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Despite the growing importance of longitudinal data in neuroimaging, the standard analysis methods make re-
strictive or unrealistic assumptions (e.g., assumption of Compound Symmetry—the state of all equal variances
and equal correlations—or spatially homogeneous longitudinal correlations). While some new methods have
been proposed to more accurately account for such data, these methods are based on iterative algorithms that
are slow and failure-prone. In this article, we propose the use of the Sandwich Estimator method which first es-
timates the parameters of interest with a simple Ordinary Least Square model and second estimates variances/
covariances with the “so-called” Sandwich Estimator (SwE) which accounts for the within-subject correlation
existing in longitudinal data. Here, we introduce the SwEmethod in its classic form, and we review and propose
several adjustments to improve its behaviour, specifically in small samples. We use intensive Monte Carlo simu-
lations to compare all considered adjustments and isolate the best combination for neuroimaging data. We also
compare the SwE method to other popular methods and demonstrate its strengths and weaknesses. Finally, we
analyse a highly unbalanced longitudinal dataset from the Alzheimer's DiseaseNeuroimaging Initiative and dem-
onstrate the flexibility of the SwE method to fit within- and between-subject effects in a single model. Software
implementing this SwE method has been made freely available at http://warwick.ac.uk/tenichols/SwE.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Longitudinal data analysis is of increasing importance in neuroimag-
ing, particularly in structural and functional MRI studies. There were
over 1000 publications in 2012 to mention “longitudinal fMRI”, which
is 3.9% of all “fMRI” 2012 publications and up from 1.5% in 2000.2 Unfor-
iversity of Warwick, Coventry,

d from the Alzheimer's Disease
du). As such, the investigators
tation of ADNI and/or provided
s report. A complete listing of
du/wp-content/uploads/how_

” in all fields, versus just “fMRI”.
of this type of study.

. This is an open access article under
tunately, while the current versions of the two most widely used pack-
ages (i.e. SPM and FSL) are computationally efficient, when they model
more than two time points per subject theymustmake quite restrictive
assumptions. In particular, FSL v5.0must assumeCompound Symmetry,
a simple covariance structure where the variances and correlations of
the repeated measures are constant over time, and a fully balanced de-
sign. SPM12 unrealistically assumes a common longitudinal covariance
structure for the whole brain. This motivates recent publications pro-
posing methods to better model neuroimaging longitudinal data
(Bernal-Rusiel et al., 2013a, 2013b; Chen et al., 2013; Li et al., 2013;
Skup et al., 2012), however, all of these methods entail iterative optimi-
sation at each voxel.

In neuroimaging, the two most widely longitudinal approaches cur-
rently used are theNaïveOrdinary Least Squares (N-OLS)modelling and
the Summary Statistics Ordinary Least Squares (SS-OLS) modelling. The
N-OLSmethod tries to account for the intra-visit correlations existing in
the data by including subject indicator variables (i.e. an intercept per
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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subject) in anOLSmodel. This approach is fast, but does not allow one to
make valid inferences on pure between-subject covariates (e.g., group
intercept or gender) and is valid only under a balanced design and Com-
pound Symmetry (CS). The SS-OLS method proceeds by first extracting
a summary statistic of interest for each subject (e.g., slope with time)
and then uses a group OLS model to infer on the summary measures.
This method is also fast and has the advantage of reducing the analysis
of correlated data to an analysis of independent data, but this summary
data may be highly variable as it is based on single-subject fits. In the
context of one-sample t-tests, Mumford and Nichols (2009) showed
that this approach is robust under heterogeneity, but warned that it is
probably not the case for more general regression models.

In biostatistics, the analysis of longitudinal data is a long-standing
problemand is generally performed by using either LinearMixed Effects
(LME) models or marginal models. The LMEmodels include random ef-
fects which account for the intra-visit correlations existing in the data.
Nevertheless, they require iterative algorithms which are generally
slow and may fail to converge to a correct solution. Another issue with
LME models is the complexity of specifying and fitting the model. For
example, the random effects and the covariance structure of the error
terms need to be specified (e.g., only random intercepts? Also random
slopes?) and, unfortunately, a misspecification of those may lead to in-
valid results. These are particularly serious problems in neuroimaging as
model assessment is difficult and a single model must be used for the
whole brain. As a consequence, the use of LMEmodels in neuroimaging
may be prohibitively slow, andmay lead to statistical images withmiss-
ing or invalid results for some voxels in the brain. To limit the conver-
gence issues, one may be tempted to use a LME model with only a
random intercept per subject. Unfortunately, like the N-OLS model,
this model assumes CS which is probably not realistic, especially for
long studies carried out over years and with many visits. In contrast,
the marginal modelling approach implicitly accounts for random ef-
fects, treats the intra-visit correlations as a nuisance and focuses the
modelling only on population averages. They have appealing asymptot-
ic properties, are robust againstmodelmisspecification and, as there are
no explicit random effects, are easier to specify than LMEmodels. How-
ever, they only focus on population-averaged inferences or predictions,
typically require iterative algorithms and assume large samples.

Recently, Bernal-Rusiel et al. (2013a) proposed the use of LME
models to analyse longitudinal neuroimaging data, but only on a small
number of regions of interest or biomarkers, Chen et al. (2013) and
Bernal-Rusiel et al. (2013b) extended the use of the LME models to
mass-univariate settings. In particular, Bernal-Rusiel et al. (2013b) pro-
posed the use of a spatiotemporal LME method based on a parcellation
of the brain into homogeneous areas; in each area, they model the full
spatiotemporal covariance structure by assuming a common temporal
covariance structure across all thepoints and a simple spatial covariance
structure. Skup et al. (2012) and Li et al. (2013) proposed to usemargin-
al models to analyse neuroimaging longitudinal data. Specifically, Skup
et al. (2012) proposed aMultiscale Adaptive GeneralisedMethod ofMo-
ments (MA-GMM) approach which combines a spatial regularisation
methodwith amarginalmodel called GeneralisedMethods ofMoments
(GMM;Hansen, 1982; Lai and Small, 2007) and Li et al. (2013) proposed
a Multiscale Adaptive Generalised Estimating Equations (MA-GEE) ap-
proach which also combines a spatial regularisation method, but with
a marginal model called Generalised Estimating Equations (GEE; Liang
and Zeger, 1986). Thanks to their appealing theoretical asymptotic
properties, the two latter methods seem very promising for analysing
longitudinal neuroimaging data. Nevertheless, like the LME models,
they require iterative algorithms, which make them slow, and – due
to the fact that they rely on asymptotic theoretical results – their use
may be problematic in small samples.

In this paper, we propose an alternative marginal approach. We use
a simple OLS model for the marginal model (i.e. no subject indicator
variables) to create estimates of the parameters of interest. For standard
errors of these estimates, we use the so-called Sandwich Estimator
(SwE; Eicker, 1963) to account for the repeated measures correlation.
The main property of the SwE is that, under weak conditions, it is as-
ymptotically robust against misspecification of the covariance model.
In particular, this robustness allows us to combine the SwE with a sim-
ple OLSmodelwhichhas no covariancemodel. Thus, thismethod is easy
to specify and, with no need for iterative computations, is fast and has
no convergence issues. Moreover, the proposed method can deal with
unbalanced designs and heterogeneous variances across time and
groups (or even subjects; more below on this). In addition, note that
the SwE method can also be used for cross-sectional designs where re-
peatedmeasures exist, such as fMRI studies wheremultiple contrasts of
interests are jointlymodelled, or even for family designswhere subjects
from the same family cannot be assumed independent. Nevertheless,
like the MA-GMM and MA-GEE methods, the SwE method relies on as-
ymptotic theoretical results, guaranteeing accurate inference only in
large samples. Therefore, we also review and propose small sample ad-
justments that improve its behaviour in small samples.

The remainder of this paper is organised as follows. Starting from the
LME model and its implied marginal model, we introduce the SwE
method in its standard form. Then, we review and propose different ad-
justments to the SwE in order to improve its behaviour, mainly in the
case of small samples. Finally, we assess the SwEmethodwith intensive
Monte Carlo simulations in a large range of settings and, more particu-
larly, by analysing real brain images acquired as part of the Alzheimer's
Disease Neuroimaging Initiative (ADNI; Mueller et al., 2005).

Methods

The Linear Mixed Effects model and the marginal model

Using the formulation of Laird andWare (1982), the LME model for
individual i is

yi ¼ Xiβ þ Zibi þ ϵi ð1Þ

where yi is a vector of ni observations for individual i = 1,2,…,m, β is a
vector of p fixed effects which is linked to yi by the ni × p design matrix
Xi, bi is a vector of r individual random effectswhich is linked to yi by the
ni × r design matrix Zi, and ϵi is a vector of ni individual error terms
which is normally distributed with mean 0 and covariance Σi. The indi-
vidual random effects bi are also normally distributed, independently of
ϵi, with mean 0 and covariance D. Typically, the p fixed effects might in-
clude an intercept per group, a linear effect of time per group, a quadrat-
ic effect of time per-group or per-visit measures effects like, in the case
of Alzheimer's Disease, the MMSE (Mini-Mental State Examination)
score. The r random effects usually include a “random intercept” for
each subject (modelled by a constant in Zi) andmay also include a “ran-
dom slope” for each subject.

Instead of posing a model for each subject consisting of (common)
fixed and (individual) random components, we can fit a model with
only fixed components and let the random components induce struc-
ture on the random error. This is the so-called marginal model, which,
for subject i, has the form

yi ¼ Xiβ þ ϵ�i ð2Þ

where the individual marginal error terms ϵi∗ have mean 0 and covari-
ance Vi. Typically, the covariance is taken to be unstructured, but if
data arise as per the LME model specified above, then Vi = Σi + ZiDZi.
We will denote by X the grand design matrix, the n × p stacked matrix
of the m Xi's, where n = ∑ i ni is the total number of observations.

