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Abstract
Circadian oscillation in baseline gene expression plays an important role in the regulation of

multiple cellular processes. Most of the knowledge of circadian gene expression is based

on studies measuring gene expression over time. Our ability to dissect molecular events in

time is determined by the sampling frequency of such experiments. However, the real

peaks of gene activity can be at any time on or between the time points at which samples

are collected. Thus, some genes with a peak activity near the observation point have their

phase of oscillation detected with better precision then those which peak between observa-

tion time points. Separating genes for which we can confidently identify peak activity from

ambiguous genes can improve the analysis of time series gene expression. In this study we

propose a new statistical method to quantify the phase confidence of circadian genes. The

numerical performance of the proposed method has been tested using three real gene

expression data sets.

Introduction
Analysis of periodic patterns is an essential part of many studies of gene expression involving
timeline sampling or targeting of rhythmically expressed genes. Recent publications report a
large proportion of the entire transcriptome oscillating in a circadian (i.e. approximately daily)
rhythm [1–3]. The number of genes for which circadian baseline can be identified as statisti-
cally significant over stochastic noise is traditionally thought to be under 10% [4–6], but more
recently estimated as 43% [1] or even close to 100% [7], depending on the algorithms applied.
Significance of the signal-to-noise ratio is the focus of most studies targeting rhythmic expres-
sion. The absolute amplitude and time of the peak (i.e. phase) of rhythmic gene expression are
also analyzed and reported. However, we feel that one aspect of rhythmic gene expression
required additional consideration. It has been observed that low sampling frequency presents a
significant challenge to all studies of periodic gene expression ([7] for review). Most gene
expression studies only report 6 or 9 observation points per period and not more than two con-
secutive periods in the entire timeline. Some oscillating genes may have peak expression coin-
ciding at, or near, the observation point (i.e. the time when the animal is sacrificed and tissue
samples are taken for analysis). However, other genes may peak at any time between sparsely
placed observations. Since our ability to differentiate events in time is restricted by the low
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sampling rate, how can we be sure that genes are expressed in the phase we identified? Would
it be possible to make a quantitative estimation of confidence that a gene peaks at a certain
time of the day? With such a metric we could separate a fraction of genes for which we know
the true time of peak and analyze the function of genes at a given time with less noise (i.e. genes
highly expressed, but peaking at a different time) mixed in. To answer these questions and
enable time-wise analysis of gene function and interactions, we propose a novel algorithm for
the estimation of confidence of phase assignment in analysis to timeline expression profiles.

To answer the questions posed for this study we propose to use the bootstrap, which is a
general technique for estimating unknown quantities associated with statistical models. Often
the bootstrap is used to find

• standard errors for estimators,

• confidence intervals for unknown parameters,

• p-values for test statistics under a null hypothesis.

The maximum entropy bootstrap [8] is a resampling method for observations that are not nec-
essarily independent and/or identically distributed. These conditions match typical observa-
tions of gene expressions time series. The maximum entropy bootstrap is an algorithm that
constructs a large number of replicates (such as R = 999) that retain the basic shape, local peaks
and troughs and time independence of the original time series, by being strongly dependent on
it. The maximum entropy bootstrap is particularly useful for short time series.

Materials and Methods

Notations
I: indicator function.
n: the sample size.
p: the number of genes.
χ = {X1, . . ., Xn}: random sample from population.
w� ¼ fX�1 ; :::;X�ng: resample obtained by sampling from χ.
α: level of confidence.

ŷ: estimate of θ, computed from χ.

ŷ�: bootstrap version of ŷ, computed from χ�.

Phase estimation
We consider a gene expression time series {x1, . . ., xn}. Without loss of generality, suppose that
the measurements are taken in time points t = 0, 4, 8, . . ., 44h. We can then construct a collec-
tion of intervals named phases and labeled G0, G1, . . ., G5 such that

G0 ¼ ½�2; 2�;G1 ¼ ½2; 6�;G2 ¼ ½6; 10�;G3 ¼ ½10; 14�;G4 ¼ ½14; 18�;G5 ¼ ½18; 22�: ð1Þ
Let θ be the first peak time or the phase of the gene expression. We are interested in estimating
and in a later step constructing a confidence interval for θ. More precisely, we want to construct

an interval contained in one of the classes Gi, and that contains the estimated parameter ŷ with
high probability.

