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The generation of neuronal diversity
in the mammalian brain is a multi-

step process, beginning with the regional
patterning of neural stem- and progeni-
tor cell domains, the commitment of
these cells toward a general neuronal fate,
followed by the selection of a particular
neuronal subtype and the differentiation
of postmitotic neurons. Each of these
steps as well as the transitions between
them require precisely controlled changes
in transcriptional programs. Although a
large number of transcription factors are
known to regulate neurogenesis in the
embryonic and adult central nervous sys-
tem, the sheer number of neuronal cell
types in the brain and the complexity of
the cellular processes that accompany
their production suggest that transcrip-
tion factors act cooperatively to control
individual steps in neurogenesis. In fact,
combinatorial regulation by sets of tran-
scription factors has emerged as a versa-
tile mode to control cell fate
specification. Here, I discuss our recent
finding that members of the MEIS-
subfamily of TALE-transcription factors,
originally identified as HOX cofactors in
non-neural tissues, function in concert
with PAX-proteins in the regulation of
cell fate specification and neuronal differ-
entiation in the embryonic and adult
brain.

TALE (3 amino acid loop exten-
sion) proteins are atypical homeodo-
main-containing transcription factors,
which take their name from the inser-
tion of a proline-tyrosine-proline
motive between the first and second
helix of the homeodomain. In animals,
the TALE-homeodomain superfamily
comprise 4 subclasses. Among them,
the MEIS-family, consisting of

homothorax (hth) in Drosphila mela-
nogaster, unc-62 in C. elegans as well
as Meis1–3 and Prep1–2 (also known
as Pknox1–2) in vertebrates, and the
PBC-family with vertebrate Pbx1–4,
extradenticle (exd) and ceh-20 in D.
melanogaster and C. elegans respec-
tively, were early on recognized as
components of multimeric transcrip-
tional complexes.1-3 First insights into
the biology of MEIS- and PBC-family
proteins came from studies of their
invertebrate orthologs hth and exd.
Mutation of either gene leads to
homeotic transformations without dis-
turbing HOX gene expression itself,
indicating that these transcription fac-
tors control patterning of the body
axis by modulating HOX protein
activity rather than by controlling
HOX gene activation.4-8 In fact as
subsequently observed in numerous
physiological and pathophysiological
contexts, MEIS- and PBX-proteins
function as cofactors of homeodomain
proteins of the HOX clusters.3,9,10

Direct association of PBX with HOX
enables cooperative binding of both
proteins to DNA binding sites in the
regulatory regions of downstream genes
that extend over the known consensus
binding motive bound by each factor
alone. As a consequence, dimerization
with PBX increases the specificity and
affinity of the HOX protein for dis-
tinct target sites in the genome,
thereby fine-tuning the activity of a
particular HOX-protein toward specific
physiological needs. MEIS proteins can
also associate with HOX proteins,
either directly with members of the
Abd-B / paralog group 9–13 or indi-
rectly via association with PBX, and
thereby add an additional level of
complexity to the system.11-13 In fact,
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HOX, MEIS and PBX contact each
other in multiple ways and through
different domains within their poly-
peptide chains, which ultimately allows
for the formation of dimeric or tri-
meric HOX-TALE containing com-
plexes of varying composition on a
relatively broad range of binding sites
in the genome. Depending on the
composition of the complex and the
cellular context in which the complex
forms, transcriptional co-activators or
co-repressors and proteins with enzy-
matic activities toward DNA or histo-
nes are then recruited, eventually
leading to transcriptional activation or

-repression at the respective gene
loci.2,3

MEIS-PAX Co-Expression in the
Vertebrate Brain

Yet, MEIS and PBX expression is not
restricted to HOX-expressing cells and tis-
sues. In fact, whereas PBX and PREP are
rather broadly expressed in vertebrate
embryos, MEIS expression is spatially and
temporally highly dynamic and includes
many regions in the embryo that lie out-
side of the classic HOX gene expression
domains. This is particularly evident in

the embryonic neural tube, where the
anterior border of HOX gene expression
coincides with the rhombomere (r) 1/2
boundary, whereas Meis1 and Meis2
expression extends into the mes-, di- and
telencephalon (Fig. 1A).14 Both Meis-
family members are, for instance, highly
expressed in the embryonic neural retina
and loss-of-function studies performed in
fish, chick and mice showed that both
genes control progenitor cell proliferation
in the early eye anlage and the specifica-
tion of these cells toward a retinal cell
fate.15-19 Strong Meis2 expression further
marks the dorsal mesencephalic vesicle,
the anlage of the optic tectum, and Meis2
is both necessary and sufficient for tectum
development.20 Meis1 and Meis2 also
participate in the developmental regula-
tion of striatal neuron- and cortical inter-
neuron generation, in part through direct
control over expression of Dlx (distalless-)
homeodomain proteins.21 Other examples
for apparent HOX-independent functions
of MEIS-family proteins in the central
nervous system (CNS) include the pro-
duction of hormones that are important
for reproductive functions in the hypo-
thalamus and pituitary gland of the adult
brain.22,23 In each of these cases, MEIS
protein expression does not correlate with
HOX expression, suggesting that here
MEIS may partner with other proteins.
Indeed, MEIS-family members can
directly interact and cooperate with non-
HOX homeodomain proteins, such as
PDX1 in the embryonic pancreas, or with
myogenic bHLH proteins during skeletal
muscle differentiation.24,25 In the embry-
onic and adult anterior brain, paired-type
homeodomain (PAX) transcription factors
emerge as major TALE interacting
partners.

