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ABSTRACT
Cumulative load reflects the total accumulated load across a loading exposure. Estimated cumulative
load can identify individuals with or at risk for pathology. However, there is no research into the
accuracy of the estimated cumulative load. This study determined: (1) which impulses, from a 500
revolution bicycling activity, accurately estimate cumulative pedal reaction force; and (2) how many
impulses are required to accurately estimate cumulative pedal reaction force over 500 revolutions.
Twenty-four healthy adults (mean 23.4 [SD 3.1] years; 11 men) participated. Participants performed
three bicycling bouts of 10-min in duration and were randomized to one of two groups (group 1 =
self-selected power and prescribed cadence of 80 revolutions per minute; group 2 = prescribed
power of 100 W and self-selected cadence). The first 10 revolutions (2%) of the normal pedal reaction
force (PRFN) and resultant pedal reaction force (PRFR), and the first five revolutions (1%) of the
anterior-posterior reaction force (PRFAP) over-estimated cumulative load. The PRFN, PRFAP, and PRFR
required 80 revolutions (16%), 320 revolutions (64%) and 65 revolutions (13%), respectively, to
accurately estimate cumulative load across 500 cycles. These findings highlight that the context
and amount of data collected are important in producing accurate estimates of cumulative load.
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Introduction

Cumulative loading is an important mechanism contribut-
ing to musculoskeletal injury and pathology (Kumar 1990).
Cumulative load reflects the total accumulated load across
a researcher-defined loading exposure (e.g. minutes, days,
months, years). The first reported use of cumulative load
was in the spine (Kumar 1990). Cross-sectional cumulative
compressive and shear loads on the thoracolumbar and
lumbosacral discs, calculated using a two-dimensional
mathematical model, distinguished between institutional
aids with versus without back pain (Kumar 1990).
Cumulative spinal loads were greater in 104 automotive
workers who reported low back pain, compared to 130
randomly selected controls from the same workplace
(Norman et al. 1998). It is important to note that poor
relationships exist between peak and cumulative loads,
suggesting these variables are distinct (Norman et al.
1998). Since these seminal papers, cumulative load has
been used to characterize low back injury (Newell and
Kumar 2005; Gregory et al. 2006) and knee osteoarthritis
(Maly et al. 2013). Furthermore, low cumulative load reflect-
ing a lack of mechanical loading has been shown to be
detrimental to musculoskeletal health (Hinterwimmer et al.
2004; Souza et al. 2012), highlighting that there is likely
a range of optimal loading exposures needed for muscu-
loskeletal health.

While cumulative load shows promise in understand-
ing injury mechanisms, methods used to calculate these
values introduce error. For example, to calculate cumu-
lative load, musculoskeletal models are typically utilized
to calculate the representative impulse of a single repe-
tition of the movement of interest (Equation (1) or (2))
experienced at a joint. The mean impulse of a sample of

J ¼
ðt1
t0
F dt (1)

J ¼
ðt1
t0
Mdt (2)

J ¼ impulse N � s or Nm � sð Þ;

F ¼ force Nð Þ; M ¼ moment Nmð Þ;

to ¼ starting time; t1 ¼ finishing time

movements is then multiplied by the measured number of
loading repetitions to yield cumulative load (Equation 3) for
a single activity (Petersen et al. 2015), a work day (Gregory
et al. 2006; Maly et al. 2013), a work year (Newell and Kumar
2005), or even an individual’s entire working

CL ¼ J � R (3)
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CL ¼ cumulative load;

R ¼ repetitions

career (Ezzat et al. 2013). There are many sources of
potential error in this approach, including in data collec-
tion and analysis (e.g. gait analysis overground versus
a treadmill (Riley et al. 2008); active or passive motion
capture, or digitized video (Fonda et al. 2014); filter cut-
offs (Van Den Bogert and De Koning 1996; Giakas and
Baltzopoulos 1997), and the method of determining the
start and end of a trial (O’Connor et al. 2007)) that alter the
loading measurement, and therefore impulse calcula-
tions. Furthermore, each musculoskeletal model used to
calculate the impulse of a task relies on assumptions that
alter load measurements. For example, the calculated
spine load was significantly different between four differ-
ent spine models (η2 = 0.97, p < 0.05) despite the use of
the same inputs (Fischer et al. 2007).