In LME models, the randomness of the data is modelled by both the
random effects bi and the error terms ϵi. The random effects bi have an
important impact on the variance modelling and have to be chosen
carefully. This makes LME models quite difficult to specify in practice.
In contrast, in the marginal model, all the randomness is treated as a
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nuisance and is modelled by the marginal error terms ϵi∗. Therefore, the
marginal models do not require the specification of random effects,
making them easier to specify than LMEmodels. Moreover, themargin-
almodels aremore flexible because they only require that the Vi be pos-
itive semi-definite. In the LMEmodels, both Σi andD have to be positive
semi-definite which is more restrictive (Molenberghs and Verbeke,
2011; Verbeke and Molenberghs, 2009; West et al., 2006). However,
the marginal models are only focused on population-averaged infer-
ences and predictions, and do not offer the possibility to make infer-
ences on random effects or to predict subject-specific profiles like LME
models do. Nevertheless, subject-specific inferences or predictions are
not generally of interest in longitudinal neuroimaging studies and
therefore, a marginal approach should be sufficient to analyse the data
(for inferences on randomeffects parameters, see Lindquist et al., 2012).

In both models, the fixed effects parameters are estimated by

β̂ ¼
Xm
i¼1

X0
iWiXi

 !−1Xm
i¼1

X0
iWiyi ð3Þ

where Wi is the so-called working covariance matrix of individual i
(Diggle et al., 1994; Liang and Zeger, 1986). IfWi=I the identitymatrix,
it is the Ordinary Least Squares (OLS) estimate. If Wi = Vi

−1, it is the
Generalized Least Squares (GLS) estimate, the Uniform Minimum Vari-
ance Unbiased Estimate.

The covariancematrix of thefixed parameter estimatesvar β̂
n o

is es-
timated by

S ¼
Xm
i¼1

X0
iWiXi

 !−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bread

Xm
i¼1

X0
iWiV̂ iWiXi

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Meat

Xm
i¼1

X0
iWiXi

 !−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bread

; ð4Þ

where V̂ i is an estimate of the subject covariance Vi. The central part of
this estimate can be conceptualised as a piece of meat between two
slices of bread, giving rise to the name of Sandwich Estimator (SwE). If

m−1∑m
i¼1 X

0
iWiV̂ iWiXi consistently

3 estimates m−1 ∑ i = 1
m Xi′WiViWiXi,

the SwE converges asymptotically to the true covariance matrix

var β̂
n o

, even if Wi is misspecified (Diggle et al., 1994; Eicker,

1963, 1967; Huber, 1967; White, 1980). For GLS with Wi ¼ V̂ i
−1,

the first two terms of S cancel and only the rightmost term remains.
For OLS with Wi = I, we obtain the simplest version of the SwE which
was first introduced by Eicker (1963, 1967). Note that, in practice,
other choices forWi are considered by assuming a non-identity structure
forWi and parametrising it with a vector of parameters, which then has
to be estimated (Diggle et al., 1994; Liang and Zeger, 1986). These alter-
native choices are motivated by the fact that, even if the use of Wi = I
yields consistent estimates and has been shown to be almost as efficient
as theGLS estimator in some settings (Liang and Zeger, 1986;McDonald,
1993), it may lead to a non-negligible loss of efficiency4 that can be ame-
liorated by more complicated forms of Wi (Fitzmaurice, 1995; Zhao
et al., 1992). In particular, Fitzmaurice (1995) shows that, in the context
of clustered binary data, an important loss of efficiency may arise for
within-cluster covariates when the within-cluster correlation is high.
Nevertheless, Pepe and Anderson (1994) showed that using a non-
diagonal working covariance matrix may lead to inaccurate estimates

of β̂ and, further, using a non-identity covariancematrix requires gener-
ally the use of iterative algorithms to estimate the covariance parame-
ters. Finally, as shown in the subsection Construction of the design
matrix below, the loss of efficiency can be limited by an appropriate con-
struction of the design matrix. For all these reasons, in this paper, we
3 An estimator of a parameter is said to be consistent if it converges in probability
to the true value of the parameter. Here, this is the case if limm→∞m−1

∑m
i¼1 X

0
iWi V̂ i−Vi

� �
WiXi ¼ 0.

4 The efficiency of a scalar estimator is the inverse of estimator variance.
only focus on the use of the identity for Wi. See, however, Li et al.
(2013) for the use of non-diagonal working covariance matrix within
the framework of neuroimaging data, and Pepe and Anderson (1994)
on the validity of using such working covariance matrices.

In LMEmodels, the elements of Vi are generally defined as functions
of a set of covarianceparameters θ such thatVi=Vi(θ). These covariance
parameters θ are estimated by either Maximum Likelihood (ML) or Re-
strictedMaximum Likelihood (ReML) and are used to construct an esti-
mate of Vi (Harville, 1977). In the SwE, Vi is usually estimated from the
residuals ei ¼ yi−Xiβ̂ by

V̂ i ¼ eie
0
i ð5Þ

(Diggle et al., 1994). In the literature, the corresponding SwE is often re-
ferred to as HC0 (see, e.g., Long and Ervin, 2000) where “HC” stands for
“Heteroscedasticity Consistent” and “0” stands for the fact that no small
sample adjustment (see subsection Small sample adjustments) ismade.
Following this numbering, in this paper, wewill refer to the correspond-
ing SwE as S0.

To perform inference on a linear combination of the parameters,
H0 : Cβ = 0, a Wald test is generally used:

T ¼ Cβ̂
� �0

CSC0� �−1 Cβ̂
� �

=q ð6Þ

where C is a matrix (or a vector) defining the combination of the pa-
rameters (contrast) tested and q is the rank of C. In large samples,
this Wald test follows a χq

2 distribution. In small samples, while the
obvious choice is an F-distribution with q and n–p degrees of free-
dom, we show in the subsection Small sample adjustments that
this is not a good approximation of the true null distribution of T
when the SwE method is used.

Construction of the design matrix

In longitudinal data, the covariates have generally a between-subject
component and a within-subject component. In the ADNI study, for ex-
ample, the Age covariate has a between-subject component which can
be summarised by the subject mean Agei and a within-subject compo-
nent which can be summarised by the difference with the subject
mean Age−Agei. Including only the Age covariate in the design matrix
means that we implicitly assume that the effects on the response is
the same for both components. Actually, the effects of each component
can be very different and, as shown by Neuhaus and Kalbfleisch (1998),
the assessment of the effect of such between/within-subject covariates
on the response can be very misleading. Therefore, we follow the rec-
ommendation of Neuhaus and Kalbfleisch (1998) and systematically
split this kind of covariates into between- and within-subject compo-
nents and include both in the design matrix. Moreover, as shown in
Table 1, this helps also to improve the efficiency of the SwE method
when assuming an identity working covariance matrix. This result
shows that splitting the Age covariate makes the SwE nearly as efficient
as GLS. It also demonstrates the (well-known) importance of centring
covariateswhen inference ismade on the intercepts, as this can be of in-
terest in longitudinal fMRI studies. As the only reason to use a nontrivial
working covariance matrix is to improve efficiency, we find that these
covariate-splitting results are a compelling reason to only consider an
identity working covariance matrix, and hence, in this paper, we exclu-
sively use Wi = I.

Homogeneous SwE

The standard SwE estimates a separate Vi for each subject, based
only on the residuals of the i-th subject (Eq. (5)). Nevertheless, if the
studied population can be subdivided into nG groups within which the
subjects are sharing similar properties, we may assume that the vari-
ances and covariances over subjects within each group are actually



Table 1
Impact of splitting covariates into separate within- and between-subject covariates. Ages
for full 817 subjects ADNI dataset were used to construct 4 models: (1) Intercept and Age,
(2) Intercept and centred Age, (3) Intercept, mean age per subject Agei , and intra-subject-
centred age Age−Agei , and (4) Intercept, centred mean age per subject Agei−Age, and
intra-subject-centred age Age−Agei . The relative efficiency is shown for each model for
3 possible values of ρ, the common intra-visit correlation. Here,wedefine relative efficien-
cy as the ratio between the variance of the GLS estimate and the variance of the SwE esti-
mate.

Relative efficiency

Model Covariate ρ = 0 ρ = 0.5 ρ = 0.95

1 Intercept 1 0.88 0.40
Age 1 0.88 0.40

2 Intercept 1 0.94 0.89
Age−Age 1 0.88 0.40

3 Intercept 1 0.92 0.87
Agei 1 0.92 0.87
Age−Agei 1 1.00 1.00

4 Intercept 1 0.94 0.89
Agei−Age 1 0.92 0.87
Age−Agei 1 1.00 1.00
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homogeneous (Pan, 2001). For instance, in the ADNI study, the whole
population can be divided into 3 groups: the Normal control (N), Mild
Cognitive Impairment (MCI) and Alzheimer's Disease (AD) groups in
which the subjects may be assumed to share the same variances and
covariances. We argue that this is a reasonable assumption as virtually
all standard longitudinal neuroimaging analyses assumes homogeneous
variance over all subjects. Therefore, in this paper, we propose an alter-
native version of the SwE which relies on the assumption of a common
covariancematrixV0g for all the individuals belonging to group g=1,…,
nG. To estimate V0g, the observations have to be firstly classified into kg
visit categories (homogeneous groups) consistently defined between
subjects in group g. For example, in the ADNI study, the MCI subjects
were scanned at 0, 6, 12, 18, 24 and 36 months allowing us to divide
the observations into kMCI = 6 visit categories. Then, defining mgkk0

as the number of subjects in group g who have data at both visit k and
k′, eik as the residual of subject i at visit k and I(g, k, k′) as the subset
of subjects in group g who have data at both visit k and k′, the kth

diagonal element of V0g can then be estimated by

V̂0g

� �
kk

¼ 1
mgkk

X
i∈I g;k;kð Þ

e2ik: ð7Þ

The off-diagonal elements of V0g corresponding to the visits k and k′ can
be estimated by

V̂0g

� �
kk0

¼ ρ̂0gkk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂0g

� �
kk

V̂0g

� �
k0k0

r
ð8Þ

where ρ̂0gkk0 is an estimate of the correlation at visits k and k′ in the
group g and which can be computed by

ρ̂0gkk0 ¼

X
i∈I g;k;k0ð Þ

eikeik0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∈I g;k;k0ð Þ

e2ik

0
@

1
A X

i∈I g;k;k0ð Þ
e2ik0

0
@

1
A

vuuut
: ð9Þ

Note that, due to the possible presence of missing data, V̂0g may not
be positive semi-definite and, as a consequence, may lead to inaccurate
results. Therefore, in presence of missing data, we make a spectral
decomposition of V̂0g and check whether all the eigenvalues of V̂0g are
positive. If this is not the case, we set all the negative eigenvalues to
zero and reconstruct V̂0g with the new eigenvalues, ensuring that V̂0g

is positive semi-definite. Note also that we normalise with 1/mgkk
instead of the usual bias corrective term 1/(mgkk − 1) as we consider
this sort of bias correction with other small sample adjustments in the
next subsection, Small sample adjustments. Thus, in this SwE version,
each V̂ i corresponds to a subset of the corresponding common covari-
ancematrix V̂0g depending on the visits measured for subject i. If the as-
sumption of a common covariancematrix over subjects in a same group
is valid, then the Vi should be more efficiently estimated in comparison
to the standard approach. Note that this new SwE version depends on
the way the population is subdivided and has two extreme cases, one
assuming a single group and the other considering m homogeneous
groups, equivalent to the standard SwE. We differentiate the various
SwE versions using subscripts and superscripts on S: superscripts refer
to the use of groups, with SHom referring to the use of nG homogeneous
groups, and SHet referring to the standard SwE where heterogeneous,
per-subject covariance estimates are used; subscripts refer to different
possible small sample adjustments, described in the next subsection.

