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Despite the broad application of different immunotherapeutic strategies for the treatment
of solid as well as hematopoietic cancers, the efficacy of these therapies is still limited, with
only a minority of patients having a long-term benefit resulting in an improved survival rate.
In order to increase the response rates of patients to the currently available
immunotherapies, a better understanding of the molecular mechanisms underlying the
intrinsic and/or extrinsic resistance to treatment is required. There exist increasing
evidences that activation of different oncogenic pathways as well as inactivation of
tumor suppressor genes (TSG) in tumor cells inhibit the immune cell recognition and
influegnce the composition of the tumor microenvironment (TME), thus leading to an
impaired anti-tumoral immune response. A deeper understanding of the link between the
tumor milieu and genomic alterations of TSGs and oncogenes is indispensable for the
optimization of immunotherapies and to predict the patients’ response to these
treatments. This review summarizes the role of different cancer-related, oncogene- and
TSG-controlled pathways in the context of anti-tumoral immunity and response to
different immunotherapies.
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INTRODUCTION

Malignant transformation is driven by the activation of oncogenes or inactivation of tumor
suppressor genes (TSGs) leading to an enhanced and uncontrolled cell proliferation and survival.
In addition to such cell-intrinsic effects, alterations in these pathways have also paracrine effects on
the surrounding tumor microenvironment (TME), influencing also the frequencies and spatial
distribution of immune cells (1, 2). Recently, evaluation of The Cancer Genome Atlas (TCGA)
databases for the status of TSGs or oncogenes has highlighted multiple correlations with the amount
and type of immune cell infiltrate as well as with the responsiveness or resistance to (immuno)
therapies (3, 4).

We will start giving a general overview of how T lymphocyte responses are induced and
controlled, about the tumor infiltrating immune cell repertoire and the intratumoral heterogeneity.
Then, we will describe the role of selected oncogenes and TSGs and their associated pathways in
modulating anti-tumor immune responses by affecting immune modulatory molecules in tumors
org May 2022 | Volume 13 | Article 8836391
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and by inducing a tumor promoting and/or an immune
suppressive TME. Moreover, we will discuss possible strategies
to revert these processes in order to increase the clinical outcome
of patients and enhance (immuno)therapeutic efficacy.
CHARACTERISTICS OF T CELL
ACTIVATION AND RESPONSE

In order to effectively and qualitatively eliminate pathogens as well
as tumor cells, the adaptive immune system is relying on complex
cell communication interactions between T lymphocytes and
antigen presenting cells (APCs) such as dendritic cells (DCs)
(5). At the level of whole cells, these interactions take place
through the formation of the immunological synapse, a supra-
molecular activation cluster (SMAC) including the T cell receptor
(TCR) complex and multiple adhesion molecules that allow active
signaling via the TCR. Thus, the local membrane topology has a
large impact on TCR signaling (6, 7), which is a dynamic process
generating a unique specificity and sensitivity of the T cell
response (8). It is well known that T cell activation requires at
least two initial signals: the so-called first signal, corresponding to
the interaction of the TCR with its antigenic peptide presented by
the major histocompatibility complex (MHC) antigen, while the
second co-stimulatory signal is mainly provided by B7 ligands on
APCs binding to the CD28 co-receptor of T cells (9). This leads to
the formation of protein signaling complexes and subsequently to
the activation of downstream pathways that induce the expression
of interleukin (IL)-2 and other cytokines known to promote the
expansion as well as the proliferation of T cells (10). Furthermore,
T cell activation could be modulated by a series of spatial
interaction processes, which allow biological decision between
activation, anergy, apoptosis or exhaustion of T cells.
Stimulation with only the first or the second signal, respectively,
causes T cell anergy or apoptosis. In contrast, properly activated T
cells are able to eliminate pathogen-infected cells as well as cancer
cells, while avoiding damage to the healthy tissues of the host
organism. The speed, sensitivity and specificity of this process is
remarkable and conveyed by the activation of downstream
pathways that regulate the expression and function of a plethora
of immune modulatory genes/proteins (11). These include an
upregulation of inhibitory molecules, a decrease of effector
functions and a reduced proliferation that are required to shut-
down the immune response after removal of the “unhealthy cells”
(12). Furthermore, TCR signaling could regulate the stability and/
or translation of cytokine mRNAs suggesting both a
transcriptional as well as a post-transcriptional control.
IMPORTANT FEATURES OF IMMUNE
CHECKPOINTS

