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Abstract
Accurate prediction of a new compound's pharmacokinetic (PK) profile is piv-
otal for the success of drug discovery programs. An initial assessment of PK in 
preclinical species and humans is typically performed through allometric scal-
ing and mathematical modeling. These methods use parameters estimated from 
in vitro or in vivo experiments, which although helpful for an initial estimation, 
require extensive animal experiments. Furthermore, mathematical models are 
limited by the mechanistic underpinning of the drugs' absorption, distribution, 
metabolism, and elimination (ADME) which are largely unknown in the early 
stages of drug discovery. In this work, we propose a novel methodology in which 
concentration versus time profile of small molecules in rats is directly predicted 
by machine learning (ML) using structure- driven molecular properties as input 
and thus mitigating the need for animal experimentation. The proposed frame-
work initially predicts ADME properties based on molecular structure and then 
uses them as input to a ML model to predict the PK profile. For the compounds 
tested, our results demonstrate that PK profiles can be adequately predicted using 
the proposed algorithm, especially for compounds with Tanimoto score greater 
than 0.5, the average mean absolute percentage error between predicted PK pro-
file and observed PK profile data was found to be less than 150%. The suggested 
framework aims to facilitate PK predictions and thus support molecular screen-
ing and design earlier in the drug discovery process.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
PK evaluation plays a critical role in understanding a compound's safety and ef-
ficacy and determining its starting and efficacious dose for future clinical studies. 
There are major efforts in utilizing machine learning (ML) to facilitate compound 
screening and lead discovery by building robust QSAR models to predict ADME 
properties. ML- based prediction of in vivo PK dynamics is much less pronounced, 
probably due to limited availability of large quantity of in vivo PK profile data.
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INTRODUCTION

Drug discovery is a complex process that encompasses 
several distinct stages. Initially, in target identification 
and validation, potential biological targets for a specific 
disease are identified. Next, in lead discovery and optimi-
zation, many compounds directed to the specified target 
are synthesized, screened, and optimized with respect to 
their absorption, distribution, metabolism, elimination 
(ADME) characteristics and physiochemical (PC) prop-
erties. Finally, the selected compounds progress through 
preclinical development to assess their pharmacokinetics 
(PK), efficacy and toxicity in animal models before poten-
tial regulatory approval and clinical testing.1 Oftentimes, 
due to lack of efficacy or lack of exposure in preclinical 
species, researchers need to repeat the steps of lead iden-
tification, a process that increases the expense of the drug 
discovery process and may lead to more animal testing.

PK evaluation plays a critical role in understanding 
a compound's safety and efficacy and determining its 
starting and efficacious dose for future clinical studies.2–4 
Traditionally, PK in humans is predicted by scaling PK 
from preclinical species (e.g. mice, rats, dogs, mini- pigs 
and non- human primates (NHP)), a method that requires 
extensive use of animal experiments. Toward the goal of 
mitigating animal experiments, the US Food and Drug 
Administration (FDA) modernization act 2.0 authorizes 
the use of certain alternatives to animal testing including 
computer- based models to obtain an exemption from FDA 
to investigate safety and effectiveness of a drug.5,6 Machine 
learning (ML) is one such alternative approach which has 
recently shown promise in making the drug discovery and 
development process more efficient.7–9

ML was shown to efficiently predict ADME proper-
ties (e.g., clearance (CL), intrinsic clearance (CLint), vol-
ume of distribution (Vdss)) as well as PC properties (e.g., 

lipophilicity (logP), solubility, fraction unbound (fu), pKa) 
of small molecules in multiple studies.10–14 ML- driven pre-
dictions were shown to significantly reduce timelines of 
drug discovery process by expediting molecular screening 
and rank ordering of novel compounds.15 Furthermore, 
we have recently demonstrated that combining these ML 
approaches with traditional pharmacometric models such 
as 1- compartment, or physiologically- based pharmacoki-
netic (PBPK) modeling, can lead to reasonable predictions 
of PK profiles for small molecules.13