Small sample adjustments

In small samples, it is well known that the use of the standard SwE
S0
Het (heterogeneous, standard SwE, no small sample adjustment) may
lead to inaccurate inferences (Chesher and Jewitt, 1987; Long and
Ervin, 2000; MacKinnon and White, 1985). There are two explanations
for this effect. The first explanation is that, since S0 uses the Maximum
Likelihood Estimate for each Vi, it is generally biased and tends to
make liberal inferences (i.e. inflated False Positive Rates). The second
explanation is that, because the standard Wald test (Eq. (6)) does not
account for the randomness in S, the sampling distribution of T has
heavier tails than the usual χq

2 distribution. Therefore, a naïve use of
S0
Het with T following a χq

2 null distribution also gives liberal inferences.
Those two issues have led several authors to propose different adjust-
ments to improve the behaviour of the SwE in small samples.

The first improvements proposed in the literature were focused on
the correction of the bias of the SwE. The simplest adjustments pro-
posed consist of multiplying the raw residuals eik by a correction factor
before using them to estimate Vi. There are three principal alternative
estimates based on this approach: S1Het (Hinkley, 1977; MacKinnon
and White, 1985), S2Het (Horn et al., 1975; MacKinnon and White,
1985) and S3

Het (MacKinnon andWhite, 1985). Note that, in the SwE lit-
erature, they are often referred to as HC1, HC2 and HC3, respectively.
S1
Het consists of using the raw residuals eik multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= n−pð Þp

instead of the raw residuals eik; S2Het consists of using the adjusted resid-
uals eik/(1− hik)1/2 (where hik is the diagonal element of the Hat matrix
X(X′X)−1X′ corresponding to the observation of subject i at visit k) in-
stead of the raw residuals eik; and S3

Het consists of using eik/(1− hik) in-
stead of the raw residuals eik. Here, we also propose to use these small
sample adjustments to compute each V̂0g in the homogeneous versions
of the SwE.

Subsequently, other authors proposed another type of improve-
ment, altering the null distribution of the Wald test to account for the
additional variability of the SwE (Bell and McCaffrey, 2002; Fay and
Graubard, 2001; Hardin, 2001; Kauermann and Carroll, 2001; Lipsitz
et al., 1999; Mancl and DeRouen, 2001; Pan and Wall, 2002; Waldorp,
2009). Most of the proposed adjustments consist of using a t-
distribution (or an F-distribution) instead of a Normal distribution (or
a χ2 distribution) for the statistical test null distribution. The challenge
is then to correctly define the degrees of freedom of the distribution.
Here, we propose to use an approximate test statistic and null distribu-
tion similar to the one proposed in Pan and Wall (2002):

ν−qþ 1
νq

Cβ̂
� �0

CSC0� �−1 Cβ̂
� �

� F q;ν−qþ 1ð Þ ð10Þ

where v is a degrees of freedomparameter that has to be estimated. The
justification of the proposed test and details about the estimation of v
can be found in Appendix A. The proposed approximate test is valid



Table 2
Covariance parameter values used in the simulations; γ andΨ are expressed as “per visit”
for the balanced design and “per year” for the ADNI design.

Covariance parameters

Design Covariance structure αA αB αN αMCI αAD γ ρ Ψ

Balanced CS 1 1 – – – 0 0.95 0
Toeplitz 1 1 – – – 0 1 0.1
Group heterogeneity 1 2 – – – 0 0 0
Visit heterogeneity 1 1 – – – 1 0 0

ADNI CS – – 1 1 1 0 0.95 0
Toeplitz – – 1 1 1 0 1 0.2
Group heterogeneity – – 1 2 3 0 0 0
Visit heterogeneity – – 1 1 1 2 0 0
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for both the standard Heterogeneous and modified homogeneous SwE
versions, but generally yields different estimates for v. As explained in
Appendix A, homogeneous versions of the SwE produce more precise
estimates of v than heterogeneous versions, further motivating the
use of the homogeneous SwE. Note that, for a contrast of rank q = 1,
the test simply becomes

Cβ̂ffiffiffiffiffiffiffiffiffiffi
CSC0p � t νð Þ: ð11Þ

Monte Carlo simulations

Intensive Monte Carlo simulations were used in R (R Core Team,
2013) to assess the SwE method and compare it to the N-OLS, LME
and SS-OLSmethods. A variety of realistic settingswere considered (de-
tailed below), with 10,000 realisations created for each setting.

Simulations I
As a first set of simulations, we considered a selection of balanced

and unbalanced designs. We used balanced designs consisting of longi-
tudinal data generated for sample sizes of m = 12, 25, 50, 100 or 200
subjects with 3, 5 or 8 visits for each subject (a total of 5 × 3 = 15 dis-
tinct sample sizes). The subjects were divided into two groups A and B
of equal sizes (except for m = 25 where the group A and B had 13
and 12 subjects, respectively) and we considered models consisting of,
for each group, an intercept, a linear effect of visit and a quadratic effect
of visit using orthogonal polynomials. In addition to these 15 balanced
designs, we also considered the unbalanced design corresponding to
the real ADNI dataset described in subsection Real data analysis. In
order to also assess the methods in an unbalanced design but with a
smaller number of subjects, we also considered four subsets of the full
ADNI dataset obtained by iteratively removing half of the subjects at
random in each group, leading to smaller and smaller sample sizes
(mN = 229, 114, 57, 29 and 14; mMCI = 400, 200, 100, 50 and 25;
mAD = 188, 94, 47, 24 and 12). For this real unbalanced data design,
we considered models consisting of, for each group, an intercept, the
centred mean age per subject Agei−Age (referred to as cross-sectional
“age” effect), the intra-subject centred age Age−Agei (referred to
as longitudinal “visit” effect) and their interaction (referred to as
“acceleration”).

For each realised dataset, each observation was first generated inde-
pendently from a standard Normal distribution N 0;1ð Þ. Then, the data
for each subject yi ¼ yi1;…; yik;…; yini

� �⊤
was correlated according to

one of four different types of intra-visit covariance structure by
premultiplying yi by a square-root factor of the desired covariance ma-
trix. The four covariance structureswere generated according to the two
following equations:

var yikð Þ ¼ αg 1þ γtkð Þ ð12Þ

corr yik; yik0ð Þ ¼ ρ 1−ψjtk−tk0 jð Þ; ð13Þ

where αg allows for different variances in each group, γ allows the var-
iance to vary with visit, tk (tk0 , respectively) is the time of measurement
at visit k (visit k′), ρ controls the constant correlation over time andψ N 0
allows for a linear decrease of the correlation over time. Table 2 summa-
rises the parameter values used for the four covariance structures in the
simulations for both the balanced and unbalanced ADNI designs.

For null simulations, the data was used immediately after being cor-
related. For non-null simulations, a signal was added according to the
(per-subject centred) effect of visit.

For a given realised dataset and a given design, each of the four esti-
mation methods were used in turn. Using custom R functions, eight
versions of the SwE were used: S0Het, S1Het, S2Het, S3Het, S0Hom, S1Hom, S2Hom and
S3
Hom where the homogeneous groups were defined as groups A and B
for the balanced designs andNormal,MCI andAD groups for the real un-
balanced designs (see subsectionsHomogeneous SwE and Small sample
adjustments for descriptions about these SwE versions); the SwE design
matrices included all the effects described at the beginning of this
subsection; the Wald tests were performed according to Eq. (10)
estimating v in two different ways: as proposed in Eq. (A.16) and also,
naïvely, bym− pB where pB is the number of pure between-subject co-
variates (having a constant value for each subject) included in the
model (e.g., intercepts, cross-sectional age effect) leading to 16 different
variants for the SwE approach. The N-OLS included per-subject dummy
variables, and thus precluded the use of the age effect (as age is a linear
combination of the dummy variables). The SS-OLS approach used per-
subject models, with a design matrix extracted from the appropriate
rows and columns of the SwE design matrices, and contrasts that ex-
tracted quantities equivalent to the contrasts of interest used with the
other models; the final model used with the SS-OLS approach was
always a one-measure-per-subject OLSmodel allowing to test group ef-
fects equivalent to the one tested with the other methods. For both the
N-OLS and SS-OLSmethods, the function lm of thestatsR packagewas
used to estimate themodel parameters, their variances/covariances and
the degrees of freedom used in theWald tests (i.e. the number of obser-
vations minus the number of parameters present in the considered
model). The functions lme from the R package nlme (Pinheiro et al.,
2013) and lmer from the R package lme4 (Bates et al., 2012) were
used to fit the LME models with the SwE design matrices for the fixed
effects and a random intercept per subject as random effect; note that,
as suggested by one of the reviewers, richer LMEmodels were assessed
in a second set of simulations (see subsection Simulations II). As the
lme4 package did not propose any estimation for the degrees of
freedom, we used the ones estimated by the nlme package (Pinheiro
and Bates, 2000) for all the nlme and lme4 Wald tests.