The expression profile of a gene exhibiting circadian rhythmicity approximates to a cosine
wave with a period T = 24h. A significant correlation can therefore be found between rhythmi-
cally expressed gene and a theoretical cosine wave cycling with an appropriate phase. The pro-
cess of estimating θ consists of the following steps:
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1. Generate 6 cosine waves with the equation given below

CφðtÞ ¼ cos
2p
T

t � φ

� �
; t ¼ 0; 4; 8; :::; 44;φ 2 f0; p=3; 2p=3; p; 4p=3; 5p=3g: ð2Þ

The following properties apply: the periods are 24h, 48h long (two cycles), and the intervals
between adjacent phases is 4h. Fig 1 is a graphical representation of the cosine (Eq 2).

2. Calculate the correlation coefficient between the gene expression profile and each of the 6
cosine waves Cφ. Let R ¼ fr̂0; r̂1; :::; r̂5g denotes the obtained vector of correlations. Let

r̂ ¼ maxR; ð3Þ

be the highest correlation and φ̂ the phase of the corresponding cosine wave. The optimal
Cφ̂ is selected to be the representative of the circadian rhythmicity if the correlation is sig-

nificant. Our parameter of interest θ is then estimated by the peak of the best-correlated
cosine curve, and it is equal to

ŷ ¼ φ̂T=2p ¼ 12φ̂=p: ð4Þ

Data resampling using Maximum Entropy Bootstrap Algorithm
Several bootstrap methods have been proposed for time series data. The most well-known is
theMoving Block Bootstrap. This procedure works by dividing the observations in blocks of
length b and then resampling the blocks (See Fig 2 for an illustration). The main problem with
the block bootstrap is that the block length, b, which is a form of smoothing parameter, needs
to be chosen. If the blocks are too short, the bootstrap samples cannot mimic the original sam-
ple. In this case dependency is broken whenever we start a new block. If, on the other hand, the
blocks are too long, we will lose the randomness of the replicates. For these reasons, in this
study we apply the maximum entropy bootstrap algorithm proposed by [8]. It does not impose
strong assumptions on the distribution of the time series like stationarity. A full description of
the algorithm can be found in [9]. The replications are generated by the following steps

1. Form order statistics x(t) by sorting increasingly the original data, and keep the vector of
ordering index.

2. Using the ordering statistics obtained at step 1, compute the intermediate points z(t) =
(x(t)+x(t+1))/2 for t = 1, . . ., n − 1.

3. For t = 1, . . ., n, construct the deviation x(t) − x(t − 1), and calculate the trimmed meanmtrm

of the obtained observations. The lower limit for left tail is z0 = x(1) −mtrm and upper limit
for right tail is zn = x(n)+mtrm. z0 and zn are the new limiting intermediate points.

4. Compute the mean of the maximum entropy (ME) density within each interval while satis-
fying themean-preserving constraint.

5. Generate uniformly distributed numbers on the [0, 1] interval, then calculate sample quan-
tiles of the Maximum Entropy at the generated points and sort them.

6. Using the ordering index of step 1, reorder the sorted sample. This process permits to con-
serve the dependance relationships among observations in the original data.

7. The steps 2 to 6 are repeated many times, in our analysis we use R = 999.
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Fig 1. Graph of the ideal cosines.Graph representing the cosine waves: cosð2pT t � φÞ for t = 0,4,8, . . ., 44 and φ 2 {0, π/3, 2π/3, π, 5π/3}. The dotted vertical
line shows the first peak time.

doi:10.1371/journal.pone.0131111.g001
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A complete simulated example for illustration of each step of the algorithm can be found in
[9]. Fig 3 shows one gene expression time series from the IWAT data, along with 24 different
replicates of the series chosen randomly from 999 used in the analysis. Due to the fact that the
maximum entropy algorithm tries to retain all the properties of the data, one can see that the
replicates remain close to the original time series.

