000 g for 10 min. After drying under vacuum, the
supernatant was reconstituted with 200 µl 2% acetonitrile/water.
Additionally, 10 kDa molecular weight cut-off ultracentrifugation

filters (Millipore Amicon Ultra, MA, United States) were used to
remove small proteins from the urine samples before transferring
the samples to an autosampler.

The QC standard was prepared by mixing aliquots from all
urine samples to assess the stability and repeatability of the
analytical process.

LC-HRMS Analysis
Urine sample analyses were conducted by a Waters
ACQUITY H-class LC system coupled with an LTQ-Orbitrap
mass spectrometer (MS) (Thermo Fisher Scientific, MA,
United States). Urinary metabolites were separated with a 29-
min gradient on a Waters HSS C18 column (3.0 mm × 100 mm,
1.7 µm) at a flow rate of 0.5 ml/min. Mobile phase A was 0.1%
formic acid in H2O, and mobile phase B was acetonitrile. The
gradient was set as follows: 0–1 min, 2% solvent B; 1–8 min,
2%–98% solvent B; 8–8.1 min, 98%–100% solvent B; 8.1–12 min,
100% solvent B; 12–12.1 min, 100%–2% solvent B; and 12.1–
17 min, 2% solvent B. The column temperature was 45◦C. The
full MS acquisition ranged from 100 to 1,000 m/z at a resolution
of 60 K in MS1 and 15 K in MS2. The MS1 automatic gain
control target was 1× 106, and the maximum injection time (IT)
was 100 ms. The MS2 automatic gain control target was set as
5 × 105, and the maximum IT was 50 ms. The higher-energy
collisional dissociation (HCD) fragmentation mode was used
to dissociate differential metabolites with the optimal collision
energy of 20, 40, 60, or 80 eV. Every urine sample was randomly
injected into 3 technical replicates to reduce the experimental
bias. All samples were randomly injected into the LC–MS system
within a single analysis (within 12 days).

A quality control (QC) sample consisting of representative
samples from populations with different genders and ages was
used to monitor analytical performance throughout the run
and was analyzed at an interval of every 10 samples. Overall,
42 injections were performed during the whole analysis. The
analysis showed stable conditions with only a small variation
(< ± 2 SD) (Supplementary Figure 1). These results provided
some assurances that the platform had essential repeatability and
stability throughout the analytical run.

Data Processing
The raw data files obtained with LC-MS systems consist of a
complex three-dimensional data format comprising retention
time, m/z values, and density or abundance on each axis.
This comprehensive information needs to be processed before
any statistical techniques are applied to analyze the data. Data
processing consists of certain steps, and one of them is converting
the raw data produced by the instrument into a two-dimensional
data matrix. Since data collection in metabolomic studies is
carried out using special commercial software that works with
LC-MS systems, the raw data obtained from the instruments
should be converted to an open standard format such as
mzML by using suitable software. After this conversion, the
data can be used in many commercial and public programs to
create data matrices using a public metabolomics software tool
such as XCMS, Progenesis QI, and MetaboAnalyst. All these
software are useful in terms of peak picking (EIC: extracted ion
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chromatography), deconvolution, and peak alignment. In this
study, commercial software, Progenesis QI, was used for peak
picking, alignment, and normalization. The data were normalized
using “Normalize to the total compound.”

Further data preprocessing, including missing value
estimation (50% rule), log transformation, and Pareto scaling,
was carried out online using Metabo Analyst 5.0, a web-based
tool1. Variables whose CV% (coefficient of variation) was more
than 30% and missed in 50% or more samples were removed for
further statistical analysis. Pattern recognition analysis (principal
component analysis, PCA; orthogonal partial least squares
discriminant analysis, OPLS-DA) was performed using SIMCA
14.0 (Umetrics, Sweden) software. The Wilcoxon rank-sum
test was used to evaluate the significance of variables between
the disease and control groups. Quantification of differentially
expressed biomarkers was performed using EIC peak areas
extracted and integrated by progenesis QI. Differential variables
were selected according to the following rules: (1) adjusted
P-value < 0.05, (2) fold change > 1.5, and (3) VIP value > 1.0.