For each realisation and contrast, severalWald tests Twere comput-
ed and compared to F-distributions at a nominal level of significance of
5%. For null dataset, each significant realisation was counted as a False
Positive detection and was used to compute the expected False Positive
Rates (FPRs) for eachmethod. The FPR of a valid test does not exceed the
nominal level, while an invalid or liberal test will have an FPR in excess
of the nominal level. Using a Normal approximation to binomial counts
over 10,000 realisations, an exact test (FPR=5%) should have a FPR be-
tween (4.57%, 5.43%) with 95% probability. Non-null simulations
allowed the estimation of power with the True Positive Rates (TPRs)
for each method.

Simulations II
Following the suggestions of the reviewers, we performed an addi-

tional three sets of simulations. In this set simulations similar to the
first set were used, but we also considered LME models with a random
intercept and time effect (slope), and LMEmodels with a random inter-
cept, linear and quadratic time effects. For these simulations, the ADNI
design and its subsets were considered with a residual error covariance
structure consisting of a Toeplitz correlation and an increasing variance



Table 3
Numbers of subjects scanned at baseline (0 month) and follow-up (6, 12, 18, 24 and
36 months) for the Normal controls (N), Mild Cognitive Impairment (MCI) and
Alzheimer's Disease (AD) subjects in the ADNI dataset.

Scanning time N MCI AD Total

0 month 229 400 188 817
6 months 208 346 159 713
12 months 196 326 138 660
18 months - 286 - 286
24 months 172 244 105 521
36 months 147 170 - 317
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over time obtained from the Eqs. (12) and (13) with parameters αN =
1,αMCI = 1,αAD = 1, γ= 2/year, ρ=1 and ψ= 0.2/year. The SwE, N-
OLS and SS-OLS methods were fitted as in the first set of simulations.
The LME models were fitted using the lme4 package in the same way
as the first set of simulations, but, in addition, we used more advanced
functions to determine the degrees of freedom for each Wald test. Spe-
cifically, we used the vcovAdj and get_ddf_Lb functions of the
pbkrtest R package (Halekoh and Højsgaard, 2013) to compute the
Kenward-Roger covariance matrix correction and the Kenward–Roger
effective degrees of freedom (Kenward and Roger, 1997), respectively.

Simulations III
The third set of simulations focused on the power analysis of all the

methods (so, also including the two richer LME models investigated in
subsection Simulations II) under CS and Toeplitz covariance structures
in the unbalanced ADNI design. The covariance structures were pro-
duced with the same parameters as in the first set of simulations (see
Table 2).

Simulations IV
In this final set, we conducted an experiment recording the failure

rates of the LME models. For this, we used the same settings as in the
first set of simulations (see subsection Simulations I), but only recorded
the number of times the functions lme and lmer did not converge to a
solution. The LME models considered were the same as the ones inves-
tigated in the second set of simulations (see subsection Simulations II),
but, in addition, we included a model with a random intercept and a
Toeplitz covariance structure for the error terms. Note that the latter
model was only fitted with the nlme package as the lme4 package do
not allow the specification of correlation structure for the error terms.

Box's test of Compound Symmetry

As mentioned in the Introduction section, CS is the key assumption
that justifies the use of N-OLS or random-intercept LME models. To as-
sess whether the assumption of CS holds, Box (1950) proposed a test
based on the determinant of the covariance matrix. It does not, howev-
er, accommodate missing data. In the presence of missing data, we con-
struct a CS test using the largest possible subset of the full dataset which
has nomissingness. Eqs. (7), (8) and (9) (assuming only one group) are
used to produce, at each voxel, an estimate of the common covariance
matrix which can then be tested through the Box's test of CS, producing
an image of F-scores (or p-values). Next, this image can be thresholded
using amultiple testing correction (e.g., False Discovery Rate) and, if any
voxels survive the threshold, we can conclude that there is evidence of
violation of the assumption of CS.

Real data analysis

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National In-
stitute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies and non-profit organisations, as a $60
million, 5-year public-private partnership. The primary goal of ADNI
has been to test whether serialmagnetic resonance imaging (MRI), pos-
itron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer's
disease (AD). Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to de-
velop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VA Medical Center and University of California – San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations, and subjects have been re-
cruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date these three protocols have recruited over 1500
adults, ages 55 to 90, to participate in the research, consisting of cogni-
tively normal older individuals, people with early or late MCI, and peo-
ple with early AD. The follow up duration of each group is specified in
the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally re-
cruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.

The dataset analysed in this paper is a modified version of the
dataset produced and detailed by Hua et al. (2013). In brief, the dataset
in Hua et al. (2013) consisted on 3314 images obtained after applying
Tensor Based Morphometry (TBM) on 3314 brain MRI scans from 229
healthy elderly Normal controls (age: 76.0 ± 5.0 years, 119 Male (M)/
110 Female (F)), 400 individuals with amnestic MCI (age: 74.8 ±
7.4 years, 257 M/143 F), and 188 probable AD patients (age at screen-
ing: 75.4 ± 7.5 years, 99 M/89 F). As shown in Table 3, the subjects
were scanned at screening and followed up at 6, 12, 18 (MCI only), 24,
and 36 months (Normal and MCI only) with visits counts of 4.16 ±
1.21, 4.43 ± 1.61 and 3.14 ± 1.07 for the Normal, MCI and AD subjects,
respectively. More precisely, 817 screening TBM images were produced
by considering the 817 screening scans and a Minimal Deformation
Target (MDT) image, obtained from the scans of 40 randomly selected
Normal subjects, as baseline; 2497 longitudinal TBM images were pro-
duced by considering, for each subject, the follow-up scans and the cor-
responding screening scan as baseline. More details about this dataset
can be found in Hua et al. (2013). The 2497 longitudinal TBM images
measure change relative to each subject's screening and not absolute
volume (relative to a template). Therefore, wemodified them bymulti-
plying them with their corresponding TBM screening image in order to
produce 2497 TBM images reflecting the brain volumes relative to a
common baseline, the MDT image. We considered these modified
2497 TBM images with the unchanged 817 screening TBM images as
the dataset to be analysed.

The modified dataset was analysed by using the N-OLS, SS-OLS and
SwEmethods with the same design matrices as used in the simulations
(see subsectionMonte Carlo simulations). SPM8was used for theN-OLS
and SS-OLS methods and a homemade SPM8 plug-in was used for the
SwE method.

Results

SwE versions comparison in very small samples

Here, and for all results, we summarise the immense volume of
Monte Carlo simulations by selecting the subset of findings that conveys
the typical behaviour exhibited by the methods. Exhaustive results can
be found in the Web Supplementary Material. Fig. 1 shows typical re-
sults obtained for 12 variants of the SwE in very small sample settings
for a balanced design (12 subjects) and the unbalanced ADNI design
(51 subjects). The standard SHet tends to be liberal with the use of a

http://www.adni-info.org


S0 S1 S2 S3 S0 S1 S2 S3

S0 S1 S2 S3 S0 S1 S2 S3

F
P

R
 (

%
)

Het. with m pB

Het. with 
Hom. (2 groups) with 

1
2

3
4

5
6

7
8

9
10

11
12

13

Balanced design (12 subjects, 3 visits)
Compound Symmetry

Linear effect of visit (gr. A)

F
P

R
 (

%
)

Het. with m pB

Het. with 
Hom. (2 groups) with 

1
2

3
4

5
6

7
8

9
10

11
12

13

Balanced design (12 subjects, 8 visits)
Toeplitz

Linear effect of visit (gr. A)

F
P

R
 (

%
)

Het. with m pB

Het. with 
Hom. (3 groups) with 

1
2

3
4

5
6

7
8

9
10

11
12

13

Unbalanced ADNI design (51 subjects)
Compound Symmetry

Visit effect (AD)

F
P

R
 (

%
)

Het. with m pB

Het. with 
Hom. (3 groups) with 

1
2

3
4

5
6

7
8

9
10

11
12

13

Unbalanced ADNI design (51 subjects)
Toeplitz

Visit effect (AD)

Fig. 1. FPRwith different versions of the SwE in small sampleswith Compound Symmetry (ρ= 0.95) andToeplitz (ψ=0.1 per visit in the balanced design andψ=0.2 per year in theADNI
design) for the balanced and unbalanced ADNI design; all results are based on an F-test at nominal level 5%; S0, S1, S2 and S3 correspond to the SwE using the raw residuals eik, the adjusted
residuals eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= N−pð Þp

, the adjusted residuals eik/(1− hik)1/2 and the adjusted residuals eik/(1− hik), respectively; “Het. withm− pB”, “Het. with ν̂” and “Homwith ν̂” correspond to the
standard heterogeneous SwE using (naïvely) m − pB as degrees of freedom, the standard heterogeneous SwE using the estimate proposed in Eq. (A.16) as degrees of freedom and the
modified homogeneous SwE using the estimate proposed in Eq. (A.16) as degrees of freedom, respectively.
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naïve estimation of v bym− pB (Fig. 1, dark grey bar) and conservative
with the estimation of v by the estimate proposed in Eq. (A.16) (Fig. 1,
medium grey bar). The homogeneous version (assuming homogeneity
within groups) controls the FPR more accurately than the heteroge-
neous versions, with the better results obtained with the versions
S2
Hom and S3

Hom (Fig. 1, light grey bar). Note that the settings selected in
Fig. 1were chosen in order to show someof themost severe adverse be-
haviour of these two versions, meaning that, they were, in general, con-
trolling the FPR better in the simulations. Overall, S2Hom appears to be
slightly liberal and S3

Hom slightly conservative.