In this work, we expand our previous efforts and demon-
strate a proof of concept by using a novel ML framework 
where small molecule PK dynamics are predicted solely 
using ML. The rationale for replacing the pharmacoki-
netic modeling step applied previously (1- compartment, 
PBPK model) with ML is to eliminate the assumptions 
accompanying mechanistic models which are hard to be 
validated in the early development stages. The presented 
framework can help mitigate the need for animal experi-
ments and provide insights into compound exposure that 
can be further utilized in molecule screening and reduce 
the costs and timelines associated with the drug discovery 
process.13

METHODS

Data

Data available from two internal databases were used for 
model development and testing, and these compounds 
were part of different series. First dataset consisted of 
molecular structures of 530 drug compounds which were 
represented as Simplified molecular- input line- entry sys-
tem (SMILES) strings, along with their in vivo clearance 
and in vivo volume of distribution which were generated 

WHAT QUESTION DID THIS STUDY ADDRESS?
Role of machine learning to predict plasma PK profiles of small molecules based 
on chemical structure.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Novel application of machine learning to predict plasma PK profiles based on 
chemical structure of small molecules in comparison to traditional approaches.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
The framework presented in this article provides a capability to perform virtual 
PK analysis of preclinical species (Rats). These predictions can be utilized to get 
insights into compound exposure at the very early stages of drug discovery pro-
cess and thus facilitate compound screening. Thus, may help in reducing the cost 
and timeline of drug discovery process.
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based on non- compartmental analysis (NCA). These data 
were utilized to identify which features will contribute 
to accurate prediction of PK profiles. The second dataset 
consisted of PK profiles (concentration vs. time data) of 
397 compounds in rats administered 1 mg/kg intravenous 
(IV) dose. By combining these two datasets we created a 
group of 391 compounds for which SMILES string, PK pa-
rameters, and corresponding PK profiles were available.

Prior to ML model development, SMILES strings were 
preprocessed for salt stripping, were converted to their 
canonical forms and standardization was performed.16 
These SMILES strings were then represented as finger-
prints (Morgan fingerprint 2048 bit) or molecular descrip-
tors using RDKit. And 200 structure- based descriptors 
were determined using RDKit such as QED, TPSA (topo-
logical polar surface area), number of hydrogen bond do-
nors/acceptors etc.17

Model framework

The proposed framework is shown in Figure  1. Small 
molecules' structure was available in the form of SMILES 
string as shown in panel (1). RDKit package (version 2018. 
09.1) in Python (version 3.6.10) was used to transform the 
SMILES string into either descriptors or molecular fin-
gerprints as shown in panel 2.17 An exhaustive feature 
selection approach was performed where different com-
binations of features (PK parameters, descriptors, and fin-
gerprints) were evaluated to identify the best- performing 
input parameters. Different scenarios were defined, based 
on the inclusion and exclusion of features. This included 
combination of CL and Vdss as input features, CL, Vdss, 
and RDKit descriptors as input features, CL, Vdss, RDKit 
fingerprint as input features and CL, Vdss, RDKit descrip-
tor and RDKit fingerprint as input features. PK profiles 
were predicted using these models and the predicted PK 
profiles were compared with the observed PK profiles 
and the performance metrics (MAPE, R2 etc.) were cal-
culated. The final model was selected based on the per-
formance metrics. These features were evaluated since 
they may implicitly affect the PK profiles, for example, 
RDKit descriptors include properties such as molecular 
weight, logP (lipophilicity), etc., which have been shown 
to impact PK profiles and are typically used as an input 
in well- established PBPK software's such as Simcyp and 
PK- Sim. After performing the feature selection, ML mod-
els were developed to predict the most important features 
((Clearance (CL) and volume of distribution (Vdss))) 
based on the molecular structure.13 Finally, predicted CL 
and Vdss were used as an input to an additional machine 
learning (ML) model which predicts the PK profile of the 
compound.