Immune checkpoints (ICPs) are co-regulatory molecules
controlling T cell activation and can be classified into
stimulatory and inhibitory receptors. The former include CD28,
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CD27, ICOS, CD226, HVEM and OX40, while the latter comprise
CTLA-4 (cytotoxic T lymphocyte-associated protein-4), PD1
(programmed cell death-1), TIGIT (T cell immunoreceptor with
immunoglobulin and ITIM domain), VISTA (V-domain Ig
suppressor of T cell activation) and LAG-3 (lymphocyte
activation gene 3) (13–15). Some molecules, like BTLA and
TIM-3 (T cell immunoglobulin and mucin domain 3), could
exert both stimulatory as well as inhibitory activities depending
on the cellular context (16–18). The stimulatory receptors are
constitutively expressed or induced shortly after successful T cell
activation, while the inhibitory ones are typically induced upon T
cell stimulation as a negative feedback mechanism to avoid hyper-
stimulation as well as to preserve healthy tissue integrity (19).
Thus, a balance between co-stimulatory and co-inhibitory signals
is required for the control of T cell responses and to ensure that
activation is sufficient to eliminate pathogens and cancer cells, but
not excessive since it would otherwise cause collateral damage
(20). Due to these properties, T cell activation is tightly regulated
and its inhibition is the key to prevent autoimmunity. This is in
accordance with the function of immune checkpoint inhibitors
(ICPis), which are able to enhance T cell anti-tumoral immunity,
but can also induce autoimmune responses (21). Currently,
monoclonal antibodies (mAbs) targeting the ICPs CTLA-4, PD1
and programmed death ligand 1 (PD-L1) have been approved by
the Federal Drug Administration (FDA) and the European
Medical Agency (EMA) for the treatment of diverse cancers
including metastatic melanoma, non-small cell lung carcinoma
(NSCLC), colorectal carcinoma (CRC), renal cell carcinoma
(RCC) as well as head and neck squamous cell carcinoma
(HNSCC) (22). Other ICPi are being evaluated for efficacy in
multiple clinical trials. Mechanistically, ICPi could either compete
for ligands of the activating co-receptors or control the surface
expression of immune checkpoint receptors (ICP-Rs). Moreover,
ICPi can interfere with the spatial arrangement necessary for
efficient TCR signaling and thus recruit inhibitors of TCR
activation, such as phosphatases, which can revert the TCR
activation-induced phosphorylation and can induce diverse
resistance mechanisms characterized by e.g. alterations of the
interferon (IFN) pathway and of components of the antigen
processing machinery (APM) (22, 23). Frequently, the efficacy of
ICPi treatment is correlated to the tumor mutational burden
(TMB) and to its immune contexture (24–27). Tumors with a
high TMB are characterized by higher levels of neoantigens
leading to an increased immune cell infiltration and display a
favorable outcome and better responses to ICPi (28). For example,
in triple negative breast cancer (TNBC), the TMB and the immune
gene expression profile add an independent value for the
prediction of pathologic complete remission, which has also
relevance for the design of individually tailored (immuno)
therapies (29). Interestingly, recent data indicate that the
mutation quality is more important than their quantity. This is
reflected by the fact that not all mutations are equivalent regarding
their immunologic impact. For example, frame-shift mutations
affecting RNA splicing or insertion/deletion generally create more
immunogenic neoantigens than common single nucleotide
mutations (27).
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ICPs AS TUMOR SUPPRESSORS IN SOME
CANCERS

Recently, next to their role in promoting or inhibiting T cell-
based immunity, a direct role as tumor suppressors has been
suggested for some ICPs. For example, the expression of the
costimulatory CD80 molecule on tumor cells could have a pro-
and anti-oncogenic role (30). Also for PD1 signaling in tumor
cells opposing effects have been found depending on the tumor
type analyzed and the presence or absence of adaptive immune
cells. In melanoma and hepatoma, PD1 promoted tumor
growth via activation of the mTOR pathway (31, 32). In
contrast, in other tumors, including for example NSCLC,
tumor cell intrinsic PD1 plays an anti-tumor role (33), which
is due to a PD1-mediated inhibition of the AKT and ERK 1/2
pathways and has been associated with an increased tumor cell
apoptosis and altered T cell proliferation (33, 34). Similarly, a
growth inhibition of CTLA-4-expressing tumor cells was also
reported (35). A general role of ICPs as tumor suppressors
within malignant cells is strengthened by the identification of a
meta-gene expression signature composed of CD27,
CEACAM1, CTLA-4, LRIG1, PD-L2 and GITR within a
collection of tumor cell lines, which was also associated with
a prolonged survival phenotypes in clinical specimens (36).
Expression of these ICPs was also associated with the inhibition
of different oncogenic pathways including the transforming
growth factor (TGF)-b signaling, angiogenesis, epithelial
mesenchymal transition (EMT), hypoxia and metabolic
processes (36).
IMMUNE CELL REPERTOIRE IN THE TME
AND ITS CLINICAL RELEVANCE