Not only do data collection methods introduce error
when calculating cumulative load, but there is also error
inherent in the assumption that all repetitions of a task are
the same. For example, if the loading magnitude is highly
variable, using a single impulse or mean of a small number
of impulses may produce large errors in cumulative load
estimates. Numerous characteristics may affect movement
variability and the resulting load characteristics. For exam-
ple, during submaximal tasks an individual may be free to
use a greater variety of movement patterns, resulting in
greater intra-participant variability that reduces the accu-
racy of cumulative load estimates.

Basic science research cannot attempt to decipher
whether musculoskeletal conditions are ameliorated or
worsened by peak loads, loading rates, cumulative loads,
or more likely some higher-order interaction unless each
can be measured with sufficiently small error. In vitro
research has the advantage of enabling more direct load
measurements (Parkinson and Callaghan 2007). However,
in vivo analysis of long-term adaptations (Van Ginckel et al.
2010; Multanen et al. 2014) or acute responses (Eckstein
2005; Gatti et al. 2017) of musculoskeletal tissues to differ-
ent loading conditions requires estimation of these para-
meters. Therefore, accurate methods of estimating
cumulative load must be identified before cumulative
load can be applied to answer these types of research
questions.

This is a proof-of-principle investigation that explores
how to minimize the magnitude of error in cumulative
load estimates. Bicycling was explored because it is
a highly constrained, cyclic task. The outlined methodol-
ogies may be used to validate estimates of cumulative
load for other activities. Furthermore, establishing ade-
quate accuracy of estimates of cumulative load during

cycling is necessary for both clinical research of bicycling
as an intervention and basic research of the effect of
bicycling-related joint loading on tissue structures.
Identifying accurate methods of estimating raw cumula-
tive load is a necessary first step before the complex
interactions between cumulative load, fatigue, loading
rate, peak load, and others can be pursued.

The purpose of this study was to determine: (1) which
impulses, across a 10-min bout of bicycling, can be used
to accurately estimate cumulative pedal reaction force;
and (2) how many impulses are required to calculate
a mean that yields an accurate estimate of cumulative
pedal reaction force. A secondary objective was to deter-
mine whether relative and absolute activity conditions
(cadence and power) influenced the accuracy of estimates
of cumulative load. It was hypothesized that impulses
sampled during the acceleration phase of a bicycling
bout will yield poor accuracy when estimating cumulative
load because accelerating the bicycle from zero will
require greater forces and durations per cycle than during
a steady-state. Also, it was hypothesized that 10% of
impulses collected during the zero-acceleration phase of
the activity are required to accurately estimatecumulative
load. Ten percent was selected as an estimate of
a reasonable amount of data for the researcher to collect
in order to predict the cumulative load of an activity. For
the secondary objective, it was hypothesized that varia-
tions in relative power would reduce the accuracy of the
estimated cumulative load because participants would
have greater movement variability when bicycling under
conditions other than self-selected.

Methods

A cross-sectional experimental design was used in healthy
adults to address the primary and secondary research ques-
tions. All participants provided written informed consent.
This study was approved by the Hamilton Integrated
Research Ethics Board (HIREB).

Participants

Twenty-four healthy adults (mean 23.4 SD [3.1] years;
mean 23.13 SD [2.94 kg/m2]; 11 men and 13 women)
completed this study. Participants reported high Lower
Extremity Functional Scale scores (mean 79.3 [SD 1.8])
indicating no impairments in lower extremity function
(Wang et al. 2009). Participants were excluded if it was
deemed unsafe for them to partake in exercise, as
determined using the Physical Activity Readiness
Questionnaire (PAR-Q)(Canadian Society for Exercise
Physiology 2004).
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Protocol