Feature Annotation and Metabolite
Identification
Differential features were divided into several targeted lists.
The lists were imported to the “MS2 method”, such as lists
for targeted data-dependent analysis. The MS/MS spectra were
further imported into Progenesis QI for metabolite annotation.
In this study, two databases were used for MS/MS matching:
(1) Metlin MS/MS library (Waters, version 1.0.6499.51447,
commercial, composed of authentic standard spectra obtained

1http://www.metaboanalyst.ca

by orbitrap and TOF mass spectrometry) and (2) fragment
library constructed using theoretical fragments calculated by the
theoretical fragmentation algorithm, the “MetFrag” algorithm
(31). The detailed compound identification information (.csv
file) included compound ID, adducts, formula, score, MS/MS
score, mass error (in ppm), isotope similarity, theoretical isotope
distribution, web link, and m/z values. Confirmation of the
differential compounds was performed by the parameter of
score value, calculated from mass error, isotope similarity,
and fragmentation similarity (fragmentation score). The score
value ranged from 0 to 60. According to the score results
of the reference standards, the threshold was set at 35.0.
Isotope similarity is calculated by comparing the measured
isotope distribution of a precursor ion with the theoretical.
The more reliable the compound identification, the higher the
values obtained. Metabolite function annotation was performed
using the KEGG metabolism pathway database, combined
with manual annotation by reference searching. The predictive
accuracy of biomarkers was assessed using the receiver operating
characteristic (ROC) curve plotted in MetaAnalyst 4.0.

RESULTS

Population Characteristics
We recruited a total of 350 healthy children (178 males and
172 females) aged 1–18 years, including five age stages (1–
3 years, 4–6 years, 7–10 years, 11–14 years, and 15–18 years),
44 patients with ADHD, and 32 children with both ADHD and
tic disorder. The workflow of our study is shown in Figure 1.
The characteristics of the population included in this analysis

FIGURE 1 | The workflow of this study.
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TABLE 1 | Basic characteristics of the subjects enrolled in this study.

(1a) Numbers of healthy controls in different age stages

Age stage Male Female Total

Aged 1-3 (years) 29 25 54

Aged 4-6 (years) 30 29 59

Aged 7-10 (years) 39 40 79

Aged 11-14 (years) 39 39 78

Aged 15-18 (years) 41 39 80

Total 178 172 350

(1b) Means and standard deviations for age used in analysis of the three groups

ADHD without tic disorders ADHD comorbid tic disorders Healthy control

Cases 44 32 63

Age (years) 7.9 ± 2.0 8.7 ± 1.8 7.8 ± 1.8

Gender (Male/Female) 38/6 28/4 58/5

are summarized in Table 1 and Supplementary Table 1. We
analyzed urinary metabolic profiling and explored the metabolite
variations associated with age and sex.

Gender Variations in Children in Different
Age Groups
We performed unsupervised principal component analysis
(PCA) and supervised orthogonal partial least squares method-
discriminant analysis (OPLS-DA) to explore the tendency of
metabolic profiling variations between male and female children
in five different age groups. The resulting score plot is shown
in Supplementary Figure 2. Unsupervised PCA of different
age groups showed the tendency that most male samples
clustered together, although some male dots overlapped with
the female samples (Supplementary Figure 2). Class separation
could be obviously observed for all male and female children
in five different age groups using an OPLS-DA model. Scatter
plots showed that sex differences in urine metabolomics in
each age group were apparent (Supplementary Figure 2 and
Figure 2A). To validate the OPLS-DA model, the use of
100 permutation tests showed no overfitting of the models
(Supplementary Figure 2).