It has been demonstrated that the frequency of tumor-
infiltrating lymphocytes (TILs) could serve as prognostic and
predictive biomarker, in particular in the context of T cell-
based immunotherapies (37, 38). Indeed, with the exception of
RCC, tumor patients treated with ICPis and/or cancer vaccines
have an increased response to treatment and a prolonged
survival if they have a pre-existing local CD8+ T cell
infiltration of the tumor (39, 40). In CRC, an immune score
based on the number/density of lymphocyte populations in the
invasive tumor margin (TM) and in the tumor center (TC) was
found to have a statistically significant prognostic value,
comparable to those of TNM staging and grading (25, 41,
42). In various other solid tumors, like gastric, bladder and
breast cancer, such immune score has also been suggested to be
a predictive marker for disease recurrence and represents now
the first standardized immune-associated tumor classification
in the clinic (43, 44). Stratification of patients based on immune
characteristics was further extended to include also immune
modulatory molecules. For example, a prognostic score as
suppressive index for HNSCC was established by combining
strong predictors for the survival of these patients, such as the
abundance, location and spatial pattern of TILs to other
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immune markers, like expression of the human leukocyte
antigen (HLA) class I (45, 46). However, not only the
quantity, but also the quality of TILs is an important factor
for patients’ outcome. The quality of T cell responses has been
assessed by the antigen binding to their cognate receptors as
well as by the expansion of both peripheral and intra-tumoral T
cells. The TCR specificity is directed against neo-antigens and
mutation-induced changes of cancer cell properties and thus
directly associated with response to immunotherapy (47). In
this context, it is noteworthy that not an individual lymphocyte
subset is responsible for the tumor immune control, but rather
the localization, clustering, interplay and spatial distribution
and co-stimulation of all lymphocyte subsets are influencing
the successful induction of anti-tumor immune responses.
Regarding the composition of the TME, one could distinguish
between tumors (i) with total lack of T cells, (ii) tumors with a
non-T cell inflamed TME, in which tumors possess a number of
antigens thereby excluding the reduced antigenicity as a pre-
dominant evasion mechanism and (iii) T cell inflamed tumor
lesions, where T cells recognize a large number of antigens
resulting in proper anti-tumor immune responses (48).
Therefore, a robust individualized immune signature
predicting prognosis is required to identify patients who
might have a benefit from immunotherapy.
INTRATUMORAL HETEROGENEITY AND
IMMUNE RESPONSE

Despite extensive advancements in (immuno)therapies have
been achieved during the last decade, treatment of tumor
patients frequently confers an improvement only for a limited
time frame. It was hypothesized that tumors with a complex
heterogeneity might lead to a reduced patient´s survival, since
these might be more difficult to eradicate. Despite tumor
heterogeneity is highly linked to genomic instability, other
factors for diversity are non-genetic defects mediated by tumor
responses to microenvironmental factors including immune cell
infiltration, metabolites and cytokines (49). This intratumoral
heterogeneity (ITH) is affecting the interactions between tumor
and immune cells, as supported by different mouse models, and
influences also the response to immunotherapy (50). Cutting
edge “omics” technologies combined to bioinformatic strategies
allowed to study the ITH in more detail (51). Computer
modeling of tumor/immune cell interactions including spatial
and functional effects demonstrated that an increased cellular
heterogeneity was associated with immune suppressive
expression patterns (52) leading to a better survival of patients
with low ITH (53, 54). Recent findings suggest that the ITH is an
essential genetic determinant of anti-tumor immune responses.
Both the number of distinct clones forming the tumor and the
degree of their genetic divergence influence tumor aggressiveness
(55). Due to an increased antigenic variability, the relative
expression of each neoantigen is lower in tumors with
increased ITH, thereby diminishing the homing of TILs to
their target cells.
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ONCOGENIC AND TSG PATHWAYS IN
TUMORS INFLUENCE THE FREQUENCY
AND ACTIVITY OF IMMUNE CELLS