Machine Learning methodology and 
feature selection

As a first step to build the ML model, the dataset was 
split into training and test set. The training set consisted 
of 330 compounds (85% of total compounds) whereas the 
test dataset consisted of 61 compounds (15% of total com-
pounds).13 These 61 compounds were part of the test set 
for all ML models developed for this study. Next, a feature 
selection approach was performed where different combi-
nations of features (PK parameters, descriptors and finger-
prints) were evaluated. Parameters identified from feature 
selection were in vivo CL, and Vdss. Two ML models were 
then built to predict those features based on molecular 
representation. A detailed description of the ML models 
developed to predict in vivo CL and Vdss are shown in our 
previous work.13

Thereafter, a ML model was developed to predict the 
PK profile based on in vivo CL and Vdss. Different algo-
rithms, such as generalized linear models (simple and 
with Poisson distribution), random forest,18 support vector 
regressor,19 light gradient boosting machine (GBM)20 and 
XGBoost21 were tested to evaluate their predictive capa-
bility based on the available dataset (Table S1). All of the 
above models use predicted CL, predicted Vdss, and time 
points (1–24 h with sample every hour) as input and pre-
dict the concentration values at each time point as output. 
Validation of the model was performed by using five fold 
cross- validation on the training set. Hyperparameter opti-
mization was also performed during the cross- validation 
stage (Table S2). Performance metrics such as root mean 
square error (RMSE), mean absolute percentage error 
(MAPE), mean absolute error (MAE) and coefficient of 
determination (R2) were utilized for model comparisons.

PK profiles predicted using the proposed ML frame-
work were compared with observed data. Metrics such as 
R2, MAPE, MAE, ratio of Cmax predicted versus Cmax ob-
served, and ratio of AUC24h (Area Under the Curve until 
24 h) predicted versus AUC24h observed were utilized for 
performance evaluation.13,22

RESULTS

To visualize the chemical space and evaluate the distribu-
tion of the molecules in the test set in comparison with the 
molecules in the training dataset, we utilized t- distribution 
stochastic neighbor embedding (t- SNE) approach using 
chemplot package in python.23 It was observed that the 
molecules in the test dataset are evenly distributed across 
the chemical space of the train dataset, which suggests 
that the test dataset is a good representation of the train-
ing data (Figure 2).13
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To evaluate the performance of the ML model used to 
predict PK profiles, we compared the observed data with 
the ML predictions for the compounds in the test dataset. 
Figure 3 shows the scatter plot of measured concentration 
data and the predicted concentration data. The points are 
evenly distributed across the identity line (dotted black) 
suggesting that the model is able to capture the measured 
data well. XGBoost model with gamma distribution was 
found to have the best performance metrics in comparison 
to other algorithms tested to predict PK profiles using the 
proposed framework (Table S1).

Further evaluation was performed by visually inspect-
ing the PK profiles generated by the proposed method 
versus the observed data (Figure 4). The predictions gen-
erated by the proposed ML framework were able to cap-
ture both mono- exponential and bi- exponential PK for 

the most compounds present in the test set. For bench-
marking, predictions generated by PK- Sim (open systems 
pharmacology) PBPK model informed using QSAR pre-
dictions were overlayed.13 The shaded region accounts for 
the PK variability observed in predicted PK profiles gener-
ated by assuming different distribution models available 
in PK sim, namely, Berezhkovskiy,24 PK Sim standard,25 
Poulin and Theil,22 Rogers and Rowland,26 and Schmidt.27 
It can be observed that the predictions generated by the 
proposed framework were comparable to the predictions 
generated by the PBPK framework (Figure 4, Figure S1).

