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Abstract: Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are
important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases
(HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly
convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids
from α-hydroxy conformations to β-hydroxy, or β-hydroxy toω-hydroxy in the case ofω-muricholic
acid. These reactions often result in products with drastically different physicochemical properties
than their precursors, which can result in steroids being activators or inhibitors of host receptors,
can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols
associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic
ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may
have therapeutic potential as steroid pool modulators or druggable targets in the future. In this
review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by
microbial HSDHs.

Keywords: hydroxysteroid dehydrogenase; sterolbiome; cholesterol; bile acid; cortisol; androgen;
deoxycholic acid

1. Introduction

Steroid hormones are signaling molecules derived from cholesterol that include gluco-
corticoids, mineralocorticoids, androgens, estrogens, progestogens, and bile acids (BAs) [1].
Steroid hormones are essential for the regulation of various physiological processes, such as
metabolism, salt and water balance, reproduction, inflammation, and stress response [2].
These cholesterol-derived molecules are synthesized in the human adrenal glands, gonads,
placenta, and liver [3,4]. All steroids have a cyclopentanoperhydrophenanthrene ring
structure, composed of three six-carbon rings denoted A, B, and C along with a five-carbon
D ring (Figure 1), with differing hydroxyl groups and side-chains [1]. Hydroxysteroid
dehydrogenases (HSDH) are an important class of enzyme expressed by both host tissues
and host-associated microbiota that modify the hydroxyl groups on steroids. These small
modifications to steroids greatly impact their physicochemical properties and can change
the steroid solubility, toxicity, host receptor affinity, and ability to activate or inhibit host
receptors [5–8]. The current review focuses on the importance of gut microbial HSDHs in
cholesterol, BA, and glucocorticoid metabolism.
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bile acids, C19 androgens, C18 estrogens, and C21 glucocorticoids, mineralocorticoids, and progestogens.

2. Hydroxysteroid Dehydrogenases
2.1. Hydroxysteroid Dehydrogenase Function

Hydroxysteroid dehydrogenases are nicotinamide adenine dinucleotide (phosphate)
(NAD(P)(H))-dependent oxidoreductases that catalyze the reversible conversion of hy-
droxyl groups to keto groups on steroids [9]. HSDHs are regio- and stereospecific, meaning
they are specific for the hydroxyl position on the steroid (C-3 vs. C-7) and for the orientation
(α vs. β) of the hydroxyl group, respectively [5]. Pairs of HSDHs can convert steroids
from the α-orientation, through an oxo-intermediate, to the epimerized β-orientation and
vice versa.

Hydroxysteroid dehydrogenases are found in both host and microbial genomes,
although more is known about the physiological function of host hydroxysteroid dehydro-
genases, which are typically abbreviated HSDs in literature. In this review, host hydroxys-
teroid dehydrogenases are denoted “HSD” while bacterial enzymes are denoted “HSDH”.
Host HSDs are key enzymes in the biosynthesis of steroids in steroidogenic tissues [10].
They also function to activate or inactivate steroids in peripheral tissues, thus regulating
local concentrations of steroid hormones [5]. Even though host HSDs catalyze reversible
reactions in vitro, they typically function primarily in one direction in vivo on the basis of
cofactor balance: either as dehydrogenases or as reductases [11].

Host HSDs are druggable targets important in the treatment of endocrine-dependent
disorders, including cancers [12]. Host-associated microbial HSDHs may also serve as
pharmacological targets or, alternatively, may be enriched in the host through engineering
and delivering probiotic bacteria with rational sterolbiome phenotypes. One recent example
involves identification of a cholesterol 3β-HSDH involved in conversion of cholesterol to
coprostanol, the enrichment of which may be important as a probiotic approach to reducing
serum cholesterol [13].

2.2. Structural Biology of Hydroxysteroid Dehydrogenases

Hydroxysteroid dehydrogenases belong to one of the following three large and diverse
protein superfamilies: short-chain dehydrogenase/reductase (SDR), medium-chain dehy-
drogenase/reductase (MDR), or aldo-keto reductase (AKR) [5,14]. Many SDR and MDR
family hydroxysteroid dehydrogenases have been identified in the gut microbiome [14–17].
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HSDHs in the AKR superfamily are generally found within mammals [12], although
microbial AKR family HSDHs have been reported [18].