Participants completed one study visit and wore shorts,
a t-shirt, and running shoes. Participants completed all
bicycling bouts on a research-grade cycle ergometer
(Lode Excalibur Sport, Groningen, NL). The bicycle was
fitted to each participant using commercial guidelines
based on inseam measurement (Eric Bowen 2011; Gatti
et al. 2015). Pedal straps secured participant’s feet to the
pedals. After a 5-min warm-up, participants completed
three 10-min bouts of cycling during which two-
dimensional pedal reaction forces were collected.
Because errors in estimating cumulative pedal reaction
forces may vary based on power and cadence, partici-
pants were randomized into one of two groups (Table 1).
Group 1 bicycled with a standard power output: 100
watts. The first bicycling bout was at a self-selected pedal-
ing cadence; the remaining two bouts were at 10% more
and 10% less than the self-selected cadence, presented in
randomized order. Group 2 bicycled at a standard pedal-
ing cadence: 80 revolutions per minute (RPM). The first
bout was at a self-selected power output (watts), and the
remaining two bouts were at a power 10% more and 10%
less than self-selected power, presented in randomized
order.

Instrumentation and signal processing

While pedaling, the normal (PRFN) and anterior-
posterior (PRFAP) pedal reaction forces were measured
in newtons (N) at 1kHz using a custom load measuring
bicycle pedal (Novatech, East Sussex, UK) attached to
the right bicycle crank arm; an equivalently shaped and
weighted, but non-functional, apparatus was attached
to the left crank arm. The load measuring pedal mea-
sured down and anterior as positive for the PRFN and
PRFAP. Data were collected and analyzed for the entire
pedal revolution. The collected pedal reaction force
data (PRFN, PRFAP) were filtered using a dual-pass, sec-
ond-order, low-pass Butterworth filter at 10 Hz, which
was determined using residual analysis (Winter 2005).
An example of the filtered PRFN and PRFAP data for
a single participant are presented in Figure 1. The
resultant pedal reaction force (PRFR) was calculated as

the resultant of the filtered PRFN and PRFAP force data.
Data collected from a hall effects switch (Allegro
Microsystems, Worcester, USA) were used to count the
number of revolutions, and to separate force data into
individual revolutions. The time integral of PRFN, PRFAP,
and PRFR (i.e. the respective impulses) were calculated
for each of the first 500 revolutions for each participant.

Outcome measurements

The gold standard measure of cumulative load was the
sum of the measured cumulative PRFN and PRFAP, as
well as the PRFR of the first 500 revolutions of each
participant’s activity. Five-hundred revolutions were
used because all participants completed at least 500
revolutions in all trials. The first 500 cycles were used
for all participants. All cycles, including potential accel-
eration and deceleration cycles, were included in order
to explicitly identify the number of revolutions that
should be omitted for these purposes.

Estimates of cumulative load were produced for all
force measurements (estimated PRFN = ePRFN, esti-
mated PRFAP = ePRFAP, estimated PRFR = ePRFR) by
multiplying the mean of the revolutions of interest by
500 (total revolutions analyzed for each participant). For
objective 1 (i.e. which impulses), the mean of 5 revolu-
tions (1% of the data), extracted in 100 moving win-
dows from the first to the 100th percent, were used to
calculate estimated cumulative load. For objective 2 (i.e.
how many impulses), estimates of cumulative load were
produced using a growing sample of the remaining
data. Each sample used 1% more data than the pre-
vious sample. The growing sample excluded the
impulses that were deemed to be inappropriate for
estimation purposes during objective 1.

Statistical analyses

Least squares regression and root mean squared error
(RMSE) were used to analyze the PRFN, PRFAP, and PRFR
cumulative load data. In the regression analyses used to
complete Objectives 1 and 2, regression through the origin
(RTO)(Eisenhauer 2003) was used. RTO forces an intercept
of 0 and was used to improve the interpretability of
the fitted models. This approach avoids the challenge of
interpreting variations in both intercept and slope simulta-
neously. RTO is also theoretically appropriate for assessing
the relationship between the measured and estimated
cumulative loads because they should have an intercept
of 0. All reported RMSE valueswere normalized to themean
total impulse of all participants and represent percent error.
All described methods were used for the PRFN, PRFAP, and
PRFR.