Similar to HOX proteins, PAX pro-
teins have critical functions in animal
development and oncogenesis and control
biological processes as diverse as cell pro-
liferation, compartmentalization and pat-
tern formation, lineage restriction,
execution of differentiation programs, or
cell migration.26 The PAX protein family
comprises 9 members, all of which but
PAX1 and PAX9 are expressed in the neu-
ral tube. In a manner quite similar to
HOX genes, members of the PAX2/5/8,
PAX3/7 and PAX4/6 subgroups are

Figure 1. (A) Overlapping expression of Meis1 and Meis2 in relation to expression of HOX genes
and members of the Pax4/6, Pax3/7 and Pax2/5/8 families in the mouse neural tube. Schematic
views of mouse embryos at E11 are shown; the expression domains of the respective HOX genes is
given without indicating any rhombomere-specific differences in gene expression levels. In the
CNS anterior of the rhombomere 1–2 boundary, Meis1 and Meis2 are co-expressed with Pax3/7 in
the mesencephalon, with Pax2/5/8 in the rostral mid-hindbrain boundary region and with Pax6 in
the eye anlage. [di: diencephalic vesicle; mes: mesencephalic vesicle; met: metencephalic vesicle; o.
s.: optic stalk; r: rhombomere; s.c.: spinal cord; tel: telencephalic vesicle.] (B) Schematic drawing of
the major protein domains found in Meis-family members and different PAX proteins. Protein
domains are not drawn to scale. MEIS family proteins contact members of the PBC-family of TALE-
homeodomain proteins through MH-B, the C-terminal half of the bipartite MEIS-homology domain.
[MH-A / MH-B: MEIS-homology domain A / B; TALE-HD: 3 amino acid loop extension homeodomain;
paired: paired-domain; HD: homeodomain.]
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expressed in nested and overlapping
domains in the developing CNS
(Fig. 1A). Unlike HOX, however, their
expression extends into the anterior most
parts of the neural tube: Pax6 transcripts
are present in the telecephalon, diencepha-
lon and neural retina, Pax3/7 transcripts
extend through the spinal cord into the
mesencephalon and posterior diencepha-
lon and Pax2/5/8 expression surround the
mid-hindbrain boundary (MHB).27 Still,
although expression of individual Pax
genes demarcates defined territories within
the developing CNS, these domains rarely
correspond to a single functional unit that
gives rise to an anatomically and function-
ally defined brain structure. PAX-protein
function thus needs to be fine-tuned to
fulfill specific physiological requirements.
One way by which this may be achieved is
through cooperation with other transcrip-
tional co-regulators.

MEIS-PAX Cooperation in the
Regulation of Neurogenic

Programs

A first example for how the activity of
broadly expressed PAX proteins may be
tailored to particular developmental pro-
grams is evident in the development of
the optic tectum, an important center for
sensory information processing that devel-
ops from the dorsal mesencephalic vesicle.
Pax3- and Pax7-expression is not specific
for the tectal anlage, yet either gene can
trigger development of ectopic tectal struc-
tures when misexpressed.28 Meis2 expres-
sion, by contrast, faithfully demarcates the
future optic tectum at mid-to-late somite
stages and is pivotal for tectal develop-
ment.20 As we recently reported, MEIS2
directly binds PAX3 and PAX7 in the
embryonic midbrain.29 Association with
MEIS2 may therefore confer tectal speci-
ficity to the more widely expressed PAX3
and PAX7. Hence in this developmental
context, spatially and temporally restricted
complex formation with a MEIS-cofactor
may modulate the developmental function
of the otherwise broadly expressed PAX
partner. A second example for MEIS-PAX
cooperation concerns the adult subventric-
ular zone (SVZ) / olfactory bulb neuro-
genic niche. Here, adult neural stem cells