Methods comparison

FPR control
For the random-intercept LMEmodels, we only show the results ob-

tained with the lme4 package as the results obtained with the nlme
package were almost identical. Table 4 summarises qualitatively how
the methods were able to control the FPR in the first set of simulations
with different settings. The N-OLS method cannot provide inference
on between-subject effects, but otherwise shows a performance similar
to the random-intercept LME method. Specifically, the N-OLS and
random-intercept LME methods struggle with variance heterogeneity
(between groups or over time) and Toeplitz covariance structures,
being either conservative or liberal depending on the setting. On
between-subject effects, the random-intercept LME method has prob-
lems with variance heterogeneity. The SS-OLS method fares somewhat
better than the N-OLS and random-intercept LMEmethods for balanced
designs, but falls down on variance heterogeneity between groups and
within-subject effects in the unbalanced design. Finally, with enough
subjects, the SwE (S3Hom) seems accurate in all the settings, but, as
shown in Figs. 1 and 2, it may slightly suffer from conservativeness in
very small samples. Note that, as suggested by one of the reviewers,
we also simulated a SwE assuming a common covariance matrix for
all the subjects (one group in the modified homogeneous SwE) and
found, under heterogeneous group variances, similar poor behaviours
as the three other methods. See Web Supplementary Material for addi-
tional quantitative results comparing the methods.

Regarding the second set of simulations, theN-OLS, SS-OLS, random-
intercept LME and SwE methods exhibited similar behaviours to the
ones observed in the first set of simulations under variance heterogene-
ity over time. The LME models with a random intercept and a random
effect of time per subject, and the LMEmodels with a random intercept,
a random effect of time and a random quadratic effect of time per sub-
ject had similar results to the ones of the SwE (S3Hom) method and



Table 4
Summary of simulation results for the False Positive Rate (FPR) control in different
covariance settings, for between- and within-subject effects, and in the balanced and un-
balancedADNI designs. “R.-int.” stands for Random-intercept; “n/a” stands for not applica-
ble indicating that this type of inference is not possible for that particular method; “●”

stands for an accurate FPR control, “+” for an invalid (liberal) FPR control, “−” for a con-
servative FPR control, “+/−” for bothbehaviours; “++/−” indicates an FPR control that is
generally invalid, but also sometimes conservative; and “●/−” stands for an FPR control
sometimes slightly conservative in small sample settings (m b 50 in the balanced design
and m b 200 in the unbalanced ADNI design) but accurate otherwise. See Web Supple-
mentary Material for detailed quantitative results.

Design Cov. type Effect
type

N-OLS R.-int.
LME

SS-
OLS

SwE
(S3Hom)

Balanced CS Between n/a ● ● ●/−
Within ● ● ● ●/−

Toeplitz Between n/a ● ● ●/−
Within ++/− ++/− ● ●/−

Het. groups Between n/a +/− +/− ●/−
Within +/− +/− +/− ●/−

Het. visits Between n/a ●/− ● ●/−
Within ● ● ● ●/−

Unbalanced
(ADNI)

CS Between n/a ● ● ●
Within ● ● +/− ●/−

Toeplitz Between n/a ● ● ●
Within + + +/− ●

Het. groups Between n/a +/− +/− ●
Within +/− +/− +/− ●

Het. visits Between n/a − ● ●
Within + + +/− ●
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Fig. 2. FPR comparison on the visit effectwith Compound Symmetry (top left, ρ= 0.95), Toeplitz
2 and αAD = 3) and heterogeneous visit variances (bottom right, γ = 2 per year) for the ADN
method correspond to the random-intercept LME model. See Fig. 1 for a description of the Sw
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seemed accurate for all the settings. Note that in the third set of simula-
tions, only the SwE (S3Hom) seemed to be able to control the FPR accu-
rately under a Toeplitz covariance structure. In particular, as it can be
seen in the Web Supplementary Material, the 2 richer LME models
seemed liberal (e.g., in the full ADNI design and testing for a difference
of visit effect between AD and MCI subjects at 5% level of significance,
the LME model with a random intercept and a random effect of time
per subject had a FPR of 6.1%while the LMEmodelwith a random inter-
cept, a random effect of time and a random quadratic effect of time per
subject had a FPR of 7.4 %).

Power analysis
Power comparisons are only interpretable when the methods con-

sidered control the FPR. Thus, as themajority of the compared methods
had issues to control the FPR under Toeplitz covariance or variance het-
erogeneity (between groups, over time), we only show power compar-
isons for CS. Note that a comparison in the Toeplitz case can be found in
the Web Supplementary Material.

Fig. 3 shows the results of the power analysis for a greater visit effect
in AD relative toMCI subjects under the assumption of CS obtained from
the third set of simulations (see subsection Simulations III). The SwE
method is less powerful than theN-OLS and LMEmethodswith a differ-
ence of power larger in very small samples, but becoming narrower and
narrower when the sample size increases. Finally, even if the SS-OLS
method is liberal for the FPR control (see Fig. 3, top left), it seems clearly
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E versions.
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Fig. 3. Power with Compound Symmetry (ρ = 0.95) for the unbalanced ADNI design, for varying effect sizes. The tested effect is the difference in the visit effect between AD and MCI
groups. All results are basedon an F-test at nominal level 5%. LME1, LME2 and LME3 correspond to the LMEmodel including a random intercept per subject, the LMEmodelwith a random
intercept and a randomeffect of time per subject and the LMEmodelwith a random intercept, a randomeffect of time and a quadratic effect of time per subject, respectively. See Fig. 1 for a
description of the SwE versions.
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less powerful than the SwE approach. This effectmay seem counterintu-
itive, but is explained by noting that the SS-OLSmethod tends to be less
efficient than the SwE method (i.e. that the true variance of the param-
eters obtained with the SS-OLSmethod tends to be higher than the true
variance of the parameters obtained with the SwE). This can be con-
firmed by computing the Monte Carlo estimates of the true variances
of the SS-OLS and SwEmethods and comparing them. For the particular
setting of Fig. 3 considering the full ADNI design, it appears that the true
variance is 2.9 times bigger for the SS-OLS method than the SwE meth-
od. As a consequence, the power of the SS-OLS method will increase
more slowly than the one of the SwE method when the effect size in-
creases. Thus, provided that the effect size is large enough to overcome
the invalid additional power due to the liberal behaviour of the SS-OLS
method, the SwEmethod will bemore powerful than the SS-OLSmeth-
od, as observed in Fig. 3.

While these results highlight the principal weakness of the SwE
method, i.e. a reduced power at low m, we stress that these results are
only for CSwith no variance heterogeneity.When CS or variance homo-
geneity cannot be safely assumed, only the SwE or LME (with appropri-
ate random effects or covariance structure for the error terms)methods
can provide valid inferences.
Note that a power analysis for a greater visit effect in AD relative to
MCI subjects under the assumption of a Toeplitz covariance structure
can be found in the Web Supplementary Material. For this case, only
the SwE (S3Hom) seemed to be able to control accurately the FPR, with
the N-OLS and random-intercept LMEmethods appearing highly liberal
and the SS-OLS and the two richer LME methods appearing slightly lib-
eral, making them invalid. An interesting observation about these re-
sults is that the SS-OLS method seemed to be slightly more or equally
as powerful as the SwE method, contradicting the observation made
in the CS case (see Fig. 3). Comparing the Monte Carlo estimates of the
true variances of each method showed that the SS-OLS method is 1.2
times larger than the SwE method, indicating that the SS-OLS method
should be less powerful than the SwE method, like in the CS case. Nev-
ertheless, in this setting, the SS-OLSmethod actually underestimates the
variance and in turn inflates the test statistic to such a degree that the
SS-OLS is slightly more powerful.

LME convergence failure rates

Regarding the convergence failure experiment (see, subsection
Simulations IV), the lmer function did not exhibit any convergence
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failures. However, thelme function exhibited a high rate of convergence
problems in many designs. The detailed results about the convergence
failures can be found in the Web Supplementary Material.

Real ADNI analysis

Prior to the analysis of the real ADNI data,we conducted a Box's test of
Compound Symmetry as described in subsection Box's test of Compound
Symmetry with a reduced dataset of 483 subjects who were all scanned
at screening and followedup at 6, 12 and 24 months. After controlling for
a False Discovery Rate of 5% (using a Bonferroni correction at level 5%,
respectively), 97% (56%, respectively) of the voxels survived the
thresholding indicating a strong evidence of non-CS in the data.

Fig. 4 compares the t-score images obtained by the N-OLS, SwE
(S3Hom) and SS-OLS methods with the real images for contrasts on the
difference between groups in terms of visit effect on the brain atrophy
(all methods thresholded at 5 for comparison). The N-OLS method has
larger t-values and more supra-threshold voxels than the SwE method.
While this could be attributed to power differences, with 817 subjects,
we expect negligible differences in power. Hence amore likely explana-
tion is the presence of a complex (non-CS) longitudinal covariance
structure that results in inflated significance (Fig. 2, top left and bot-
tom). The SS-OLS has smaller t-values and fewer supra-threshold voxels
than the SwE method, likely attributable to conservativeness (Fig. 2,
right) and/or reduced power (Fig. 3, top left and bottom).