Table 1. Description of powers and cadences performed by
participants in Groups 1 and 2. This table shows the three
conditions for relative power and cadence (self-selected mod-
erate, +10% and -10% of self-selected).
Group 1st Bout 2nd Bout 3rd Bout

1 Power (W) 100 100 100
Cadence (RPM) Self-selected +10% −10%

2 Power (W) Self-selected +10% −10%
Cadence (RPM) 80 80 80
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Objective 1: which impulses accurately predict
cumulative load?
Regression and RMSE analyses were completed between
measured cumulative load and the estimate produced
using each individual percent. To identify outliers, 95%
confidence intervals were used. If any percent fell outside
of the 95% confidence interval for the mean slope, R2, and
RMSE of all 100%of the data, it was deemed to be an outlier
and excluded.

Objective 2: how many impulses needed to
accurately predict cumulative load?
The number of data points required to ensure RMSE
was < 5% was identified. Prior studies have showed
differences in cumulative load between healthy and
clinical populations in the range of 7–15% (Norman
et al. 1998). An RMSE of 5% is equivalent to a(minimum
detectable difference at 95% confidence of ± 13.85%
(minimum detectable difference ¼ RMSE � z � score of

desired confidence � ffiffiffi
2

p Þ. Therefore, an RMSE of <5%
will enable identification of differences of >14% at the
individual level, with smaller differences detectable for
group statistics. The slope and R2 were also determined
and are presented for completeness. All the above
analyses were performed using the Statsmodels mod-
ule in Python 2.7.

Secondary objective: effect of activity intensity on
cumulative load prediction
Relative cadence and power (1 = self-selectedmoderate, 2
= self-selected +10%, 3 = self-selected -10%), as well as
absolute cadence (RPM) and power (W), were used to
investigate this secondary objective. The effect of absolute
and relative cadence on estimating cumulative load was
tested using the samples of data determined in steps 1
and 2 to produce an accurate estimate of cumulative load
for each of the PRFN, PRFAP, and PRFR. Relative Cadence
and Power: Analysis of variance (ANOVA) was used to

determine whether the error in estimated cumulative
load (error = estimated – measured) was different
between the three relative efforts (self-selected, +10%,
-10%). In total, six ANOVAs were run. Two ANOVAs were
conducted for each of the three force measurements
(PRFN, PRFAP, PRFR); one ANOVA for each of cadence and
power. Note that explicit corrections for conductingmulti-
ple tests were not conducted. Absolute Cadence and
Power: Three regressions were run, one for each pedal
reaction force, with the error in estimated cumulative load
as the dependent variable and absolute cadence and
power as well as participant as predictors. The regression
variance-covariance matrix and standard errors were
adjusted to allow multiple observations per participant
using the vce(cluster) command in Stata 13.1. All statistical
analyses associated with this secondary objective were
performed using Stata 13.1 (StataCorp LP, TX, USA).

Results

The mean power output for all trials (3 per participant) was
105.0 (SD 27.5) W, and the mean cadence was 78.6 (SD
8.0) RPM. The mean self-selected cadence (Group 1) was
77.3 (SD 9.0) RPM, and themean self-selected power output
(Group 2) was 110.0 (SD 36.7) W. Half of all participants (12/
24) were randomized to Group 1 (constant power). There
were no statistical differences (p> 0.350) in the measured
cumulative load between these Groups for any of the three
reaction forces (Difference [95% CI]: PRFN = -1445.3Ns
[-6115.8 to 3225.3], PRFAP = -1412.5Ns [-4456.5 to 1631.5],
PRFR = -2130.4Ns [-6788.4 to 2527.7]).

Descriptive statistics of the measured cumulative load,
by group, are presented in (Table 2). The coefficient of
variation (cv = σ ÷ μwhere: cv= coefficient of variation; σ =
standard deviation; μ = mean) of measured impulses was
calculated. On average, the cv of the PRFN and PRFR was
13.9% and 13.5%, respectively; the PRFAP cv was 23.7%.
There was a statistically significant difference in cv
between PRFAP and both PRFN (p < 0.001; difference =

Figure 1. Representative force data from the first 500 revolutions of a single bicycling bout were extracted for one participant. Each
of the 500 revolutions was time-normalized (0–100), and the mean (solid line) and 95% confidence interval (dashed line) of the
time-normalized pedal reactions forces for the PRFN (A) and PRFAP (B) are plotted.
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-9.8%; 95% CI -12.7% to -6.9%) and PRFR (p < 0.001;
difference = -10.2%; 95% CI -13.1% to -7.4%).