As described above, the TME is known to play a critical role in
regulating anti-tumor immunity. Recent advances in genomic
and transcriptomic strategies have provided evidences that
molecular alterations in specific intrinsic pathways of tumor
cells, such as induction/activation of oncogenic pathways as well
as inhibition/inactivation of TSG, are not only involved in
directly influencing the malignant phenotype of the tumor cells
by modulating controlled cell death, cell differentiation,
migration and genetic stability. Next to these oncogenic and
tumor promoting programs, unexpected activities of oncogenes
and TSGs on the regulation of the immune and tumor cell
metabolism, on immune surveillance and on the epigenetic
landscape have emerged (56). These processes can shape via
paracrine mechanisms the TME thereby regulating the degree
and functional status of infiltrating immune cells, which impacts
the interaction between tumor cells and the host immune system
and thus the general anti-tumoral responses. Indeed, several
microenvironmental factors, e.g. the number of infiltrating
immune cells, like macrophages, DC and neutrophils, as well
as stromal cells, were significantly reduced in tumor lesions with
mutated TSGs (4), while TSG non-mutated tumors might have
an inflamed phenotype and thus be more likely to respond to
ICPi therapies (4, 57). In addition, the expression of genes
involved in lymphocyte differentiation as well as in interleukin
production were downregulated (4). Based on these results, an
increased understanding of the link between TME and oncogenic
signaling is indispensable to get in depth insights into the role of
oncogenes and/or TSGs in cancer immunity, which might also
help to predict the patients’ response to (immuno)therapy.
Recent work by Martin and co-authors based on a CRISPR
screening approach demonstrated a low overlap between
common TSGs in human cancers of different origin suggesting
a tissue context-dependent role of TSGs in immune escape (2).

In the next paragraphs more detailed information for
representative TSGs and oncogenes will be given, not only
regarding the correlation between the expression of these genes
and the immune microenvironment, but in some cases also on
the specific pathway(s)/mechanism(s) leading to immune escape,
as summarized in Table 1 and Figure 1.

Exemplary, in the case of NSCLC, the presence of different
driver mutations in addition to K-RAS mutation results in
alteration in the immune infiltrate composition as well as in the
t umo r s u s c ep t i b i l i t y and r e s pon s e t o d i ff e r e n t
immunotherapies. Tumors with a mutation in the TSG liver
kinase B1 (LKB1) were found to be associated with a worse
prognosis, reduced immune infiltration and PD-L1 expression
and thus a lower response to ICPis than tumors with
mutated TP53 (58). Experiments performed in murine
models of K-RAS-driven NSCLCs highlighted that the
additional presence of the LKB1 deletion induced an
immunosuppressive status characterized by the expansion of
neutrophils or myeloid-derived suppressor cells (MDSCs) and a
Frontiers in Immunology | www.frontiersin.org 4
reduced and impaired T cell infiltrate, characterized also by a
decreased cytokine production and a more exhausted
phenotype, as highlighted by the expression of different ICPs,
like PD1, LAG-3 and TIM-3 (59, 60). Inhibition of IL-6 and
thus of neutrophils in the first model was able to increase T cell
infiltration of tumors, but did not enhance response to PD1
therapy (59). In contrast, depletion or functional inhibition of
MDSC in the second setting synergized with anti-PD1 therapy,
but only in a tumor model with high TMB (60). Loss of LKB1
also reduced the expression of components of the dsDNA
sensing system, like the stimulator of interferon genes
(STING). Since impaired LKB1 expression is associated with
damaged mitochondria and thus release of DNA into the
cytosol, reduced levels of STING avoid the induction of
STAT1 signaling and production of chemokines like CXCL10
as well as expression of PD-L1 (61). Finally, a direct role of
LKB1 in reducing T cell-mediated tumor cell recognition
despite high TMB levels has been linked to the suppression of
different APM components including various proteasomal
subunits (62).

On its own, K-RAS has diverse immunological consequences.
Mutated K-RAS expression is associated with an increased
expression of PD-L1 (63) and a downregulation of HLA class I
antigens and of APM components suggesting a link between K-
RAS activation and control of immune recognition (64–66).
Interestingly, this could be reverted in vitro by the treatment
with IFN-g or with inhibitors of the MAPK or of the K-RAS
G12C mutation (67, 68). Furthermore, in different models of K-
RAS activation including CRC, oncogenic K-RAS represses the
expression of interferon-regulatory factor (IRF)2, which directly
affects CXCL3 expression thereby promoting the influx of MDSC
into the TME (69, 70). A global downregulation of immune cells
was detected in lung adenocarcinoma patients harboring
mutations in the K-RAS G12C gene, which correlates with the
presence of downregulated transcripts (71).