Metabolites identified in sets with different age groups were
selected by using the cut-off of OPLS-DA variable importance in
projection (VIP) score of >1.0 and a P-value <0.05. The ratio of
expression levels between female and male children is shown in
Supplementary Tables 2A–F. We identified 73, 30, 28, 33, 69, and
64 metabolites to be significantly different between female and
male children in sets aged 1–3, 4–6, 7–10, 11–14, and 15–18, and
in all age groups, respectively (Supplementary Tables 2A∼F).
Approximately half of the differential metabolites showed higher
levels in female children, including 5′-methylthioadenosine,
indoleacrylic acid, kynuramine, and tauroursodeoxycholic acid.
Higher levels of the metabolites of L-Dopa, 3,4-methyleneazelaic
acid, and 3-hydroxyhexanoyl carnitine, etc., were found in boys
(Supplementary Tables 2A∼F).

We applied pathway enrichment analysis to analyze gender-
dependent metabolism status in children. Figure 2B shows

the sex-dependent metabolism pathways in all age groups.
Arachidonic acid metabolism, valine-leucine-isoleucine
biosynthesis, glycerolipid metabolism, etc., were found to
be gender-dependent in children in different age groups
(Figure 2B). Table 2 shows gender-dependent metabolism
pathways of five different age groups: spermidine and spermine
biosynthesis, estrone metabolism, etc., were found to be gender-
dependent in healthy children aged 1–3 years; arachidonic
acid and bile acid metabolism in children aged 4–6 years;
glutamate, leucine, androsterone and fatty acid metabolism,
etc., in children aged 7–10 years; proline and androsterone
metabolism in children aged 11–14 years; and catecholamine,
bile acid, estrone, and tyrosine metabolism, etc., in children
aged 15–18 years.

Age Variations in Female and Male
Groups
Both the OPLS-DA and PCA models showed the obvious
tendency of metabolic profiling variations with age
(Figures 2C,D and Supplementary Figure 3). Five age
groups, including 1–3 years, 4–6 years, 7–10 years, 11–14 years,
and 15–18 years, were compared. Both the female and male
groups showed the same age-dependent metabolic status
(Figures 2C,D). Notably, one hundred permutation tests showed
no overfitting of the two models (Supplementary Figure 3).

According to the significance threshold, 250 metabolites
were identified as key molecules with a significant correlation
with age in the boy group (Supplementary Table 3) and 243
metabolites were identified in the girl group (Supplementary
Table 4). These differential metabolites were submitted for
further pathway analysis. Figures 2E,F show the relative intensity
change trend among the five age groups of male and female
children, respectively. Catecholamine biosynthesis, pantothenate
and CoA biosynthesis, vitamin B6, androstenedione, and estrone
metabolism were found to change with age in boys. In girls,
metabolites involved in phenylacetate metabolism, pantothenate
and CoA biosynthesis, and pterin biosynthesis were age-
dependent (Table 3 and Figures 2E,F).
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FIGURE 2 | Analysis of metabolome interindividual variations and related factors (gender and age). (A) The score plot of the OPLS-DA model between female and
male children of all ages. (B) Pathway overrepresentation analysis of differential metabolites in the two sex groups. The analysis was carried out with the metabolites
in changes (P < 0.05). Pathway impact values were plotted against the X-axis, and P-values were plotted against the Y-axis. The node color is determined by its
P-values, and the node size is proportional to the pathway impact values. (c,d) The score plot of the OPLS-DA model of male children (C) and female children (D)
with different age stages. (E,F) Age-dependent metabolic pathways were enriched based on metabolites with the highest level in each age group. The KEGG
database was the background pathway database.

Attention-Deficit/Hyperactivity Disorder
Biomarker Discovery
From the above results, we found that age and sex are important
factors affecting metabolism, so we used age- and sex-matched
healthy control subjects to analyze urine metabolomics
differences between the ADHD and control groups. Both
unsupervised PCA and supervised OPLS-DA suggested apparent
discrimination between the two groups (Supplementary
Figures 4A∼B). Differential metabolites were selected according
to the VIP value (VIP > 1). Notably, sixty significantly differential

metabolites were identified (Supplementary Table 5). The data
indicate that metabolites involved in dihydrolipoamide, 3-
methylazelaic acid, and phenylacetylglutamine were upregulated
in patients with ADHD, whereas the metabolites isohomovanillic
acid, indanone, and dopamine 4-sulfate were downregulated.