residing in the lateral walls of the SVZ
generate immediate progenitor cells, most
of which mature into young neurons,
termed neuroblasts. Neuroblasts leave the
SVZ, migrate along the rostral migratory
stream (RMS) toward the olfactory bulb,
where they disperse radially, differentiate
into a limited number of neuronal cell
types and integrate into existing neuronal
networks.30,31 The paired-type transcrip-
tion factor PAX6 plays a dual role in this
neurogenic system, being crucial for the
general neuronal fate specification of adult
progenitors in the SVZ and the subsequent
differentiation toward the dopaminergic
neuro-transmitter phenotype of some of
the SVZ-derived progeny.32-34 MEIS2 is
co-expressed and forms heteromeric com-
plexes with PAX6 in neuroblasts of the
SVZ and RMS as well as in dopaminergic
neurons of the olfactory bulb.35 MEIS2
cooperation with PAX6 is an essential
requirement for the pro-neurogenic func-
tion of PAX6 in adult SVZ neurogenesis,
as siRNA-mediated knock-down of
MEIS2 abrogated the neuron-inducing
activity normally observed after PAX6
overexpression in adult SVZ progenitors.
In addition, MEIS2 and PAX6 bind to
closely located or partially overlapping sites
in the promoter/enhancer and cooperate in
the transcriptional activation of some genes
that are relevant for neuronal fate specifica-
tion and dopaminergic differentiation,
such as doublecortin and tyrosine hydroxy-
lase.35 MEIS2 and PAX6 containing pro-
tein complexes are also present in the
embryonic vertebrate neural retina, another
site of extensive co-expression of both pro-
teins.17,35 Of note, protein association of
the respective ortholog proteins of D. mel-
anogaster, hth and eyeless, also occurs, at
least when tested in vitro.36 MEIS-family
proteins thus emerge as evolutionary con-
served cofactors of PAX-proteins in non-
HOX expressing cells and tissues.

MEIS-PAX Protein Interaction

The protein domains involved in this
interaction are just beginning to be char-
acterized. In vitro binding studies identi-
fied C-terminal sequences in MEIS2 to be
essential for complex formation with
PAX3 and PAX7.29,35 This is reminiscent

of the Abd-B paralog group HOX protein
binding to MEIS, which also preferen-
tially occurs at the C-terminal portion of
MEIS11,12. Although the precise domains
in PAX3/6/7 that mediate binding to
MEIS2 have not yet been mapped, the
observation that 3 different splice variants
of PAX6, namely the canonical and the
PAX6(5a) isoforms, which contain paired-
and homeodomain, as well as a paired-less
isoform, can all dimerize with MEIS2
implicate that sequences in the homeodo-
main of PAX engage in complex forma-
tion. The paired-type homeodomain,
unlike the paired-domain, is only partially
conserved within the PAX protein family.
While PAX3/7 and PAX4/6 possess a full
homeodomain containing the 3 helices
characteristic of this motive, the homedo-
main of PAX2/5/8 is truncated to com-
prise only the first helix, and PAX1/9 lack
the homedomain all together (Fig. 1B).
Pull-down experiments with recombinant
proteins indicated that MEIS2 is formally
capable of binding to PAX2/5/8, at least
in solution, although we did not observe
in vivo association of MEIS2 with any of
these 3 PAX proteins in cells of the embry-
onic MHB or in a panel of cell lines (K.
Jost and D. Schulte, unpublished results).
Nevertheless, the observed association of
MEIS2 with recombinant PAX2/5/8 sug-
gests that the N-terminal helix 1 of the
paired-type homeodomain mediates con-
tact between PAX and the MEIS partner
protein. This model agrees well with the
overall structure of PAX proteins, as it is
the paired-domain that serves as primary
DNA-binding motive in all PAX family
members, leaving the homeodomain avail-
able for protein-protein interaction. Yet,
MEIS cofactor binding to helix 1 of
the paired-type homeodomain is also pos-
sible when PAX binds DNA through its
homeodomain, as helix 1 faces away from
the DNA in the crystal structure of the
isolated paired-type homeodomain bound
to DNA and is thus free to engage in
protein-protein interaction.37 Direct
association of the paired-domain with
the paired-type homeodomain was in
fact reported for vertebrate and inverte-
brate PAX family members and can
occur both, intramolecularly and intermo-
lecularly.38,39 In agreement with this
notion, several structurally diverse
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homeodomains, including those of the
TALE-family proteins PBX1 and PREP1
co-precipitate with PAX6 when tested as
GST-fusion proteins in vitro.39

Concluding Remarks

What purpose may PAX heterodimeri-
zation with TALE-proteins serve? Likely a
very similar one as that already described
for HOX-TALE protein interaction. On
one hand, cooperative DNA-binding may
increase the target-selectivity of the PAX
protein, allowing the complex to read
additional sequences surrounding the core
DNA-binding site. Thereby different sets
of downstream targets can be activated by
a single PAX protein in different sub-
domains of its overall expression territory.
On the other hand, complex formation
may aid the recruitment of additional
cofactors, which themselves possess no
DNA-binding activity or have only very
limited sequence specificity. Thereby,
altering the composition of the PAX-
TALE protein complex may result in the
differential recruitment of transcriptional
co-activators or co-repressors. In this con-
text it is important to point out that
MEIS family proteins not only recruit the
histone-acetyl transferse CBP, a transcrip-
tional co-activator, and active RNApolII
to the regulatory regions of downstream
genes, but also displace co-repressors like
histone deacetylases (HDACs) or mem-
bers of the Groucho/Tle family from pre-
existing transcriptional complexes.40,41

Hence, TALE-proteins can modulate the
controlled assembly or disassembly of
transcription regulator complexes to fine-
tune gene expression.
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