The WNT-b-catenin pathway plays many roles within tumor
cells to foster their malignant transformation and to keep the
cancer stem cell properties. Recently, it has also been identified as
one of the important oncogenic pathways playing a direct role in
the immune evasion through different mechanisms. For example,
it influences the tumor metabolism by inducing the Warburg
effect (72) and upregulates the ICPs CTLA-4 (73) and PD-L1,
either directly (74, 75) or indirectly via its target myc (76).
Moreover, in different tumor types, such as melanoma, bladder
cancer, CRC as well as HNSCC an inverse correlation between
WNT-b-catenin activation and T cell infiltration was found (77).
Decreased secretion of immune cell attracting chemokines
leading to impaired recruitment of DCs into the TME (78) was
responsible for such an impaired T cell recruitment as well as
priming (78). The expression of WNT-b-catenin was also
associated with the infiltration of regulatory T cells (Tregs),
their survival and activity as well as with the modulation of the
innate immunity (79). Moreover, WNT can promote the
expression of CD73 (80) thus enhancing the levels of
extracellular adenosine that can further impair T cell functions
(81, 82). The WNT-mediated immune escape was linked to the
May 2022 | Volume 13 | Article 883639

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Seliger and Massa Immune Consequences of Oncogenic Pathways
resistance to ICPi therapy suggesting that WNT activation is a
potential biomarker for patients’ stratification for therapy (75).
Due to the many roles of this pathway, its direct therapeutic
targeting is complex, but first approaches have recently been
undertaken. Preliminary data confirmed that treatment with
WNT inhibitors were able to revert the immune suppressive
conditions (83, 84) and could also enhance response to different
immunotherapeutic approaches ranging from adoptive transfer
to ICPi. The tumor rejection was correlated both to changes in
the tumor cells, like an upregulation of MHC class I surface
expression (85) and modulation of PD-L1 expression (86) that
render tumor cells more sensitive to cytotoxic T lymphocytes
(CTLs) as well as to alterations in the TME, which reverted the
immune suppressive conditions and allowed recruitment of
effector cells (87, 88).

Increased transcription rates of the myc oncogene due to gene
amplification or constitutive overexpression not only affects
intrinsic properties of tumors, like increased proliferation and
survival, but also their immunogenicity. Indeed, myc can
downregulate HLA class I antigen expression, while inducing
ICPs, like e.g. PD-L1 (63, 76) and CD47 (76) thereby influencing
the repertoire of infiltrating immune cell (76, 89–91). In acute
myeloid leukemia (AML) myc overexpression is accompanied by
an immature myeloid differentiation due to epigenetic regulation
of cell death and differentiation (92). Furthermore, myc
overexpression is associated with early disease progression
from myelodysplastic syndromes to AML (93). For these
reasons, different treatment modalities targeting the myc/CD47
axis are tested for therapeutic usage (94, 95). Myc has also been
involved in the evasion from natural killer (NK) cell surveillance
by reducing the expression of ligands for the NKG2D activating
receptor (96). Moreover, myc alone or in cooperation with RAS,
affects the expression of chemokines leading to a more immune
suppressive infiltrate (70, 97). In contrast, in gastric
adenocarcinoma high myc expression levels are a good
prognostic factor associated with low numbers of Tregs and
low expression levels of PD-L1 (98).
Frontiers in Immunology | www.frontiersin.org 5
Oncogenic signaling mediated by members of the HER gene
family, in particular by EGF-R/HER-1 and HER-2/neu, results
in an upregulation of PD-L1 expression in various cancer types,
including HNSCC and NSCLC (99–101). This is mediated by
an increased JAK2 and STAT3 expression and is accompanied
by secretion of proinflammatory cytokines (102). Furthermore,
activation of HER-1 and HER-2/neu is inversely associated with
the expression of HLA class I antigens and APM components
and prevents CTL-mediated immune recognition (103, 104).
HER-2/EGF-R overexpressing cells secrete high levels of the
immune suppressive cytokines TGF-b, IL-10 and vascular
endothelial growth factor (VEGF), which affects the
phenotype and function of TILs. Moreover, EGF-R mutated
tumors can further suppress immune responses by an enhanced
expression of CD73 and thus increased levels of adenosine in
the TME (105, 106). Thus, a deregulated oncogenic growth
factor signaling is linked with an inflammatory pro-
tumorigenic and immune inhibitory TME.