Objective 1: which impulses accurately predict
cumulative load?

All but the first 10 revolutions (2%) of the data fell within
the 95% confidence interval for R2, slope, and RMSE
and were thus deemed suitable to estimate the PRFN
and the PRFR (Figure 2). Only the first five revolutions
(1%) of the data were excluded for the PRFAP. As can be
seen in Figure 2(b), the slope of the regressions used to
predict measured cumulative load for these first few per-
cents are <1.0, indicating that estimates produced using
these data were overestimating cumulative load.

Objective 2: how many impulses needed to
accurately predict cumulative load?

Once data from the beginning of each bout (2% for
PRFN and PRFR; 1% for PRFAP) were excluded, using 80
revolutions (16%) of the PRFN, 65 revolutions (13%) of
the PRFR, and 320 revolutions (64%) of the PRFAP data
resulted in an RMSE below 5% (Figure 3).

Secondary objective: effect of activity intensity on
cumulative load prediction

All comparisons of estimates of cumulative load for
cadence andpowerwere done using the 3rd to 18th percent
(80 revolutions; 16%) of thedata for thePRFN, the2

nd to 66th

percent (320 revolutions; 64%) of the data for the PRFAP,
and the 3rd to 16th percent (65 revolutions; 13%) of the data
for the PRFR.

Relative power and cadence
Absolute error in estimates of cumulative load was not
different between relative powers (PRFAP: R

2 = .075, p =
.277; PRFN: R

2 = .032, p = .581; PRFR: R
2 = .051, p = .427).

There were no differences in absolute error between
relative cadences (PRFAP: R

2 = .047, p = .452; PRFN: R
2 =

.025, p = .658; PRFR: R
2 = .031, p= .597).

Absolute power and cadence
For the PRFAP, neither power (p= .522) nor cadence
(p = .142) were predictors of the error in cumulative load
(R2 = .082, participant p = .217). For the PRFN, power (p =
.052) and cadence (p= .062) approached but were not
significant predictors of the error in cumulative load
(R2 = .354, participant p = .001). For themodel predicting

Table 2. Mean and standard deviation of measured cumulative reaction forces (total impulse) for the PRFN, PRFAP, and PRFR groups,
and both groups combined. There were no statistically significant differences in measured cumulative load between the groups, for
any of the three reaction forces (p > 0.35).

Force Direction

Mean Cumulative Load by Group

Group 1
Constant Power

Group 2
Constant Cadence Both Groups Combined

PRFN 41,951.56 (9008.9) Ns 40,506.3 (10,782.4) Ns 41,228.9 (9891.9) Ns
PRFAP 13,757.6 (4453.2) Ns 15,170.1 (8001.89) Ns 14,463.8 (6468.8) Ns
PRFR 45,966.9 (10,500.5) Ns 43,836.5 (9279.5) Ns 44,901.72 (9897.1) Ns

a b

c

Figure 2. R2 (A), slope (B), and normalized RMSE (C) for the following estimates of cumulative load: ePRFN (solid red), ePRFAP (dotted
blue), and ePRFR (dashed green) produced using each individual percent of the collected data.
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the PRFR error (R
2 = .361,participant p = .002), power was

approaching statistical significance (p= .064), but cadence
was not (p = .343). To determine whether the inherent
relationships between power and cadence with pedal
force, and therefore cumulative load, were the cause of
the borderline significant relationships observed, the error
was normalized (difference/measured cumulative load)
and regressions re-run. Normalizing the error increased
the probability that there was no relationship (increased
p – value) in all cases, except for cadence in the PRFR
model where cadence became a significant predictor
of PRFR error (PRFN: R

2 = .275, power p = .134, cadence
p = .217, participant p = .002; PRFR: R

2 = .289, power
p = .111, cadence p = .033, participant p = .004; PRFAP:
R2 = .130, power p= .296, cadence p = .096, participant
p= .080).