The Bootstrap Approach for p-value
Let t̂ denote the realized value of a test statistic τ computed for a particular sample. Then
Pðt � t̂ j H0Þ is the definition of the p-value in situations where large values of τ support the
alternative hypothesis. The process of calculating p-value consists of the following steps:

1. Specify a way to generate bootstrap samples that resemble the real data while satisfying the
null hypothesis H0. In our case we will use theMaximum Entropy Bootstrap Algorithm.

2. LetMEBA denote this bootstrap data-generating process.

Fig 2. Graph of the moving block bootstrap principle.Graph showing the principal of moving block bootstrap. The moving block bootstrap randomly
selects blocks of the original data (top) and concatenate them together (center) to form a resample (bottom).

doi:10.1371/journal.pone.0131111.g002
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Fig 3. An Example of data resampling using the MaximumEntropy Bootstrap Algorithm. (Top left panel): A gene expression time series from the IWAT
data. (Remaining:) Set of 24 replications randomly chosen from 999 maximum entropy bootstrap samples used in the analysis.

doi:10.1371/journal.pone.0131111.g003
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3. UsingMEBA, generate R = 999 bootstrap samples indexed by j. From each of them, com-
pute a bootstrap test statistic t�j . To estimate a bootstrap p-value, we use

p̂�ðt̂Þ ¼
1þPR

j¼1 Ift�j >t̂g

1þ R
: ð5Þ

Arguments in favor of the latter formulae for calculating p-value instead of the classical for-

mulae
PR

j¼1 Ift�j>t̂g=R, can be found in [10], p. 148, 161). For example, if 73 of the t�j are

greater than t̂, then p̂�ðt̂Þ ¼ ð1þ 73Þ=ð1þ 999Þ ¼ 0:074.

4. Reject the null hypothesis H0 if p̂�ðt̂Þ < a. Where α is a given constant satisfying 0< α< 1.
In general we take α = 0.05.

This algorithm will be used to assess significance of the correlation between a gene expres-
sion time series and one of the cosine (Eq 2).

Bootstrap Percentile Confidence Interval
The main focus of this paper is to give an accurate approximate confidence interval for peak

time parameter ŷ. Computing such confidence intervals with distributions that are difficult to
represent mathematically, is very challenging. The bootstrap is another class of general meth-
ods for constructing confidence intervals without making strong distributional assumptions
about the data or the statistic being calculated. There are several ways to construct bootstrap
confidence intervals. They vary in ease of calculation and accuracy. There have been three
main lines of development: Efron’s original percentile method [11], the bootstrap t interval
introduced in [12], and the double bootstrap interval introduced in [13]. In this work, due to
its simplicity and good performance, we use the Bootstrap Percentile Confidence Interval.

Let ŷ be an estimator of θ on the measured data X1, . . ., Xn, and ŷ� be its analog on a boot-
strapped sample X�1 ; :::;X

�
n , then:

KbootðxÞ ¼ P�ðfŷ� � xgÞ: ð6Þ

Where Kboot is the empirical distribution function of the bootstrap values. Efron’s (1979) origi-
nal 100(1 − 2α)% bootstrap percentile interval is to just take the empirical 100α and 100(1 − α)

percentiles from the bootstrap values ŷ�1; :::; ŷ
�
R. Then the 100(1 − 2α)% percentile interval is

½ybp; ybp� ¼ ½K�1bootðaÞ;K�1bootð1� aÞ�; ð7Þ

where K�1boot is the inverse or the generalized inverse distribution function or quantile function.
The name percentile comes from the fact that K�1bootðaÞ and K�1bootð1� aÞ are percentiles of the
bootstrap distribution Kboot in (Eq 6). In practice, we proceed as follows:

1. Generate R bootstrap samples of size n using the maximum entropy algorithm.

2. Estimate the parameter θ of interest for each bootstrap sample: ŷ�b for b = 1, . . ., R.

3. Order the bootstrap replications of ŷ such that ŷ�ð1Þ � ŷ�ð2Þ � :::ŷ�ðRÞ. The lower and upper

confidence bounds are the R.αth and R.(1 − α)th ordered elements, respectively. The esti-

mated (1 − 2α) confidence interval of ŷ is

½ybp; ybp� ¼ ½ŷ�ðR:aÞ; ŷ�ðR:ð1�aÞÞ�: ð8Þ

Phase Confidence
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Fig 4 summarizes the steps of the Bootstrap Percentile confidence interval principle.
Remark 1. If R.α is not an integer, the following procedure can be used:
Let k = [(R + 1)α], the largest integer� (R + 1)α. Then we define the empirical α and (1 −