Next to oncogenic activation, loss of TSGs have been shown
to play a role in immune evasion (1). An immune regulatory
role for the phosphatase and tensin homologue deleted on
chromosome 10 (PTEN) was demonstrated. Evaluation of
TCGA datasets including different cancer types positively
correlated the expression of PTEN with the amount of T cell
infiltrate (107) and inversely with the frequency of Tregs (108).
Mechanistically, prostate cells that have lost PTEN secrete high
levels of CSF and IL-1b, resulting in the recruitment and
expansion of MDSC that inhibit T cell infiltration as well as
their functions (109). Moreover, in different tumors, the
presence of a PTEN mutation correlated with a missing
response to PD1 blockade (110–113). PTEN reactivation in a
preclinical model has been shown to enhance anti-tumor
immunity (114). In contrast, evaluation of endometrial
carcinoma associated the loss of PTEN with favorable
prognosis (115).

Regarding p53, the story is even more complex, since
mutations not only lead to the loss of the suppressive
TABLE 1 | Summary of the tumor cell intrinsic and extrinsic immune escape mechanisms mediated by oncogenes and TSGs.

A. Tumor-intrinsic mechanisms

Oncogene / TSG Variation in tumor cells Consequences on immune cells

HER, K-RAS, LKB1, myc, NF1-PIK3CA,
VHL

Tumor cell
intrinsic

Reduced APM and HLA
expression

Reduced TCR stimulation

IDH, myc Reduced expression of NKG2D
ligand

Reduced activation of NK cells

HER, myc, Wnt Enhanced expression of inhibitory
ligands
(e.g. PD-L1)

Inhibition of effector cells

LKB1, p53 Reduced sensing of internal
damage

No STING and innate immune cell recruitment / activation

B. Tumor-extrinsic mechanisms
Oncogene / TSG Variation in tumor cells Consequences on immune cells
IDH, VHL, Wnt Tumor cell

extrinsic
Altered metabolism Secretion of suppressive metabolites Depletion of metabolite recquired

by effector cells
HER, IDH, K-RAS, LKB1, p53, PTEN,
TET, VHL, Wnt

Altered secretion of cytokine and
chemokine

Recruitment of suppressive immune cells and tumor promoting cells over
APC and effector cells.
“Wrong” polarization of immune cells
May 2022 | Volume 13 | Article 883639
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properties associated with a deregulated cell proliferation, but
some of them provide also “gain of function” resulting in an
oncogenic activity of p53 that influences the interaction with
cells from the microenvironment including hematopoietic cells
and stromal components (116, 117). As a consequence, the
expression of inflammatory mediators as well as of chemokines
is affected, resulting in a distinct immune infiltrate composition
with more M2 macrophages and less T cells (118). In AML, a
higher T infiltrate was found in mutated patients, but
this exhibited a more exhausted phenotype (119). In lung
cancer, a p53-relevant gene signature was associated with an
altered immune infiltration and clinical outcome resulting in its
establishment as a prognostic biomarker (120). Mechanistically,
it has been demonstrated that mutp53 promotes an
inflammatory, pro-tumoral TME by either promoting IL-1b
secretion (121) or by enhancing myeloid cell recruitment via
CCL2 and tumor necrosis factor (TNF)-a (122). In addition, the
mutant p53-mediated alterations of the TME include a pro-
invasive extracellular matrix structure, with enhanced cancer-
associated fibroblast activity disabling innate immune responses
(116). Indeed, p53 can promote tumor survival by suppressing
Frontiers in Immunology | www.frontiersin.org 6
the activation of the innate sensing pathway of TKB1/STING
thereby saving cells from apoptosis and inhibiting activation and
recruitment of effector cells, like NK cells and CD8+ T
lymphocytes (123). In this context, it is also noteworthy that
TP53 has been shown to increase MHC class I expression by
upregulation of APM components, such as the endoplasmic
reticulum resident aminopeptidase ERAP1 (124). In SCLC, a
dual inactivation of TP53 and RB was found, which resulted in a
global chromosomal instability. This was accompanied by a high
incidence or loss of immune genes, including components of the
IFN-g and HLA class I pathway (125). Thus, the inactivation of
p53 has an impact on the immune and inflammatory hallmarks
of cancer. Therapeutically, a recently described antibody
recognizing a peptide encompassing the most common
mutation of p53 in association with HLA-A02 has been
transformed into a bispecific antibody that has been tested in
preclinical in vivomodels for its ability to retarget effector cells to
tumor cells carrying the mutation (126).