Figs. 5, 6 and 7 shows the regression fits for three particular voxels
situated in different areas of the brain. Note that these voxels were
not selected based on maximal difference between the SwE and N-OLS
(or SS-OLS) methods, but rather based on relatively high significance
Fig. 4. Thresholded one-sided t images for the differential visit effect, greater decline in volume
SS-OLS methods; threshold of 5 used for all methods; axial section shown at z=14mm. Appar
poor FPR control; see text and Fig. 2.
in term of age, visit or acceleration effects in all of themethods (qualita-
tively, the statisticmaps for the threemethods are similar). As a remind-
er from subsection Real data analysis, all the scans represent the relative
difference in brain volume from the MDT reference image, as such, a
value of 10% in the plots indicates that the brain volume is 10% bigger
than in theMDT image. Fig. 5 shows results for a voxel in the right ante-
rior cingulate where there is strong evidence of brain atrophy with age
and also with the visit effect. The rate of brain atrophy seems similar for
each group and is similar for both the age and the visit effect, indicating
consistent cross-sectional and longitudinal volume changes. Fig. 6
shows a voxel in the right ventricle where there is strong evidence of
an expansion in volume. As expected, this is greater in AD subjects
than in MCI or Normal subjects. Fig. 7 shows a voxel in the right poste-
rior cingulate where we observe strong brain atrophy for the AD sub-
jects compared to the Normal subjects. In Figs. 5, 6 and 7, the Normal
subjects have similar intra- and inter-subject effects of time (visit and
age effects, respectively), and we generally observe this throughout
the brain. In contrast, in the AD and MCI groups, there are inconsistent
longitudinal and cross-sectional effects of time. Specifically, there is ev-
idence of a “deceleration”, where the oldest patients exhibit reduced
rates of expansion (or contraction) relative to younger patients. One in-
terpretation is a “saturation” effect, where, with advancing disease
progress, there is less gray matter left to atrophy and less space in the
cranial vault for the ventricles to expand. However, as the ADNI only fol-
lows subjects for at most 3 years, an alternative interpretation must be
considered. Specifically, instead of this deceleration reflecting an aspect
of the disease process, it rather reflects age-dependent heterogeneity in
the ADNI cohort. For example, MCI subjects in their 80’s are likely to
have systematic differences from the MCI subjects in their 60's, as the
in AD relative to N,MCI relative to N and AD relative toMCI, for the N-OLS, SwE (S3Hom) and
ent superior sensitivity of the N-OLSmethod (left) is likely due to inflated significance and
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Fig. 5.Model fit in the right anterior cingulate cortex. Top plot: linear regression fit obtainedwith the SwEmethod (S3Hom) at voxel (x, y, z)= (16, 45, 14)mm; the vertical line at 76.2 years
marks the average age of the study participants; the thickness of the lines reflects the strength of the t-scores obtained for the age effect (the three main lines), the visit effect (the three
secondary lines centred at 76.2 years) and the acceleration effect (the secondary lines centred at 66.2, 71.2, 81.2 and 86.2 years). Bottomplots: 95% confidence intervals for all the param-
eters of the linear regression. Right image: location of the selected voxel. The confidence intervals suggest that the rate of brain atrophy seems similar for each group and is similar for both
the age and the visit effect, indicating consistent cross-sectional and longitudinal volume changes.
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former group have survived to their 8th decade free of severe dementia,
while some of the latter group will convert to AD in the next 20 years.
As pointed out by one of the reviewers, this kind of explanation has al-
ready been reported in Thompson et al. (2011).

Computation time

As suggested by one of the reviewers, we compared the elapsed
computation times of the SwE and LME methods obtained on a
2.7 GHz quad-core Intel Core i7 MacBook Pro with 16 GB of memory.
For this, we considered the scenario where we would like to analyse
the 336,331 in-mask voxels of the ADNI dataset (see subsection Real
data analysis) with the two methods in R and test for the presence of
a visit effect (AD vs. N subjects). Table 5 shows the results obtained
with the SwE version S3

Hom (SwE in the table), the LME model including
a random intercept per subject (LME1 in the table), the LMEmodelwith
a random intercept and a random effect of time per subject (LME 2 in
the table), and the LMEmodel with a random intercept, a random effect
of time and a quadratic effect of time per subject (LME 3 in the table).
Note that our home built R implementation of the SwE method uses
four different functions. The first one computes voxel-independent var-
iables which need to be computed only once for the whole brain; the
second one computes voxel-specific estimates of β, Var(β) and other
variables needed for the estimation of v; the third one computes
contrast-specific and voxel-independent variables needed for the esti-
mation of v; and the fourth one computes contrast- and voxel-specific
estimates of v. For the LME models, the (voxel-specific) lmer, (voxel-
specific) vcovAdj and (contrast- and voxel-specific) get_ddf_Lb
functions were used for each voxel.

Discussion

While the SwE is an ubiquitous biostatistical tool, to our knowledge,
we are the first authors to provide a detailed study of its small sample
properties in a range of settings important for neuroimaging and identi-
fy a non-iterative estimator that workswell for the analysis of longitudi-
nal neuroimaging data.

We have shown that the SwE method is a flexible computationally
efficient alternative to the N-OLS, SS-OLS and LME methods. When the
simplest covariance structure, CS, cannot be assumed, the SwE (S3Hom)
method and the LME method using appropriate random effects to
model correctly the true covariance structure were the only methods
that consistently controlled the FPR. In particular, the SS-OLS method
was not able to control the FPR in the ADNI design. This effect can be ex-
plained by the fact that an inhomogeneity in the distribution of the sum-
mary statistics is likely to occur when subjects do not have the same
number of observations, leading to a lack of control of the FPR as ob-
served in our simulations. We also have shown that the N-OLS, SS-OLS

image of Fig.�5


60 65 70 75 80 85 90 95
−15

−10

−5

0

5

10

15

20

R
el

at
iv

e 
br

ai
n 

vo
lu

m
e 

(%
)

Right ventricle

Age (years)

Normal
MCI
AD

N MCI AD
−10

0

10

20

In
te

rc
ep

t a
t

76
.2

 y
ea

rs
 (

%
)

N MCI AD
−1

0

1

2

A
ge

 e
ffe

ct
(%

 / 
ye

ar
)

N MCI AD
0

1

2

3

4

V
is

it 
ef

fe
ct

(%
 / 

ye
ar

)

N MCI AD
−0.3

−0.2

−0.1

0

0.1

A
cc

el
er

at
io

n 
ef

fe
ct

(%
 / 

ye
ar

 2 )

Fig. 6.Model fit in the right ventricle. Top plot: Linear regression fit obtainedwith the SwEmethod (S3Hom) for voxel (x, y, z)= (8− 35, 24) mm. (See Fig. 5 caption for a description of the
differentfigure components). In theADandMCI groups amismatch is observed between cross-sectional and longitudinal effects of time,with a reduced rate of changewith increasing age;
see body text for more discussion.
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and LMEmethodsmay be inaccuratewhen there exists heterogeneity in
group variance. Nevertheless, it is worth noting that all of these
methods can be adapted to accommodate such a heterogeneity by, for
example, specifying different variances for each group in their model.
In the SwEmethod, the use of amarginal model simplifies the specifica-
tion of the predictors and the interpretation of parameters. In particular,
both within- and between-subject covariates can be used, and we have
illustrated the easewithwhich cross-sectional and longitudinal time ef-
fects can be used. In particular, testing the interaction of these two time
effects revealed a “deceleration” effect in theMCI and AD patient groups
that was missing from the healthy controls. We have noted, however,
the importance of replacing an arbitrary covariate with two, one purely
within-subject and one purely between-subject.

We note that, with our focus on structural data, we did not investi-
gate one-sample t-tests on subject summary statistics. While one-
sample t-tests have been shown to be robust under heterogeneity
(Mumford and Nichols, 2009), these methods are however less flexible
than other regression methods which allow for the inclusion of covari-
ates. Another approach not investigated in this manuscript and which
is implemented in SPM12, first estimates a common covariance matrix
structure for the whole brain and assumes it to be the true covariance
structure for all the voxels in the brain. While there are likely voxels
where this common covariance structure is valid, in order to safely
use this approach, tests for the accuracy of the assumed covariance
should be examined.
In this manuscript, we have also made a comparison between the
computation times needed by the SwE method (see subsection
Computation time) compared to the LME method, demonstrating the
computational efficiency of the SwE method. Nevertheless, it is worth
noting that the R implementation of the LME method does not make
use of any voxel-independent pre-computations as we used for the
SwEmethod, and thus the LMEmethod could potentially be accelerated.
Also, the computation time of the Kenward–Roger covariance matrix
correction and the Kenward–Roger effective degrees of freedom were
surprisingly high, indicating a likely inefficient implementation in the
pbkrtest R package. This seems to indicate that the computation
time of the LME models could be reduced. Nevertheless, we doubt
that this reduction would be large enough to match the computational
efficiency of the SwE method.

We have discussed the use of the Box's test for CS, and found ample
evidence that the ADNI data's covariance structure is inconsistent with
CS.

The principal limitation of the SwEmethod regards power.When CS
holds, it has slightly inferior power to the LME and N-OLSmethods, and
the recommended S3

Hom SwE was sometimes slightly conservative for
samples smaller than 50 in a balanced design and 200 in the highly un-
balanced ADNI design. However, when CS doesn't hold, orwhen there is
variance heterogeneity, the N-OLS, SS-OLS and random-intercept LME
fail to control False Positives and are unusable. Thus, this conservative-
ness seems like a reasonable price to pay for validity. Also, even when
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Fig. 7.Model fit in the right posterior cingulate. Top plot: Linear regression fit obtainedwith the SwEmethod (S3Hom) for voxel (x, y, z)= (4,−39,38)mm. (See Fig. 5 caption for a descrip-
tion of the different figure components). In the AD and MCI groups, there is a mismatch between cross-sectional and longitudinal effects of time, with a reduced rate of change with in-
creasing age; see body text for more discussion.
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CS holds, it may be desirable to use the SwE method over the N-OLS
method to allow fitting of a mix of within- and between-subject
covariates.

If more power is needed, one can use some form of spatial
regularisation or more complicated models like in Skup et al. (2012),
Bernal-Rusiel et al. (2013b) or Li et al. (2013). Nevertheless, while
Table 5
Estimated computation times in days, hours, minutes and seconds in the scenario where
the 336,331 in-mask voxels of the TBM ADNI dataset would be tested for an effect of
visit (AD vs. N subjects) in R. The setting used corresponded to the one of the second set
of simulations (see subsection Simulations II). “n/a”, “ind.” and “spec.” stands for not appli-
cable, independent and specific, respectively; “KR voxel specific” corresponds to the use of
the function vcovAdj; see text for additional detail.

Computation level LME 1 LME 2 LME 3 SwE

Voxel-ind. n/a n/a n/a 0d 0 h
0′ 3″

Voxel-spec. 0d 7 h
41′ 57″

1d 1 h
55′ 22″

9d 6 h
5′ 50″

0d 0 h
7′ 11″

KR voxel-spec. 66d 13 h
28′ 44″

111d 20 h
56′ 57″

213d 23 h
46′ 28″

n/a

Contrast-spec. and
voxel-ind.

n/a n/a n/a 0d 0 h
0′ 1″

Contrast- and
voxel-spec.