Discussion and implications

This investigation determined that at least 65 revolu-
tions of bicycling would be needed to make a valid
estimate of the cumulative pedal reaction force of
a 500 pedal-revolution (~10 min) bicycling bout in
a sample of young, healthy adults. Furthermore, it was
found that the first 1–2% of the collected bicycling data
from 500 revolutions did not yield impulses that pro-
duce an accurate estimate of cumulative load in cycling.
Greater accuracy of cumulative load estimates was
achieved for measurements with low variability relative
to the mean (i.e. PRFN) compared to those with large
variability relative to the mean (i.e. PRFAP).

When estimating cumulative pedal reaction force from
a bout of bicycling, the data collected at the start of this
bicycling activity are not representative of the rest of the
activity. In particular, the first 10 revolutions of the
PRFN and PRFR and the first five revolutions of the PRFAP
from 500 revolutions yielded unacceptable estimates of
cumulative load in cycling. These impulses at the begin-
ning of the bicycling activity are on average greater than
the impulses of the rest of the activity. As participants
accelerated the pedal from rest, they were pedaling at
a slower frequency than the rest of the activity; because
power was held constant, they were, therefore, pedaling
against greater resistance. The longer duration and larger
resistance of these first revolutions led to necessarily
greater impulses. These findings highlight that the con-
text under which data iare collected can affect the accu-
racy of the estimated cumulative load. In this case,
revolutions from the start of an activity are not represen-
tative of the rest of the activity. This finding is useful to
consider when interpreting running biomechanical ana-
lyses. For example, it has been reported that overground
and treadmill running kinetics and kinematics are differ-
ent (Riley et al. 2008). In the investigation by Riley et al.,
overground running was down a 15-m runway and
required acceleration and deceleration of the runner.
Conversely, treadmill running allowed a 3–5-min warm-
up followed by 5 x 30s collections, resulting in data collec-
tion during a phase of constant velocity. It is likely that
achievement of a truer steady state during treadmill run-
ning contributed, at least in part, to systematic differences
between overground and treadmill analyses.

a b

c

Figure 3. Normalized RMSE (A), R2 (B), and slope (C) for estimates of cumulative load produced using between 1% and 99% of the
whole activity for PRFAP (dashed blue), and between 1% and 98% of the whole activity for PRFN (solid red) and PRFR (dashed green).
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After eliminating impulses collected during the
acceleration phase of each bicycling bout, it was
found that the PRFN and PRFR required a modest num-
ber of revolutions to make a valid estimate of cumula-
tive load with samples of 16% (80 revolutions) and 13%
(65 revolutions) of the whole 500 revolution activity. On
the other hand, the PRFAP required a much larger 64%
(320 revolutions) of the activity. It is likely that the
larger number of collected revolutions needed to esti-
mate cumulative load of the PRFAP is due to the larger
relative variability in the PRFAP impulses. The larger
relative variability could in part be explained by the
fact that the PRFAP forces and impulses are smaller
than those for the PRFN. Furthermore, deviations in
PRFAP and PRFN may have counterbalanced one
another, yielding a more consistent resultant force pro-
file. That is, from revolution to revolution, an individual
has a relatively constant PRFR force profile, though they
may alter their cycling pattern in such a way that con-
tributions from the PRFN and PRFAP forces change
slightly. This counterbalancing can be thought of simi-
lar to Winter’s (Winter 1984) description of how the
sagittal plane moments about the ankle, knee, and hip
may vary, but their sum, which is referred to as the
support moment, stays relatively constant. These find-
ings indicate that given a common quantity of sampled
data, estimation of PRFR is more likely to be accurate.

The secondary analysis determined that there was
no systematic effect of relative cadence or power on
the absolute error in estimates of cumulative load for
PRFN, PRFAP, or PRFR. After normalizing the error in
estimates of cumulative load, absolute cadence was
a significant predictor of the PRFR. The small magnitude
of explained variance (R2 = .289) indicates that this
finding is likely unimportant. Further, it is important to
consider that conducting six regression analyses ele-
vated the likelihood of finding a significant result.
A Sidak correction for multiple comparisons would
decrease the necessary level of significance to 0.0085,
which would eliminate the statistical significance of this
finding.