Next to the activation/inactivation of these prominent
oncogenes/TSGs, additional pathways have been shown to
affect anti-tumor immunity, which are summarized below.
A

B

FIGURE 1 | Effects of oncogenic activation and inactivation of TSG on the immune system. (A) Whereas “healthy” cells expressing non-mutated, functional TSG can
be recognized by the immune system, (B) transformation to malignant cells due to activation of oncogenes and/or loss of TSGs changes the cell metabolism and
cytokine/chemokine secretion pattern leading to the promotion of an immunosuppressive TME. Moreover, the altered oncogene and TSG expression causes a
downregulation or loss of the expression of HLA class I molecules and upregulation of ligands for ICP leading to a direct escape from recognition by effector cells.
May 2022 | Volume 13 | Article 883639
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The ten-eleven translocation (TET) family of proteins is
frequently mutated in hematopoietic malignancies (127),
whereas in solid tumors a reduced activity of these enzymes
highlighted by reduced presence of their metabolite 5hmC is
more frequently found (128). Targeted deletion of the TET2 gene
within murine melanoma cells highlighted also consequences on
the immune system with a reduced T cell infiltration of the
mutated tumor. This was linked to an altered signaling of the
IFN/JAK pathway and reduced production of chemokines (129).
In the opposite direction, the activation status of TET2 within
immune cells has consequences on the progression of solid
tumors, but, due to the role of TET in epigenetic regulation,
the consequences are highly context-dependent. Indeed, in a
melanoma setting removal of TET2 from myeloid cells reverted
their immune suppressive phenotype induced by IL-1 and
allowed a type 1 polarization leading to the recruitment of T
cells that could contrast tumor growth (130). In contrast, in lung
cancer the TET2 knockout in myeloid cells promoted
angiogenesis and tumor progression via a S100A8/A9 -
VEGFa loop (131). Similarly, using hepatoma as well as breast
cancer cell lines, a faster tumor growth in TET2 knockout mice
was found due to an IL-6-mediated expansion of MDSCs and a
consequently reduced T cell infiltration (132).

Isocitrate dehydrogenase (IDH)-1 and -2 play an important
role in stratifying glioma patients. Indeed, tumors carrying IDH-
1/IDH-2 mutation(s) have lower levels of PD-L1 and also a
reduced T cell infiltration despite an increased patients’ survival
(133). This is partly due to a reduced production of attracting
chemokines (134) and to a modulation of the suppressive
myeloid infiltrate (135). Mechanistically, the mutated forms
alter tumor cell metabolism and epigenetic patterns, but also
acquire the capability to produce D-2-hydroxyglutarate, that is
an oncometabolite able to inhibit T cell functions (136, 137), and
to escape from NK surveillance by reducing the expression of the
NKG2D ligand (138). Moreover, mutated tumors produce more
extracellular vesicles that can promote an immune suppressive
milieu (139, 140). Therapeutically, different inhibitors are
currently being investigated (141). Since one IDH-1 mutation
has been shown to generate a neo-antigen that is recognized by
patients’ CD4+ T cells (142), vaccination trials targeting this
mutation are ongoing (NCT02454634, NCT02193347 and
NCT02771301) and first results on safety have been recently
reported (143).

Inactivation of the von Hippel Lindau (VHL) gene has been
frequently demonstrated as a driving factor in RCC,
particularly in RCC of the clear cell subtype. Upon its
mutation, the hypoxia inducible factor (HIF)-1a and -2a are
not undergoing correct degradation leading to alterations of
their regulated pathways, namely metabolism, proliferation and
angiogenesis with consequences also on immune system cells.
Indeed, it is known that the enhanced use of anaerobic
glycolysis due to the enhanced activation of HIF results in
glucose depletion as well as hypoxia and enhanced lactate
secretion (144), all factors having negative consequences on
the functional capabilities of effector cells. VHL inactivation
results also in changes in the tumor secretomes that can affect T
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cells functions, for example due to enhanced levels of the
MnSOD2 enzyme that cause redox stress in T cells thereby
impairing their functionality (145). Moreover, the enhanced
secretion of VEGF that mediates angiogenesis is also involved
in the expansion and recruitment of immune suppressive
MDSC (146) that will further suppress effector cells. In
addition, comparison of specimens with or without VHL
mutations has highlighted differences in the tumor immune
signatures that can also associate with response to therapy (147,
148). Tumors with loss of VHL function due to mutations in
the VHL gene or via its epigenetic control displayed lower levels
of Treg and higher frequencies of NK cells that were also more
cytotoxic in in vitro assays (149). Interestingly, mutated VHL
reduced the expression of HLA class I antigens that might
protect tumor cells from T cell recognition, but renders them
more susceptible to NK cell cytotoxicity (150). Via HIF, VHL
inactivation can induce the expression of CD70 on RCC
specimens resulting in an enhanced infiltration of CD27+ T
cells accompanied by a worse patients’ outcome (151). The
VHL status is also modulating the expression of PD-L1 due to
its effects on HIF2a levels (152–154).