71d 8 h
57′ 9″

112d 13 h
45′ 56″

215d 21 h
38′ 46″

0d 0 h
0′ 30″

Total 138d 6 h
7′ 50″

225d 12 h
38′ 15″

439d 3 h
31′ 4″

0d 0 h
7′ 44
thosemethods are expected to be more powerful, they require iterative
algorithms,whichmakes them slower than the SwEmethod.Moreover,
there is no evidence that, at least in some settings, theywill do this with
a good control of the FPR. Notably, Zhang (2008) showed that using a
spatial regularisationwill tend to decrease the variance of the estimates
(which will tend to increase the power), but also increase their bias
(which will tend to alter the accuracy).

It would be desirable to use permutation methods (see, e.g., Nichols
and Holmes, 2002) in combination with the SwE to produce non-
parametric inferences. However, permutation tests assume that the
scans are exchangeable under the null hypothesis, incompatible with
longitudinal or repeated measures data. Bootstrap methods (see, e.g.,
Efron and Tibshirani, 1994), in contrast, do not require the exchange-
ability assumption and may be applicable. As there are different types
of bootstrap tests to consider and extensive small-sample simulations
needed to validate this asymptotic method, we have left this for future
study.

As another future direction, we intend to check the validity of the
Random Field Theory (see, e.g., Worsley et al., 1996) with the SwE
method. It is indeed not guaranteed that the assumptions required by
the Random Field Theory hold when the SwE method is used. As such,
at present, we can only recommend the use of a False Discovery Rate
control in order to deal with the multiple comparison problem.

While the present work was motivated and illustrated on a longitu-
dinal dataset, we stress that the SwE can be used to analyse other types
of correlated data encountered in neuroimaging. For example, it can be
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used to analyse cross-sectional fMRI studieswheremultiple contrasts of
interests are jointly modelled or cross-sectional family studies where
subjects from the same family cannot be assumed independent.

Finally, for the real data analysis, the N-OLS, SS-OLS and SwE
methods show clearly different results with the SwE method finding
fewer significant voxels than the N-OLS method, but more than the
SS-OLS method. This seems to be in accordance with our non-CS simu-
lations in which the N-OLS method poorly controls the FPR (and thus
has inflated significance; Fig. 2) and the SS-OLS method which is less
powerful than the SwE method (Fig. 3). In the simulations, the SwE
was accurate for all the different type of covariance structure tested
and this seems to make the SwE one of the most trustworthy methods
for the analysis of the ADNI data. An SPM extension implementing the
SwE method has been made available for use from the authors
(http://warwick.ac.uk/tenichols/SwE).
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Appendix A. Approximate test with the SwE

Let U1, U2, …, Ul be a sequence of p-dimensional random variables,
each independently distributed as a Wishart distribution Wp(νi, Σi/νi).
Nel and Van der Merwe (1986) showed that

Xl
i¼1

Ui �̇Wp ν;Σ=νð Þ; ðA:1Þ

where �̇stands for “is approximately distributed as”,Σ=∑ i=1
l Σi and,

ν ¼
tr Σ2
� �

þ tr Σð Þð Þ2

Xl
i¼1

tr Σ2
i

� �
þ tr Σið Þð Þ2

νi
:

ðA:2Þ

where tr is the trace operator. We will refer to this result as the NVDM
approximation.
In the context of a homogeneous version of the SwE with nG groups,
if there is no missing data, V0g is estimated by

V̂0g ¼ 1
mg

X
i∈I gð Þ

e�i e
�0
i ðA:3Þ

whereI(g) is the subset of subjects belonging to group g and ei
∗ is an ad-

justed version of the residuals of subject i. If each ei
∗ is correctly adjusted

in such a way that each covariance matrix var(ei∗) is equal to the covari-
ance matrix of its corresponding true error term var(ϵi), then they can
be assumed to follow a Normal distribution with mean 0 and variance
V0g for all i ∈ I(g). Then, for all i ∈ I(g), we would have

Bi ¼
1
mg

e�i e
�0
i � Wkg

1;V0g=mg

� �
ðA:4Þ

by the definition of a Wishart distribution (Härdle and Simar, 2007),
where kg is the size of ei∗. If the different subjects' residuals ei∗were inde-
pendent, we would have

V̂0g ¼
X
i∈I gð Þ

Bi � Wkg
mg ;V0g=mg

� �
; ðA:5Þ

by the additive property of Wishart distributions. However, this is not
the case due to covariates shared between subjects. To account for this
dependence, let usfirst consider a n× p designmatrixX that is separable
into nX sub-designmatrices Xu of size nu × p such that, definingAu as the
set of non-zero columns in Xu, the collection of sets {Au: u = 1,…, nX}
is pairwise disjoint. Further, let X be composed of pB pure between-
subject covariates (e.g., group intercept, cross-sectional effect of age)
and pW pure within-subject (e.g., longitudinal effect of visit) as recom-
mended in subsection Construction of the design matrix. In such a
situation, the residuals ei∗ can be considered to be in a space of dimen-
sion mi − pBi where mi is the number of subjects included in the sub-
design matrix containing subject i and pBi is the number of pure
between-subject covariates in this sub-design matrix that are not all-
zero. Now, we treat the Bi's as independent random variables following
a Wishart distribution Wkg

νi;V0g= mgνi

� �� �
with effective degrees of

freedom vi that are estimated by 1 − pBi/mi. Then, using the NVDM ap-
proximation, we get

V̂0g �̇Wkg
νg ;V0g=νg

� �
ðA:6Þ

where

νg ¼ m2
gX

i∈I gð Þ

1
νi
:

ðA:7Þ

Now, let us consider the test H0 : Cβ = 0 where C is a matrix (or a
vector) of rank q defining a combination of parameters (contrast). Con-
trasting the SwE S with C, we have

CSC0 ¼ C
Xm
i¼1

X0
iXi

 !−1 XnG
g¼1

X
i∈I gð Þ

X0
iV̂0gXi

0
@

1
A Xm

i¼1

X0
iXi

 !−1

C0 ðA:8Þ

¼
XnG
g¼1

C
Xm
i¼1

X0
iXi

 !−1 X
i∈I gð Þ

X0
iV̂0gXi

0
@

1
A Xm

i¼1

X0
iXi

 !−1

C0
0
@

1
A ðA:9Þ

¼
XnG
g¼1

CSC0� �
g ðA:10Þ

http://warwick.ac.uk/tenichols/SwE
http://www.fnih.org


301B. Guillaume et al. / NeuroImage 94 (2014) 287–302
where (CSC′)g is the contribution of group g to the contrasted SwE CSC′
and which can be rewritten as

CSC0� �
g ¼

X
i∈I gð Þ

DiV̂0gD
0
i ðA:11Þ

where

Di ¼ C
Xm
j¼1

X0
jX j

0
@

1
A−1

X0
i: ðA:12Þ

Then, for all i ∈ I(g), we get

DiV̂0gD
0
i �̇Wq νg ;DiV0gD

0
i=νg

� �
ðA:13Þ

where q is the rank of C. As each component DiV̂0gD
0
i is obtained with

the same estimate V̂0g , there is no contribution of additional degrees
of freedom and thus

CSC0� �
g �̇Wq νg ;

X
i∈I gð Þ

DiV0gD
0
i=νg

0
@

1
A: ðA:14Þ

Assuming that the contributions (CSC′)g's are independent, using
the NVDM approximation and noting that ∑nG

g¼1∑i∈I gð ÞDiV0gD
0
i ¼

Cvar β̂
� �

C0; we get

CSC0 ¼
XnG
g¼1

CSC0� �
g �̇Wq ν;Cvar β̂

� �
C0
=ν

� �
: ðA:15Þ

where

ν ¼
tr Cvar β̂

� �
C0� �2� 	

þ tr Cvar β̂
� �

C0� �� �2
XnG
g¼1

tr
X

i∈I gð ÞDiV0gD
0
i

� �2� 	
þ tr

X
i∈I gð ÞDiV0gD

0
i

� �� �2
νg

:

ðA:16Þ

Noting thatCβ̂=
ffiffiffi
ν

p � N 0;Cvar β̂
� �

C0=ν
� �

and assuming thatCβ̂ and

CSC′ are independent, we obtain

ν Cβ̂=
ffiffiffi
ν

p� �0
CSC0� �−1 Cβ̂=

ffiffiffi
ν

p� �
�̇ νq

ν−qþ 1
F q;ν−qþ 1ð Þ ðA:17Þ

and we finally get the test statistic

ν−qþ 1
νq

Cβ̂
� �0

CSC0� �−1 Cβ̂
� �

�̇ F q;ν−qþ 1ð Þ: ðA:18Þ

The extension to the heterogeneous SwE case is straightforward as it
is equivalent to the homogeneous SwE consideringm groups composed
by a single subject. In practice, var β̂

� �
andV0g's are unknown, thus, their

estimates S and V̂0g's are used instead in Eq. (A.16) to get an estimation
of v. When a group has a very small number of subjects, it will produce
poor variance estimates and, consequently, affects the quality of the es-
timation of v. This motivates our idea of assuming homogeneous vari-
ances between subjects in the computation of the SwE.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.03.029.
References
Bates, D., Maechler, M., Bolker, B., 2012. lme4: Linear mixed-effects models using S4 clas-
ses. R package version 0.999999–0. URL http://CRAN.R-project.org/package=lme4.

Bell, R.M., McCaffrey, D.F., 2002. Bias reduction in standard errors for linear regression
with multi-stage samples. Surv. Methodol. 28 (2), 169–182.

Bernal-Rusiel, J.L., Greve, D.N., Reuter, M., Fischl, B., Sabuncu, M.R., 2013a. Statistical anal-
ysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage
66, 249–260.

Bernal-Rusiel, J.L., Reuter, M., Greve, D.N., Fischl, B., Sabuncu, M.R., 2013b. Spatiotemporal
linear mixed effects modeling for the mass-univariate analysis of longitudinal
neuroimage data. NeuroImage 81, 358–370.

Box, G.E., 1950. Problems in the analysis of growth and wear curves. Biometrics 6 (4),
362–389.

Chen, G., Saad, Z.S., Britton, J.C., Pine, D.S., Cox, R.W., 2013. Linear mixed-effects modeling
approach to fMRI group analysis. NeuroImage 73, 176–190.