The results from this investigation suggest future
studies must include tens to hundreds of impulse mea-
surements to accurately estimate cumulative load. At
least 65 revolutions of the activity must be used to
make a valid estimate of cumulative load in cycling.
When including the acceleration phase, at least 75
revolutions (15%) would need to be sampled. In com-
parison, estimates of the cumulative knee adductor
moment during gait (Maly et al. 2013) used five trials
and estimates of low back loading (L4/L5) during
sheep-shearing (Gregory et al. 2006) used six trials.
These activities (gait and sheep-shearing) are inherently

different to bicycling, and therefore the results of this
study do not translate directly. However, results from
the present investigation highlight the need to deter-
mine whether these samples of data (five or six trials)
are capable of yielding accurate estimates of
cumulative load. Estimates from activities other than
bicycling could require more or less data to yield
a valid estimate of cumulative load. For example, it
could be assumed that most individuals take thousands
of steps a day meaning that they are more trained in
walking than bicycling. This training may lead them to
have more consistent movement patterns, and there-
fore loads. Nonetheless, bicycling is a task constrained
by the bicycle itself, likely minimizing variability in force
profiles used to achieve the task.

Furthermore, the estimates of cumulative load expo-
sures during occupational tasks and gait reported in other
investigations reflect activities performed outside of the
laboratory (Gregory et al. 2006; Maly et al. 2013).
Uncontrolled environments likely result in even greater
variability in movement patterns, likely increasing error in
these estimates. For example, outside of the laboratory
individuals may walk at different speeds, or carry an item
(e.g. purse) while walking, causing changes to ground
reaction forces and the associated variability (Hsiang and
Chang 2002). For cumulative load to be appropriately
utilized for identifying cause and effect in musculoskeletal
conditions, setting safe working limits, and providing
exercise or clinical recommendations, theremust be accu-
rate and reproducible methods of measurement. The
described methodologies provide guidelines to estimate
cumulative load during a confined bicycling task. To
enable accurate estimates produced during highly vari-
able leisure time bicycling, walking, running, lifting, and
carrying it is likely that new methods are needed. Use of
inertial measurement units (IMUs) is likely an inexpensive
and fruitful next step that will improve estimates of cumu-
lative load for a range of free-living conditions (Ryan 2006;
Skotte et al. 2014; Shull et al. 2014).

Future investigations that use cumulative load are
encouraged to perform analyses of the accuracy of cumu-
lative load estimates as technological advancement allows.
For example, gait data continuously sampled on an instru-
mented treadmill could provide some insight into cumula-
tive load estimates for gait. In such an investigation, similar
analyses to those reported here could be employed to
determine which portions of the collected walking bout
are suitable to estimate cumulative load, and how many
collected steps should be used. By performing these stu-
dies and likely improving accuracy, it is possible that stron-
ger associations will be found, resulting in better
discrimination between pathologic populations using
cumulative load estimates.

72 A. A. GATTI AND M. R. MALY



Limitations

These estimates were in a healthy young sample under
controlled laboratory conditions and therefore repre-
sent a minimum sample size. When applied to the real
world, and in clinical populations, it would be reason-
able to expect there to be greater error, and therefore
a greater number of collected revolutions are likely
needed to make an accurate estimate of cumulative
load during bicycling. Furthermore, a limited range of
powers (63–220 W) and cadences (64–99 RPM) were
tested and participants were instructed to maintain
the same cadence throughout their activity. While
these powers and cadences reflect a relatively broad
range, these are lower than those that are often used
by competitive athletes.

Conclusion

When estimating cumulative pedal reaction forces of
a bicycling activity, it is necessary to exclude data from
the acceleration phase of the activity. For the normal
and resultant forces, relatively few samples of data are
needed to accurately estimate cumulative load. When
estimating cumulative load in the anterior–posterior
direction, a larger sample of trials is needed to accu-
rately predict actual cumulative load. These results
highlight the fact that researchers should investigate
the accuracy of estimates of cumulative load.
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