The distribution of ratio of AUC24h observed to the 
ratio of AUC24h predicted and maximum concentration 
(Cmax) observed to Cmax predicted generated based on 
predictions from the proposed framework are shown in 
Figure 5. The median value of predicted Cmax and AUC24h 

F I G U R E  1  Modeling framework utilized in this study. (1) Chemical structures represented as SMILES string were used as input. (2) 
RDKit package was utilized to extract Fingerprints and Descriptors based on the SMILES string. (3) Feature selection performed to identify 
key features. (4) Chemical structures were then used as an input to a machine learning model to predict PK parameters identified in step 3, 
which were then used as an input to a second machine learning model to predict the PK profile.
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is within two- fold of that of observed Cmax and AUC24h. 
Figure S2 shows the ratio of AUC24h observed to AUC24h 
predicted and Cmax observed to Cmax predicted for individ-
ual PBPK model predictions and average of PBPK model 

predictions. It can be observed that although the median 
value for predictions generated by PBPK models is simi-
lar to that of the predictions generated by ML framework, 
the interquartile range for predictions generated by PBPK 
models is slightly larger than the predictions generated by 
machine learning framework when looking at the ratio of 
Cmax observed to Cmax predicted.

Finally, performance metrics of predictions generated 
by ML framework were evaluated by comparing them 
with the observed data (Table 1). It can be observed from 
the MAPE, AUC24h ratio, and Cmax ratio that the error be-
tween the predictions and observations is around 3- fold, 
which suggests reasonable accuracy.

DISCUSSION

There are continuous efforts in the pharmaceutical indus-
try to optimize drug development process by reducing the 
timelines for the development of new products and mini-
mizing the associated costs while limiting as much as pos-
sible the need to sacrifice animals.28 ML is an excellent 
tool that can transform historical data to additional knowl-
edge, based on which decisions can be made to facilitate 
the drug discovery process. Although there are major ef-
forts in utilizing ML to facilitate compound screening and 
lead discovery by building robust QSAR models to predict 
ADME properties,15,29 ML- based prediction of in vivo PK 
dynamics is much less pronounced, probably due to lim-
ited availability of large quantity of in vivo PK profile data 
in comparison to in vitro assays.

Traditionally, PK dynamics of a compound are pre-
dicted by using PBPK and compartmental modeling, 
which require the researchers to generate large amount 
of in vitro/in vivo data. This motivates the need to explore 
the application of ML in this field, which may mitigate 
some of assumptions required while selecting certain 
mechanistic models and need to generate large amount of 
new data to gain insights into PK Characteristics.

The proposed framework uses as input ML- driven 
predictions of in vivo CL and in vivo Vdss to predict PK 
profiles. These parameters were identified to play a key 
role in the prediction of PK profile after performing a fea-
ture importance on a bigger set of input features which 
included descriptors, fingerprints, and PK properties. For 
the proof of concept developed in this work and to ensure 
any unbiased prediction of PK profiles (predicting PK pro-
files for compounds which were in the training set in any 
of the ML models developed), we utilized the available in- 
house dataset to develop the ML model to predict in vivo 
CL and Vdss. We further evaluated the error propagated 
of these models when utilizing the QSAR predictions of 
CL and Vdss to inform the ML model to predict PK profile 

F I G U R E  2  Visualization of the chemical space of compounds 
used to train the model and the compounds which were used in 
the test set. T distributed stochastic neighbor embedding (t- SNE) 
approach is used to perform dimensionality reduction to help 
facilitate visualization of chemical space.

F I G U R E  3  Scatter plot of concentrations predicted 
using machine learning framework (y- axis) versus observed 
concentrations (x- axis) for the test dataset.
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F I G U R E  4  PK profiles (concentration vs. time) predicted using ML framework (red line), PBPK modeling (Green region) overlayed over 
observed data (Blue dots).

F I G U R E  5  Distribution of ratio 
of AUC24h observed versus AUC24h 
predicted, and ratio of Cmax observed 
versus Cmax predicted for predictions 
generated using ML framework.
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and comparing them to the scenario where ML model to 
predict PK profile is informed using experimentally mea-
sured in vivo CL and Vdss. Our analysis showed that there 
was around twofold difference between the error metrics, 
which further suggested that the QSAR models developed 
for this work have reasonable accuracy (Table S3).