The SDR superfamily is one of the largest, containing proteins spanning all three
domains of life [19]. SDR proteins have highly diverse substrate specificities, ranging from
sugars to dyes to steroids [20]. Members of this superfamily are non-metalloenzymes and
typically 250 amino acids in length [5]. Due to the dependence of dehydrogenase/reductase
enzymes on NAD(P)(H) to carry out redox reactions, SDR proteins contain a Rossmann fold
domain for binding cofactors. This domain consists of 6–7 β-strands with 3–4 peripheral
α-helices on either side [21,22]. Typically, the Rossmann fold domain is located near the N-
terminus of SDR proteins, while the C-terminus binds substrates [20]. Most SDR members
have a conserved Tyr, Ser, and Lys at the catalytic site. The overall folding pattern is
closely conserved across the superfamily, while amino-acid sequence varies greatly [22].
This causes great difficulty in predicting substrate specificities by amino-acid homology
search alone. HSDHs within the SDR superfamily include but are not limited to host
11β-HSD and 17β-HSD [5], and various microbial BA 12α-HSDHs [23], 12β-HSDH [24],
3α/β-HSDHs [17], and glucocorticoid 20β-HSDH [15].

The MDR family is similar to the SDR family both in number of members and in
function, although their structures have marked differences. MDR proteins contain Ross-
mann fold domains for NAD(P)(H) binding like SDRs, but they are ~350 residues long
and many are metal-dependent [25]. They are typically dimeric or tetrameric and many
contain a catalytic zinc ion, sometimes along with a structural zinc ion, while others are
non-zinc-containing [26]. The zinc-containing MDRs share a strictly conserved Gly, His,
and Glu for zinc binding [27]. MDR family HSDHs include host BA 3β-HSD [26] and
microbial glucocorticoid 20α-HSDH [14,16].

AKRs are NAD(P)(H)-dependent oxidoreductases acting on carbonyl groups or dou-
ble bonds and are ~320 amino acids long. They are monomeric with diverse substrate
recognition, including steroids, monosaccharides, and isoflavonoids. An ordered bi–bi
kinetic mechanism has been shown for multiple AKR family members, where the cofactor
is first to bind and last to leave [28]. Most have a conserved active site with residues Asp,
Lys, Tyr, and His. Examples of members of this superfamily involved in steroid metabolism
are human 3α-HSD [29], human 20α-HSD [30], and bacterial BA 3β-HSDH [18].

3. Bile Acid Metabolism
3.1. Host Bile Acid Synthesis and Signaling

Bile acids are amphipathic C24 steroids that play an important role in host nutri-
tion [31]. They are essential for solubilization and later absorption of cholesterol, di-
etary fatty acids, triglycerides, and lipid-soluble vitamins A, D, E, and K. Bile acids as-
semble into mixed micelles, forming a hydrocarbon interior in order to solubilize these
molecules [31,32].

Bile acid biosynthesis occurs in the liver and begins with the rate-limiting step of
cholesterol 7α-hydroxylation by cytochrome P450 7α-hydroxylase (CYP7A1) in hepatocytes
(Figure 2) [31,33]. While other carbon positions on cholesterol can be hydroxylated first
(C-24, C-25, C-26, C-27), the classical pathway initiates through C-7 hydroxylation catalyzed
by CYP7A1 [34,35]. The next step alters the ring structure through conversion to 3-oxo-∆4

by 3β-hydroxy-∆5-C27-steroid oxidoreductase (HSD3B7) [34,36,37]. After HSD3B7 action,
the intermediate is converted by 12α-hydroxylase (CYP8B1) if the final product contains a
12α-hydroxyl group. Ensuing steps involve additional modification to the ring structure by
AKR1D1 and AKR1C1 [37]. Then, mitochondrial sterol 27-hydroxylase (CYP27A1) oxidizes
the side-chain, followed by removal of three carbon atoms beginning with activation of the
sterol by BA coenzyme A (CoA) synthase [34,38,39]. Subsequent reactions are catalyzed
by 2-methylacyl-CoA racemase, branched-chain acyl-CoA oxidase, D-bifunctional protein,
and peroxisomal thiolase 2, which cleaves the C-24–C-25 bond [34,37]. The final step in
BA biosynthesis is conjugation of the BA-CoA intermediate to either glycine or taurine,
catalyzed by BA CoA:amino acid N-acyltransferase [34,40].
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Figure 2. Synthesis and microbial metabolism of bile acids and cortisol. (1) The bile acids (BAs) cholic acid (CA) and
chenodeoxycholic acid (CDCA) are synthesized and conjugated to glycine (Gly) or taurine (Tau) in the liver. (2) They are
then stored in the gallbladder until they are released in response to a meal. (3) Microbial deconjugation of amino acids,
catalyzed by bile salt hydrolase (BSH), primarily occurs in the small intestine. (4) BAs are taken up in the terminal ileum
and undergo enterohepatic circulation back to the liver indicated by green arrows. (5) About 5% of BAs are not recycled
and proceed to the colon. (6) Gut microbiota residing in the colon can 7α-dehydroxylate CA or CDCA to secondary BAs in
a pathway encoded by the BA-inducible (bai) operon. Microbial hydroxysteroid dehydrogenases (HSDHs) interconvert
BA hydroxyl groups between the α- and β-conformations through an oxo-intermediate. (A) Cortisol is synthesized in the
adrenal glands. (B) Cortisol and its derivatives are principally excreted in urine; however, low levels are secreted in bile and
enter the gut. (C) In the gut, cortisol can be side-chain cleaved by microbiota encoding steroid-17,20-desmolase (DesAB) or
reduced to 20α- or 20β-dihydrocortisol by HSDHs.