Chesher, A., Jewitt, I., 1987. The bias of a heteroskedasticity consistent covariance matrix
estimator. Econometrica 1217–1222.

Diggle, P., Liang, K., Zeger, S., 1994. Analysis of longitudinal data oxford statistical science
series, 13.

Efron, B., Tibshirani, R.J., 1994. An introduction to the bootstrap (chapman & hall/crc
monographs on statistics & applied probability).

Eicker, F., 1963. Asymptotic normality and consistency of the least squares estimators for
families of linear regressions. Ann. Math. Stat. 34 (2), 447–456.

Eicker, F., 1967. Limit theorems for regressions with unequal and dependent errors. Pro-
ceedings of the Fifth Berkeley Symposium onMathematical Statistics and Probability,
vol. 1. University of California Press, Berkeley, pp. 59–82.

Fay, M., Graubard, B., 2001. Small-sample adjustments for Wald-type tests using sand-
wich estimators. Biometrics 57 (4), 1198–1206.

Fitzmaurice, G.M., 1995. A caveat concerning independence estimating equations with
multivariate binary data. Biometrics 309–317.

Halekoh, U., Højsgaard, S., 2013. pbkrtest: Parametric bootstrap and Kenward
Roger based methods for mixed model comparison. R package version 0.3–8. URL
http://CRAN.R-project.org/package=pbkrtest.

Hansen, L.P., 1982. Large sample properties of generalized method of moments estima-
tors. Econometrica 1029–1054.

Hardin, J., 2001. Small sample adjustments to the sandwich estimate of variance. http://
www.stata.com/support/faqs/stat/sandwich.html.

Härdle, W., Simar, L., 2007. Applied Multivariate Statistical Analysis. Springer Verlag.
Harville, D., 1977. Maximum likelihood approaches to variance component estimation

and to related problems. J. Am. Stat. Assoc. 320–338.
Hinkley, D., 1977. Jackknifing in unbalanced situations. Technometrics 285–292.
Horn, S., Horn, R., Duncan, D., 1975. Estimating heteroscedastic variances in linear models.

J. Am. Stat. Assoc. 380–385.
Hua, X., Hibar, D.P., Ching, C.R., Boyle, C.P., Rajagopalan, P., Gutman, B.A., Leow, A.D., Toga,

A.W., C. R. J. Jr., Harvey, D., Weiner, M.W., Thompson, P.M., 2013. Unbiased tensor-
based morphometry: improved robustness and sample size estimates for Alzheimer's
disease clinical trials. NeuroImage 66 (0), 648–661.

Huber, P., 1967. The behavior of maximum likelihood estimates under nonstandard con-
ditions. Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol. 1, pp. 221–233.

Kauermann, G., Carroll, R., 2001. A note on the efficiency of sandwich covariance matrix
estimation. J. Am. Stat. Assoc. 96 (456), 1387–1396.

Kenward, M.G., Roger, J.H., 1997. Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics 983–997.

Lai, T.L., Small, D., 2007. Marginal regression analysis of longitudinal data with time-
dependent covariates: a generalized method-of-moments approach. J. R. Stat. Soc.
Ser. B (Stat Methodol.) 69 (1), 79–99.

Laird, N., Ware, J., 1982. Random-effects models for longitudinal data. Biometrics 963–974.
Li, Y., Gilmore, J.H., Shen, D., Styner, M., Lin, W., Zhu, H., 2013. Multiscale adaptive gener-

alized estimating equations for longitudinal neuroimaging data. NeuroImage 72,
91–105.

Liang, K., Zeger, S., 1986. Longitudinal data analysis using generalized linear models.
Biometrika 73 (1), 13–22.

Lindquist, M., Spicer, J., Asllani, I., Wager, T., 2012. Estimating and testing variance compo-
nents in a multi-level glm. NeuroImage 59 (1), 490–501.

Lipsitz, S., Ibrahim, J., Parzen, M., 1999. A degrees-of-freedom approximation for a
t-statistic with heterogeneous variance. J. R. Stat. Soc. Ser. D Stat. 48 (4), 495–506.

Long, J., Ervin, L., 2000. Using heteroscedasticity consistent standard errors in the linear
regression model. Am. Stat. 217–224.

MacKinnon, J., White, H., 1985. Some heteroskedasticity-consistent covariance matrix
estimators with improved finite sample properties. J. Econ. 29 (3), 305–325.

Mancl, L., DeRouen, T., 2001. A covariance estimator for gee with improved small-sample
properties. Biometrics 57 (1), 126–134.

McDonald, B.W., 1993. Estimating logistic regression parameters for bivariate binary data.
J. R. Stat. Soc. Ser. B Methodol. 391–397.

Molenberghs, G., Verbeke, G., 2011. A note on a hierarchical interpretation for negative
variance components. Stat. Model. 11 (5), 389–408.

Mueller, S., Weiner, M., Thal, L., Petersen, R., Jack, C., Jagust, W., Trojanowski, J., Toga, A.,
Beckett, L., 2005. The Alzheimer's Disease Neuroimaging Initiative. Neuroimaging
Clin. N. Am. 15 (4), 869.

Mumford, J.A., Nichols, T., 2009. Simple group fMRI modeling and inference. NeuroImage
47 (4), 1469–1475.

Nel, D., Van der Merwe, C., 1986. A solution to the multivariate Behrens–Fisher problem.
Commun. Stat. Theory Meth. 15 (12), 3719–3735.

http://dx.doi.org/10.1016/j.neuroimage.2014.03.029
http://dx.doi.org/10.1016/j.neuroimage.2014.03.029
http://CRAN.R-project.org/package=lme4
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0010
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0010
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0015
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0015
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0015
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0020
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0020
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0020
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0025
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0025
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0030
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0030
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0035
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0035
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0040
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0040
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0045
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0045
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0050
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0050
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0055
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0055
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0055
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0060
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0060
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0065
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0065
http://CRAN.R-project.org/package=pbkrtest
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0075
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0075
http://www.stata.com/support/faqs/stat/sandwich.html
http://www.stata.com/support/faqs/stat/sandwich.html
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0085
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0090
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0090
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0095
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0100
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0100
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0105
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0105
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0105
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0110
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0110
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0110
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0115
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0115
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0120
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0120
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0125
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0125
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0125
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0130
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0135
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0135
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0135
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0140
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0140
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0145
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0145
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0150
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0150
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0155
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0155
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0160
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0160
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0165
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0165
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0170
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0170
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0175
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0175
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0180
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0180
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0185
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0185
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0190
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0190


302 B. Guillaume et al. / NeuroImage 94 (2014) 287–302
Neuhaus, J., Kalbfleisch, J., 1998. Between-and within-cluster covariate effects in the anal-
ysis of clustered data. Biometrics 638–645.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional neuro-
imaging: a primer with examples. Hum. Brain Mapp. 15 (1), 1–25.

Pan, W., 2001. On the robust variance estimator in generalised estimating equations.
Biometrika 88 (3), 901–906.

Pan, W., Wall, M., 2002. Small-sample adjustments in using the sandwich variance esti-
mator in generalized estimating equations. Stat. Med. 21 (10), 1429–1441.

Pepe, M.S., Anderson, G.L., 1994. A cautionary note on inference for marginal regression
models with longitudinal data and general correlated response data. Commun. Stat.
Simul. Comput. 23 (4), 939–951.

Pinheiro, J., Bates, D., 2000. Mixed-effects Models in s and s-plus. Statistics and
Computing. Springer-Verlag, Berlin, D.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2013. nlme: Linear and Nonlin-
ear Mixed Effects Models. R package version 3.1-113.

R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria (URL http://www.R-project.org/).

Skup, M., Zhu, H., Zhang, H., 2012. Multiscale adaptive marginal analysis of longitu-
dinal neuroimaging data with time-varying covariates. Biometrics 68 (4),
1083–1092.
Thompson, W.K., Hallmayer, J., O'Hara, R., 2011. Design considerations for characterizing
psychiatric trajectories across the lifespan: application to effects of apoe-e4 on cere-
bral cortical thickness in Alzheimer's disease. Am. J. Psychiatr. 168 (9), 894–903.

Verbeke, G., Molenberghs, G., 2009. Linear Mixed Models for Longitudinal Data. Springer.
Waldorp, L., 2009. Robust and unbiased variance of glm coefficients for misspecified

autocorrelation and hemodynamic response models in fmri. J. Biomed. Imaging 15.
West, B., Welch, K.B., Galecki, A.T., 2006. Linear Mixed Models: A Practical Guide Using

Statistical Software. CRC Press.
White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct

test for heteroskedasticity. Econometrica 817–838.
Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C., et al., 1996. A

unified statistical approach for determining significant signals in images of cerebral
activation. Hum. Brain Mapp. 4 (1), 58–73.

Zhang, H., 2008. Advances in Modeling and Inference of Neuroimaging Data. (Ph.D.
thesis) The University of Michigan.

Zhao, L.P., Prentice, R.L., Self, S.G., 1992. Multivariate mean parameter estimation by using
a partly exponential model. J. R. Stat. Soc. Ser. B Methodol. 805–811.

http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0195
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0195
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0200
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0200
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0205
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0205
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0210
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0210
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0215
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0215
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0215
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0220
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0220
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0225
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0225
http://www.R-project.org/
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0235
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0235
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0235
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0240
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0240
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0240
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0245
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0250
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0250
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0255
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0255
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0260
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0260
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0265
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0265
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0265
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0270
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0270
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0275
http://refhub.elsevier.com/S1053-8119(14)00176-1/rf0275

	Fast and accurate modelling of longitudinal and repeated measures neuroimaging data
	Introduction
	Methods
	The Linear Mixed Effects model and the marginal model
	Construction of the design matrix
	Homogeneous SwE
	Small sample adjustments
	Monte Carlo simulations
	Simulations I
	Simulations II
	Simulations III
	Simulations IV

	Box's test of Compound Symmetry
	Real data analysis

	Results
	SwE versions comparison in very small samples
	Methods comparison
	FPR control
	Power analysis

	LME convergence failure rates
	Real ADNI analysis
	Computation time

	Discussion
	Acknowledgements
	Appendix A. Approximate test with the SwE
	Appendix B. Supplementary data
	References