ROC curves were used to evaluate the diagnostic accuracy
of the differential metabolites for ADHD. A metabolite panel
consisting of FAPy-adenine, N-acetylaspartylglutamic acid, and
dopamine 4-sulphate was found to have the best prediction
accuracy for ADHD. The area under the curve (AUC) was 0.923
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TABLE 2 | Gender dependent metabolism pathways of five age groups.

Age stages Metabolism pathways

Aged 1-3 (years) Spermidine and spermine biosynthesis; Estrone
metabolism; Mitochondrial beta-oxidation of short chain
saturated fatty acids; Propanoate metabolism; Methionine
metabolism; Valine, leucine and isoleucine degradation

Aged 4-6 (years) Arachidonic acid metabolism; Bile acid metabolism

Aged 7-10 (years) Glutamate metabolism; Bile acid metabolism; Fatty acid
metabolism; Leucine metabolism; Androsterone
metabolism

Aged 11-14 (years) Leukotriene E4 metabolism; Proline metabolism;
Androsterone metabolism

Aged 15-18 (years) Catecholamine biosynthesis; Estrone metabolism; Bile acid
biosynthesis; Androgen and estrogen metabolism; Tyrosine
metabolism

TABLE 3 | Age dependent metabolism pathways in male and female children.

Gender Age-dependent metabolism pathways

Male Arachidonic acid metabolism, Pantothenate and CoA
biosynthesis, Beta-alanine metabolism, Tryptophan
metabolism, Amino acid metabolism, Fatty acid oxidation,
Catecholamine biosynthesis, Tyrosine metabolism, Tryptophan
metabolism, Dipeptides, Vitamin B6 metabolism,
Androstenedione metabolism, Estrone metabolism, Amino
sugar metabolism, Androgen and estrogen metabolism

Female Pantothenate and CoA biosynthesis, Alanine, aspartate and
glutamate metabolism, Tryptophan metabolism, Proline
metabolism, Dipeptides, Histidine metabolism, Phenylacetate
metabolism, Pterin biosynthesis, Cysteine and methionine
metabolism

for the training set (Table 4), the sensitivity was 94.2%, and
the specificity was 82.6%. Furthermore, an independent batch of
patients with ADHD (13 with ADHD and 11 ADHD with tic)
and 17 healthy controls were used for external validation of the
potential biomarkers. External validation achieved an AUC of
0.877 (Table 4 and Supplementary Figure 4C).

Furthermore, we explored the urine metabolic differences
between ADHD without tic disorder and healthy controls. PCA
was performed, and the analysis showed apparent discrimination
between the control samples and the ADHD disease groups
(Figure 3A). Furthermore, an OPLS-DA model established
for differential metabolite selection also showed apparent

TABLE 4 | ROC of three groups.

Disease
vs. Normala

ADHD
vs. Normalb

ADHD comorbid
tic disorders vs. Normalc

AUC AUC AUC

Training Set 0.923 0.918 0.918

Validation Set 0.877 0.96 0.918

a The panel includes FAPy-adenine, N-Acetylaspartylglutamic acid and
Dopamine 4-sulfate.
b The panel includes FAPy-adenine, 3-Methylazelaic acid and
Phenylacetylglutamine.
c The panel includes FAPy-adenine, N-Acetylaspartylglutamic acid, Dopamine
4-sulfate, Aminocaproic acid and Asparaginyl-Leucine.