α) quantities by the kth largest and (R + k − 1)th values of ŷ�ðbÞ, respectively. So if R = 999 and α

= 2.5% these are the 25th and 975th ordered elements.
We have now all the pieces needed to accomplish the phase confidence analysis. Algorithm

1 summarizes the details of the proposed approach

Algorithm 1: Confidence in phase definition for periodicity in genes expres-
sion time series

Data: χ = {x1, . . ., xn}: n realizations of a gene expression time series, the
number of replications R, and a confidence level α.

Fig 4. The Bootstrap Percentile confidence interval principle. Schematic of the bootstrap process. We want to estimate a confidence interval for the
phase θ(χ). R training sets, χ1*, . . ., χR* each of size n are generated using an appropriate resampling mechanism. The quantity of interest θ(χ) is computed
from each bootstrap training set, and the values yðw�1Þ; :::; yðw�RÞ are used to construct a confidence interval for the quantity θ(χ).

doi:10.1371/journal.pone.0131111.g004
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Result: Bootstrapped p-value, Bootstrap Percentile Confidence Interval

½ybp; �ybp�.
1 for b 1 to R do
2 Using the maximum entropy bootstrap algorithm, generate a bootstrap

sample χb
�
;

3 Calculate the maximum correlation r̂b using formula (Eq 3);

4 Estimate the peak time ŷb using formula (Eq 4);
5 Calculate the bootstrapped p-value p̂�ðr̂Þ using formula (Eq 5);
6 if p̂�ðr̂Þ � a then
7 the gene is considered as circadian.

8 Calculate the Bootstrap Percentile Confidence Interval ½ybp;
�ybp� using for-

mula (Eq 8).

9 if it exist i 2 {0, . . ., 5} such that ½ybp;
�ybp� � Gi then

10 the gene is assigned to the phase Gi, where Gj are defined in (Eq 1).

Results, Discussion, and Conclusions
We conducted experiments on three real previously published data sets. The data are derived
from microarray study of gene expression in three tissues in mice referred as Inguinal White
Adipose tissue (IWAT), Brown Adipose Tissue (BAT) and Liver. Each individual data set con-
tains more than 22,000 gene expression profiles. Each profile consists of 12 time points of 4-h
interval difference. See [14] for detailed description. In the first step of our analysis, we esti-
mated the phase of each gene using the Eq (4), and we identified the circadian gene expression
based on the Algorithm 1. We note here that our aim is not to identify all the circadian genes,
but we are more interested in genes for which the peak time is near to one of the time points
where the measurements are taken. Detection of circadian genes can be sophistically performed
using Fisher’s g-test, autocorrelation or permutation test (See [15] for more details). This esti-
mation revealed 646 oscillatory genes in the IWAT data, 680 in the BAT data, and 747 in the
Liver data for which the bootstrapped p-value was� 0.05, representing 6.9%, 7.15%, and 7.6%
of the number of oscillatory genes obtained by applying a permutation test, respectively.

We used our proposed method to calculate a 95% confidence interval ½ybp; �ybp� for the peak
time of the oscillating genes, and then we assigned a phase to each of them using the following

rule: a circadian gene is assigned to a Phase Gi if ½ybp; �ybp� � Gi.

The Results of phase classification are summarized in Table 1 and Fig 5. In the IWAT data,
and with a confidence levels of at least 95%, 28 genes peak at Phase G0, 47 at Phase G1, 223 at
Phase G2, 128 at Phase G3, 117 at Phase G4, and 103 at Phase G5, representing 4.33%, 7.27%,
34.52%, 19.81%, 18.11%, and 15.94% of the oscillating genes, respectively. In the BAT data, 57
peak at Phase G0, 110 at Phase G1, 158 at Phase G2, 145 at Phase G3, 147 at Phase G4, and 63 at

Table 1. Number of genes in each phase for the IWAT, BAT and Liver data sets.