Capability of ML model to predict PK profile data in 
comparison to other methods can be observed in Figures 3 
and 4, Table 1 and Table S4. The proposed ML method can 
capture both mono- exponential and bi- exponential PK 
profiles unlike one- compartment model which assumes 
single volume of distribution and thus is limited to pre-
dicting mono- exponential PK profile. XGBoost algorithm 
utilized in this work is an ensemble model based on gradi-
ent boosting, where multiple weak models (decision trees) 
are combined to create a stronger predictive model. It sup-
ports different objective functions, and in this work, the 
loss function is based on log- likelihood of the gamma dis-
tribution. Gamma distribution is a two- parameter proba-
bility distribution that describes the time until an event 
occurs. The two parameters, shape (α) and rate (β), control 
the shape of the distribution curve and the distribution 
decay, respectively,30 which could explain the positive re-
sults using in vivo CL, and Vdss as model features.

AUC24h derived from predicted PK profiles were close 
to the AUC24h derived from observed PK profile data 
(Figure 5). Furthermore, the average value of ratio of Cmax 
observed versus Cmax predicted, and ratio of AUC24h ob-
served versus AUC24h predicted was within twofold which 
suggests reasonable accuracy.31 Similarly, from Figure S2, 
it can be observed that even though the median value 
of ratio of Cmax's and AUC's for the average and individ-
ual PBPK profile is closer to 1, the inter- quartile range is 
wider in comparison to the prediction generated based on 
proposed ML framework. This may be linked to the un-
certainty associated with the properties or additional un-
known mechanisms which were not utilized to inform the 
PBPK model.

It can be observed that for certain compounds, the pro-
posed framework has high error in predicting the PK pro-
files, this may be attributed to the difference in chemical 
structure of those compounds in comparison to the com-
pounds utilized for training the model. To evaluate this, 
we measured Tanimoto score between the compounds 

in the test set and the compounds in the training dataset. 
Tanimoto score was utilized to measure the similarity be-
tween the two datasets. It was observed that 41 compounds 
in the test set had less than 0.7 Tanimoto score, with 24 of 
them having less than 0.5 Tanimoto score, which suggests 
significant difference between the chemical structure32 
(Figure S3). Average MAPE of these 24 compounds was 
found to be 501% whereas for rest of the compounds, the 
average MAPE was 145%. ML models developed in this 
work can be further improved by adding more data to the 
training set in the future, which may make implementa-
tion of deep learning approaches feasible as well.

With advancement of ML in drug discovery, multiple 
research groups have been trying to predict PK proper-
ties and PK profiles by utilizing PBPK models informed 
using predictions of QSAR models,13,33 and by utilizing 
chemical structures along with certain experimentally 
derived in  vitro properties to inform ML models which 
is used for predicting PK profiles.34 However, the frame-
work presented in this article is the first example of pre-
dicting PK profiles solely based on chemical structures 
as input. This proof of concept demonstrates the feasi-
bility of ML models to accurately predict PK profiles and 
thus provides encouragement to further explore this area. 
As most ML methodologies, the black- box nature of the 
presented work can limit its application on evaluating 
plasma PK for different species and different doses than 
those present in the training set. Methodology requires 
dynamic involvement of extended PK datasets to build 
intelligence on PK differences between species, and non- 
linearities that may arise due to saturation of involved 
clearance mechanisms.

In conclusion, the ML framework presented in this ar-
ticle can predict PK profiles with reasonable accuracy for 
most of the scenarios tested. These efforts aim to enable 
PK profile predictions earlier in the drug discovery pro-
cess thus helping scientists gain insights into exposure of 
the compounds in vivo and helping them with prioritiza-
tion and screening of compounds.
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framework.

Metrics ML

MAPE (%) 267
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Median Cmaxobs/Cmaxpred 0.92
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