discrimination (Supplementary Figure 5A). A total of 34
significantly differential metabolites were identified in children
with ADHD without tic disorders (Supplementary Table 6).
Pathway power analysis indicated that tyrosine metabolism,
biopterin metabolism, drug metabolism-cytochrome P450,
caffeine metabolism, tryptophan metabolism, and N-glycan
degradation were differentially regulated in ADHD (Figure 3C).
A metabolite panel consisting of FAPy-adenine, 3-methylazelaic
acid, and phenylacetylglutamine was used to construct a robust
model for distinguishing between the healthy group and the
ADHD without tic disorder group. The AUC of the panel
was 0.918 for the training set (Table 4), and its sensitivity and
specificity were above 0.8 (Supplementary Figure 6A). The
AUC for the external validation set was 0.96 (Table 4 and
Figure 3E).

Using the same strategy as above, PCA and OPLS-DA models
were performed to visualize the metabolomic differences between
ADHD comorbid with tic disorder and healthy control subjects.
Both PCA and OPLS-DA showed apparent discrimination
between the two groups (Figure 3B, Supplementary Figure 5B).
Then, 42 differential metabolites were identified in children
with ADHD with comorbid tic disorders (Supplementary
Table 7). These differential metabolites involve pathways
of tyrosine metabolism, biopterin metabolism, sialic acid
metabolism, tryptophan metabolism, N-glycan biosynthesis,
amino sugar metabolism, glycolysis, gluconeogenesis, and
pentose phosphate metabolism (Figure 3D). A metabolite
panel consisting of FAPy-adenine, N-acetylaspartylglutamic
acid, dopamine 4-sulfate, aminocaproic acid, and asparaginyl-
leucine was found to have a good distinction between the
healthy group and the ADHD with tic disorder group.
The AUC-ROC of the panel was 0.918 for the training set
(Table 4), and it achieved sufficient sensitivity (0.83) and
higher specificity (0.91) (Supplementary Figure 6B). The AUC-
ROC was 0.918 for the external validation set (Table 4 and
Figure 3F).

In addition, we examined the main metabolic characteristics
of ADHD patients with and without comorbid tic disorder
and healthy controls. Metabolites showing the highest level for
each group were submitted for pathway analysis, indicating
the specific metabolic characteristics for each group. Arginine
biosynthesis, pentose and glucuronate interconversions, and
alanine, aspartate, and glutamate metabolism were the main
metabolic features in the healthy group. Compared with the
control group, the two disease groups showed similar metabolic
features. Leucine metabolism and fatty acid metabolism showed
higher activity in ADHD patients with a tic disorder. In
ADHD without tic disorder, glutamate metabolism was active
(Supplementary Figure 7).

DISCUSSION

The analytical platforms to be used for metabolomic studies
should be able to simultaneously analyze hundreds of metabolites
from complex biological samples and also allow monitoring
of changes in these metabolites. However, none of the
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FIGURE 3 | Analysis of metabolome interindividual variations and related factors. (A) The score plot of the PCA model between ADHD without tic disorder and
normal controls. (B) The score plot of PCA based on urine profiling of ADHD comorbid with tic disorder and normal controls. (C,D) Enriched pathway of metabolites
for ADHD with/without tic disorder. (E,F) ROC plot of the validation set of ADHD patients with/without tic disorder.

current analytical platforms available today has the power to
fully measure the whole metabolome, and this may be due
to the physicochemical diversity of these metabolites, e.g.,
hydrophilic carbohydrates, volatile alcohols and ketones, amino
and non-amino organic acids, and hydrophobic lipids. Analytical
techniques, such as NMR, GC-MS, and LC-MS, are the most
commonly used analytical methods for metabolomic studies.
Different analytical methods showed differences in resolution

and sensitivity, which would contribute to the number of
identified metabolites. In this study, the LC-MS method was
used for biomarker discovery. LC-MS shows higher resolution
and sensitivity than NMR and GC-MS and could identify more
metabolites (32, 33).