Phase/Data IWAT BAT Liver

Phase G0 28 57 68

Phase G1 47 110 136

Phase G2 223 158 164

Phase G3 128 145 176

Phase G4 117 147 136

Phase G5 103 63 67

Total 646 680 747

doi:10.1371/journal.pone.0131111.t001
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Phase G5, representing 8.38%, 16.17%, 23.23%, 21.32%, 21.61%, and 9.26% of the oscillating
genes, respectively. For the Liver data set, 68 genes peak at Phase G0, 136 at Phase G1, 164 at
Phase G2, 176 at Phase G3, 136 at Phase G4, and 67 at Phase G5, representing 9.10%, 18.20%,
21.95%, 23.56%, 18.20%, and 8.97% of the oscillating genes, respectively. The method for esti-
mation of phase assignment confidence that we proposed allows some useful observation even
on the testing data. For instance, we may ask how uniform is gene expression over time? For

IW
AT

B
AT

Li
ve

r

G5
G4
G3
G2
G1
G0

Number of genes

D
at

a 
se

t

0 50 100 150 200

Fig 5. Barplot of the number of genes against phases. Bar plot summarizing the number of genes in each phase for the IWAT, BAT and Liver data sets
from the results in Table 1.

doi:10.1371/journal.pone.0131111.g005
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the experiments collecting data in circadian timeline we can formulate the Null-hypothesis
stating that the same number of genes can be confidently assigned to each phase group. The
alternative hypothesis would state that at least one phase group has significantly different num-
ber of genes. Both hypotheses are consistent with the overall number of rhythmically expressed
genes and cannot be testes without quantitative estimation of confidence of phase assignment.
In our test data we apply the same p = 0.05 threshold, but observe fewer genes peaking at one
of the phases. In biological terms this means the in murine adipose tissue there is a period
(morning hours) when the overall gene expression activity is lower compared to all other times
of the day.

However, it is even more important that our method can be applied to increase precision of
observation in many studies involving timeline observation of gene expression. The sampling fre-
quency still imposes limitation on our ability to separate molecular events (such as peak of gene
expression) in time. To know the time of peak expression more precisely the experiment has to
be repeated with higher a number of time points (for example, one sample every 2 hours rather
than every 4 hours). However, with our method we can refine the existing data. For the groups
peaking at a certain time we can be confident (at a selected confidence level) that certain genes
peak at a certain time and filter out genes peaking sometime between out observation time points.
This confidence is essential for functional annotation of co-expressed genes and can be critical in
analysis of permutation of gene activity in reaction to environment or medication.

Strengths and boundaries
We compare the proposed method with some competing algorithms, namely Fisher’s g-test
[16], Permutation test [15], and JTK-CYCLE [17]. All methods except the permutation test are
implemented in R, and run on an Itel core i7 at 3.40 GHz. The permutation test is implemented
in C++. Tables 2, 3 and 4 show some results for the IWAT, BAT and Liver data sets.

In this paper, we are interested in genes that may have a peak expression coinciding or near
one of the observation points. We approximate their expression profiles by an ideal cosine
wave of the form:

CφðtÞ ¼ cos
2p
T

t � φ

� �
; t ¼ 0; 4; 8; :::; 44;φ 2 ½0; 2p½: ð9Þ

We know that for circadian genes we have T = 24h. For the data sets used in this paper, the
measurements time are t 2 {0,4,8, . . ., 44}. Since we are interested by the first peak expression
time, the possible time points to be considered are t 2 {0,4,8, . . ., 20}. If we solve for equations
Cφ(t) = 0 for t 2 {0,4,8, . . ., 20}, we obtain φ 2 {0, π/3, 2π/3, π, 4π/3, 5π/3}, this explains the use
of π/3 as a resolution power of estimated phase in Eq (2). If we choose different values of the
resolution power of estimated phase, the peak time of the generated ideal cosine waves will not
necessarily coincide with one of the time points when the measurements were taken. Neverthe-
less, the method is general. It can work for periods other than 24 hours, for different spacing
time points, and it can works with a larger number of cosines waves with smaller phases. For
example, for any integer k we can generate 2k cosine waves using the equation:

Ci ¼ cos 2p
1

24
t � 1

2k
i

� �� �
¼ cos p

1

12
t � 1

k
i

� �� �
; t ¼ 0; 4; 8; :::; 44; i ¼ 0; 1; 2; :::; 2k� 1: ð10Þ

Table 2 shows some timing results for k = 30, which generates 60 cosine waves. Results are
given for R 2 {9,99,999} bootstrap replications. Like any method based on resampling, the pro-
posed method can be computationally expensive, because it involves fitting the same statistical
method a large number of times using different replications of the original data. We can see
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that the average CPU timings increases with number of generated cosine waves and the num-
ber of bootstrap replications.

Table 3 shows some timing results for the three different datasets; Fisher’s g-test is faster,
followed by JTK-CYCLE and then the proposed method (one replication). We note here that
the computing performance of the proposed method can be enhanced considerably (See
Remark 4).

Table 4 shows the number of identified circadian genes. The Permutation test identifies the
highest number, followed by the JTK-CYCLE and then Fisher’s g-test. Our method is not
developed for detecting all the circadian genes, but rather it detects, with high confidence, the
circadian gene for which the peak time (the phase) is near one of the time points; estimates this
phase, and constructs a confidence interval for it. This explains the small number of circadian
genes detected by our method compared to the competitors.

Remark 2. This experiment design is rather typical for circadian biology. Some experiments
collect samples at different intervals, such as 3h or, rarely, every 2h. Higher sampling frequency
improves resolution ability, but costs a lot more and is harder to implement.

Remark 3. Gene expression profiles are analyzed independently, thus it is possible that a
researcher may find few or none of the gene confidently peaking at a given time. In fact, in the
data set on which we tested the method, gene expression has a quiet period at which relatively
few genes are active.

Table 2. IWAT, BAT and Liver data sets: timings (in minutes (m) or in hours (h)) for the proposedmethod and a variant of it that uses a set of 60
cosine waves with smaller phases generated using the Eq (10). The number of bootstrap replications R is in {9, 99, 999}.

Data set IWAT BAT Liver

Method R = 9 R = 99 R = 999 R = 9 R = 99 R = 999 R = 9 R = 99 R = 999

Proposed Method using Eq (2) 3.71(m) 32.20(m) 5.53(h) 3.67(m) 32.54(m) 5.75(h) 3.61(m) 32.39(m) 5.79(h)

Proposed Method using Eq (10) 11.40(m) 1.86(h) 19.83(h) 11.39(m) 1.82(h) 19.83(h) 11.45(m) 1.81(h) 19.73(h)

doi:10.1371/journal.pone.0131111.t002

Table 3. IWAT, BAT and Liver data sets: timings (seconds) for Fisher’s g-test, Permutation test,
JTK-CYCLE, and the proposedmethod on one bootstrap replication.

Data set IWAT BAT Liver
Method

Fisher’s g-test 11.79(secs) 12.27(secs) 11.87(secs)

JTK-CYCLE 16.49(secs) 14.34(secs) 14.59(secs)

Proposed Method (One replication) 22.50(secs) 22.63(secs) 22.41(secs)

doi:10.1371/journal.pone.0131111.t003

Table 4. IWAT, BAT and Liver data sets: number of circadian genes identified using Fisher’s g-test,
Permutation test and JTK-CYCLE respectively.

Data set IWAT BAT Liver
Method

Fisher’s g-test 4177 4547 5030

Permutation test 9321 9441 9775

JTK-CYCLE 6646 6868 7354

Proposed Method 646 680 747

doi:10.1371/journal.pone.0131111.t004

Phase Confidence

PLOS ONE | DOI:10.1371/journal.pone.0131111 July 10, 2015 12 / 14



Remark 4. We note that the computational performance of the proposed method can be
enhanced. In fact, if we avoid using loops in R script that process one element per iteration, and
instead we use apply family of functions that process whole rows, columns, or lists, the comput-
ing time is reduced significantly. In this case we need just 0.001 second to run the method for
one replication using Eq (2), and we need 0.008 second to run the method using higher number
of cosine waves using Eq (10).
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