In glioblastoma, mutations in NF1 and PIK3CA have been
shown to modulate the interferon-regulatory factor (IRF)-1,
which activates the expression of downstream target genes
including APM components, which are associated with an
increased lymphocyte infiltration and a worse survival of
patients (155).

The guanine nucleotide binding protein a13 (Gna13) also
displays immune regulatory activities via its action on the TME,
since it inhibits the expression of CCL2. Indeed, Gna13 loss in
different murine models resulted in an increased secretion of
CCL2 leading to enhanced recruitment of tumor associated
macrophages (TAMs) (2).

Many of the indicated oncogenes/TSGs signal through the
nuclear factor kappa B (NF-ĸB), which is involved in promoting
tumorigenesis and inflammation-induced carcinogenesis by
locally inhibiting innate and adaptive host immune responses
(156). Activation of NF-ĸB signaling has been associated with the
control of oncogenic functions and tumor progression as well as
with an increased inflammation through its function in innate
immune cells (157, 158). Furthermore, activation of NF-KB has
also been demonstrated to promote resistance to programmed
cell death (159).
CONCLUSION

Many progresses have been made and correlations found
between the genetic drivers of tumor transformation and the
shaping of the TME leading to a better understanding of the
mechanisms involved in the resistance or responsiveness to
(immuno)therapy. For this reason, a number of approaches are
currently being tested to recover the function of TSGs or to
disrupt the regulatory axes involved in oncogenic activation in
order to reduce the immune suppressive function and enhance
immunity. Initial results in different experimental models
May 2022 | Volume 13 | Article 883639
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appear to be promising, with restoration of functional TSGs
resulting in the modulation of the TME and an improved
activity of ICPis (114, 116). However, due to the partially
opposing roles of these pathways on the immune system in
different tumor types, the path to effective personalized
medicine is still long.
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GLOSSARY

AML acute myeloid leukemia
APC antigen presenting cell
APM antigen processing machinery
CRC colorectal carcinoma
CTL cytotoxic T lymphocyte
CTLA-4 cytotoxic T lymphocyte-associated protein-4
DC dendritic cell
EMA European Medical Agency
EMT epithelial mesenchymal transition
Gna guanine nucleotide binding protein
HIF hypoxia inducible factor
FDA Federal Drug Administration
HLA human leukocyte antigen
HNSCC head and neck squamous cell carcinoma
ICP immune checkpoint
ICPi immune checkpoint inhibitor
ICP-R immune checkpoint receptor
IDH isocitrate dehydrogenase
IFN interferon
IL interleukin
IRF interferon-regulatory factor
ITH intratumoral heterogeneity
LAG-3 lymphocyte activation gene 3
LKB1 liver kinase B1
mAb monoclonal antibody
MAPK mitogen-activated protein kinase
MDSC myeloid-derived suppressor cell
MHC major histocompatibility complex
NF-ĸB nuclear factor kappa B
NK natural killer
NSCLC non-small cell lung carcinoma
PD1 programmed cell death-1
PD-L1 programmed death ligand 1
PFS progression-free survival
PI3K phosphatidylinositol 3-kinase
PTEN phosphatase and tensin homologue deleted on chromosome 10
RCC renal cell carcinoma
SMAC supra-molecular activation cluster
STING stimulator of interferon genes
TAM tumor-associated macrophages
TCGA The Cancer Genome Atlas
TC tumor center
TCR T cell receptor
TET ten-eleven translocation
TGF transforming growth factor
TIGIT T cell immunoreceptor with immunoglobulin and ITIM domain
TIL tumor infiltrating lymphocyte
TIM-3 T cell immunoglobulin and mucin domain 3
TM tumor margin
TMB tumor mutational burden
TME tumor microenvironment
TNBC triple negative breast cancer
TNF tumor necrosis factor
Treg regulatory T cell
TSG tumor suppressor gene
VEGF vascular endothelial growth factor
VHL Von Hippel Lindau
VISTA V-domain Ig suppressor of T cell activation
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