The spectra data files obtained with LC-MS systems consist of
a complex three-dimensional data format, comprising retention
time, m/z values, and density or abundance on each axis. Data
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processing consists of certain steps, and one of them is converting
the raw spectra data produced by the instrument into a two-
dimensional data matrix, named peak picking and alignment
procedures. Several tools, including XCMS, Progenesis QI, and
MetaboAnalyst, could perform peak picking. The accuracy of
peak picking is imperative in the analysis of LC-MS-based
metabolomic data (34). In this study, peak alignment was carried
out automatically, using a QC run as the reference. The alignment
vector is used for quality control. The quality evaluation results
indicated that the score values for all the samples were greater
than 80% (35).

Compared to previous adult urine metabolomic studies, there
are relatively few studies on healthy children. Due to rapid
growth and development in early life, each age range in the
childhood period has different metabolic features. In this study,
we characterized the urine metabolic profiles of a large sample
size of healthy children among five different age groups (from 1
to 18 years of age) using the LC–MS/MS platform. Our results
showed that the urinary metabolic signature of children was
associated with sex and age parameters. Urine is a sensitive matrix
that can reflect physiological and pathological changes. Urine
metabolomics reflects the disturbance in disease states and is
commonly used for the diagnosis of neuropsychiatric diseases.
Urine samples are routinely collected easily from young children.
Our study identified seven urinary metabolites that could be
used as effective biomarker panels for ADHD diagnosis and
could help to elucidate the underlying molecular pathological
mechanisms of the disease.

Gender-Dependent Metabolism Status in
the Healthy Children Population
Previous studies have highlighted the impact of sex on the
urinary metabolome in adults (10, 36–38). Manuela J. Rist
et al. found that urine metabolite profiles could predict sex in
healthy adults with an accuracy of prediction of approximately
90% (10). Several studies also underlined that sex was one of
the most relevant biological variables significantly influencing
metabolomic profiles in children. Scalabre and coworkers (7)
investigated the influence of age on the newborns’ urine
metabolome during the first 4 months of life using 1H-NMR
spectroscopy combined with multivariate statistical analyses.
They did not find any statistically significant differences
between male and female children. However, Caterino et al. (5)
investigated sex influences on 72 organic acids measured through
GC–MS analysis in the urine of 291 children aged 1–36 months
and stratified them into four age groups. They demonstrated that
sex deeply influenced urinary organic acid levels, and the sex-
induced variations depended on age. López-Hernández and their
team (2) identified and quantified 136 metabolites in the urine
of 48 healthy neonates collected in the first 24 h of life, and sex
differences were found for 15 metabolites.

In this study, we included healthy children aged 1–18 years
and almost equal numbers of healthy male and female subjects
(50.9% boys/49.1% girls). Interestingly, our results suggest that
gender differences in the urinary metabolome are already present
during childhood, even from the early years of life (1–3 years

of age). Our pathway analysis revealed strong differences in
steroid hormone biosynthesis and valine-leucine and isoleucine
biosynthesis between female and male children in all age groups.
In addition, our results showed that the influence of sex was
linked to age, and the single age group presented some specificity.
The metabolic phenotypes of boys showed the presence of
significantly higher concentrations of 3-hydroxydodecanoyl
carnitine and 3-hydroxyhexanoyl carnitine and lower 11-beta-
hydroxyandrosterone-3-glucuronide and valyl-proline compared
to girls in all age groups. Carnitine plays important role in fatty
acid oxidation and branched-chain amino acid metabolism. It
can facilitate fatty acids to shuttle the mitochondrial membrane
by combining with fatty acids to form acyl-carnitines. 3-
Hydroxydodecanoyl carnitine and 3-hydroxyhexanoyl carnitine
belong to the family of acyl-carnitines, which are beta-oxidation
products of fatty acids (39). Previous studies have reported that
healthy adult male subjects (19–69 years) had higher levels of
urinary metabolites related to fatty acid oxidation (carnitine,
acetylcarnitine) than female subjects (38), and newborns had
a markedly increased acylation degree of carnitine in urine
compared with healthy boys (8–15 years) (40). In this study,
we confirmed gender-specific acylcarnitine metabolites in urine
in younger children aged 1–3 years. Elevated carnitine and its
related metabolites in male children relative to female children
may suggest a greater usage of fats for energy metabolism for male
children at rest vs. female children (38).

Age-Dependent Metabolism Status in
the Healthy Children Population
Urine and serum metabolomics were reported to reveal dynamic
metabolic changes associated with age both in children (1, 7–
9) and in the adult population (10, 36, 41). However, to date,
most metabolome studies in children have covered a relatively
narrow age range. Here, we provided an overview of the
dynamic metabolic changes in a large cohort of healthy children,
comprising all age groups from 1 to 18 years of age, which
potentially provided complete information on rapid physical
growth during the childhood period. Since we observed that
sex played an important role in urine metabolism profiling,
we analyzed age variation in boys (males) and girls (females).
We found that pantothenic acid urinary concentration decreases
with age both in boys and girls. Pantothenic acid is an
essential micronutrient and serves as a cofactor in the synthesis
of coenzyme A, which is essential for the metabolism and
synthesis of the TCA cycle and fatty acid oxidation (42).
Aureìlien Scalabre et al. also observed that urinary pantothenate
decreased with age and weight in newborns under 4 months
of age (7).

In addition, we found that the pathways of catecholamine
biosynthesis, vitamin B6, estrone, and androstenedione
metabolism changed with age in boys; phenylacetate metabolism
and pterin biosynthesis were age-dependent in girls. Age-related
differences in urinary catecholamine excretion both in adults and
in children have been reported by several studies (43–47). There
was a sex difference, with lower values in girls and women than
in their male counterparts (48, 49). The 24-h urinary excretion
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of dopamine (DA) was significantly inversely related to age in
adult women but not in men (47). However, Anne et al. found
that there was a linear relationship between age and the excretion
of the urinary catecholamine metabolites epinephrine (E), DA,
vanillylmandelic acid (VMA), and homovanillic acid (HVA) in
children aged 3–16 years (45). Dalmaz et al. also determined
catecholamines (DA, E, and norepinephrine (NE)) in human
urine from one day of age to adulthood. They observed that
the maturation process of the sympathoadrenal system is not
achieved at birth; both sympathetic and glandular function
remain low during a prolonged period in childhood, reaching
full maturation probably near the fifth year of life (44). Here,
we found that urinary DA, HVA, and 6-hydroxydopamine
levels changed with age in males/boys, reaching a peak at the
age of 7–10 years. In addition, androstenedione, androstanol,
and their glucuronide metabolites showed high levels during
prepubescence (11–14 years) and puberty (15–18 years). Our
results demonstrated that age-dependent metabolic profile
changes revealed not only rapid growth occurring in childhood
but also sex maturation.

Attention-Deficit/Hyperactivity Disorder
Biomarker Discovery
Currently, metabolic strategies have been used to characterize
specific metabolic phenotypes associated with ADHD disorders,
and several metabolites have been identified (3, 15, 19).
The urinary metabolism of ADHD has not been sufficiently
investigated thus far in children. It is essential to determine
an accurate and sensitive non-invasive diagnostic biomarker of
ADHD for children in whom disease diagnosis is more difficult.
In our study, a panel based on three urinary metabolites was
found to have high accuracy for ADHD disease, and a pattern
based on three urinary metabolites, namely, FAPy-adenine, 3-
methylazelaic acid, and phenylacetylglutamine, was found to have
high sensitivity and specificity for ADHD without tic disorders,
as was a panel based on five urinary metabolites for ADHD
with tic disorders.

We compared the urinary metabolic profile between the
pediatric ADHD cases and the age- and gender-matched healthy
controls, and we observed a total of 60 metabolites that could
significantly differentiate cases with ADHD from the healthy
controls. Our metabolic pathway analysis showed that amino
acid metabolism (e.g., L-norleucine and citrulline) and fatty acid
metabolism (e.g., aminocaproic acid and 3-methylazelaic acid)
pathways were associated with ADHD. Previous ADHD studies
have suggested that metabolites in blood serum involved in fatty
acids contribute to the distinction between adults diagnosed with
ADHD and control groups (21, 50). In our study, we found that
the content of 3,4-methylenepimelic acid in urine was decreased
in ADHD groups, and aminocaproic acid and 3-methylazelaic
acid were increased in patients with ADHD. Although the specific
pathological mechanisms of these fatty acids are not yet clear,
our results indicated that fatty acid metabolism in patients with
ADHD was disturbed.

Dopamine (DA) is a member of the catecholamine family
of neurotransmitters. The correlation between DA and ADHD

is the most widely studied. DA is synthesized by converting
tyrosine into levodopa (L-DOPA), which can then be converted
into DA. Extensive neurobiological, pharmacological, and
neuroimaging evidence suggests that ADHD is characterized
by defects in DA production or metabolic disorders (44, 45). In
our study, we found that urinary metabolites belonging to the
tyrosine metabolic pathways displayed the largest differences
between patients with ADHD and healthy controls. The change
in urinary metabolites involving tyrosine metabolic pathways
may indirectly reflect dopamine metabolic profile alterations
in ADHD. Moreover, we found that the urinary levels of the
main degradation metabolites of DA, dopamine 4-sulfate and
isohomovanillic acid, were decreased in children diagnosed
with ADHD. Sulfation is one of the major degradative pathways
of DA, and the main excretion products of DA found in
human urine are homovanillic acid and its sulfates (46). Several
studies have found changes in urinary levels of dopamine and
its metabolites (homovanillic acid, dihydroxyphenylalanine,
and dihydroxyphenylacetic acid) in patients with ADHD
(47). Our results are consistent with previous reports and
indicate that urinary DA metabolites could be potential
diagnostic candidates. However, taking into consideration
the complexities of dopamine production and metabolism,
the relationship between urinary metabolic alternation
and the molecular mechanism of ADHD remains to be
fully elucidated. Urinary nucleosides and deoxynucleosides
are mainly known as metabolites of RNA turnover and
oxidative damage of DNA. FAPy-adenine is an oxidized
DNA base. Oxidized nucleosides are biochemical markers
for some neurodegenerative diseases (Alzheimer’s disease)
(51). Combined with the other two metabolites, dopamine
4-sulphate and N-acetylaspartylglutamic acid, FAPy-adenine
obtained higher diagnostic accuracy (ROC-AUC was above 0.8).
However, its pathological mechanism in ADHD needs to be
explored further.

CONCLUSION

This study provided an overview of the dynamic urinary
metabolic changes in children from 1 to 18 years of age. These
results may be potentially useful in assessing the biological
age (as opposed to chronological) of young humans as well
as in providing a deeper understanding of the confounding
factors in the application of metabolomics. Such a large-scale
cohort may pave the way for the future building of urine
metabolomic reference profiles in healthy children and may
provide insight into the complex metabolic changes in children’s
growth and development.

ADHD is more difficult to diagnose in children, as the disease
diagnosis depends on the parent’s scale and physicians’ diagnostic
procedure, which has been criticized for strong subjectivity.
Here, our pilot study encouraged the application of a panel of
metabolites in ADHD diagnosis and offered the opportunity to
standardize and improve disease diagnostic assessment.

Our study has several limitations that should be mentioned.
First, while the ADHD-specific urinary metabolites were
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validated in one independent sample cohort in our study, the
sample size was still relatively small, which may have reduced
the statistical power of the study. Our findings need to be
further validated with a larger sample. In the future, we will
collect more samples to validate the findings. Second, we found
urinary metabolite markers between children with ADHD and
healthy controls; however, the causal relationships between these
peripheral biomarkers and central nervous system disease remain
unknown. Furthermore, we will carry out the functional study
of these urinary metabolites in animal models of childhood
ADHD. It could increase our understanding of the pathological
mechanism of ADHD.
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