Conjugated BAs, called “bile salts” due to their ionized state at physiological pH,
have increased solubility and greater amphipathicity. The biosynthetic pathway results
in the formation of conjugated cholic acid (CA; 3α,7α,12α-hydroxy) or chenodeoxycholic
acid (CDCA; 3α,7α-hydroxy) with their relative proportions determined by levels of
12α-hydroxylase in the liver [33,34]. The ratio of taurine- to glycine-conjugated BAs
is dependent on diet in humans. A high-protein diet results in greater taurine conjugation,
while vegetarian diets lead to more glycine conjugation [33]. CA and CDCA are the primary
BAs produced in humans, whereas other vertebrates produce bile salts that differ in ring
hydroxylation pattern, as well as side-chain length and functional groups. The main classes
are C24 BAs, C27 BAs, and C27 bile alcohols [41]. C24 BAs are common in all vertebrates,
but with differing hydroxylation patterns. For example, mice produce CA and convert
CDCA to muricholic acids (3,6,7-hydroxy) via hydroxylation and epimerization at C-6.
C27 bile alcohols are typically synthesized in fish [42] and amphibians, while C27 BAs are
present in reptiles and birds [41].
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Once synthesized, conjugated BAs are actively transported out of hepatocytes into the
bile duct. Conjugated BAs are stored in the gallbladder until the gallbladder is emptied
into the duodenum in response to a meal [43]. Conjugated bile salts form mixed micelles
with cholesterol, lipid-soluble vitamins, and dietary lipids throughout the small intestine.
In the ileum, a sodium-dependent transporter (IBAT) takes up BAs into ileocytes [44].
From ileocytes, they are exported by organic solute transporter OSTα/β [45,46] into the
portal vein, where they circulate back to the liver in a process known as enterohepatic
circulation [47]. However, ~500 mg of BAs each day are not taken up in the ileum and
progress to the colon where they encounter gut microbiota [37]. Microbial metabolites
of BAs can be passively absorbed in the colon, travel through the portal vein, and join
the recycled host-derived BAs in the liver. Thus, the biliary pool consists of both host-
and microbiota-derived BAs that are re-conjugated and, in some species, 7-hydroxylated,
as they return to the liver [48].

In addition to the digestive function of BAs, they are now known to act as hormone
signaling molecules. BAs are involved in regulation of their own biosynthesis, as well as
energy, glucose, and lipid metabolism [43]. Farnesoid X receptor (FXR, NR1H4) is a BA-
activated nuclear receptor expressed in tissues such as liver, intestine, and kidney [49,50].
FXR regulates BA biosynthesis and enterohepatic circulation through many mechanisms.
The FXR/SHP (small heterodimer partner) pathway of regulation involves the inhibition
of CYP7A1, the rate-limiting step in BA formation. FXR induces the nuclear receptor, SHP,
which inhibits liver-related homolog-1 (LRH-1) and hepatocyte nuclear factor 4α (HNF4α),
both leading to inhibition of CYP7A1 transcription [51–53]. Another pathway involves
FXR, fibroblast growth factor 19 (FGF19), and FGF receptor 4 (FGFR4), which also results
in inhibition of CYP7A1. Before recirculation back to the liver, BAs stimulate intestinal FXR,
which induces FGF19 synthesis in ileocytes [54]. FGF19 is transported to the liver, where
it binds FGFR4 and activates the c-jun N-terminal kinase (JNK) 1/2 signaling cascade,
leading to downregulation of CYP7A1 [33,55].

Pregnane X receptor (PXR) and vitamin D receptor (VDR) are both nuclear receptors
activated by microbial-derived BAs that also lead to the binding of CYP7A1 promoter and
repression of CYP7A1 [8,56–58]. Takeda G-protein receptor 5 (TGR5) is a G-protein-coupled
receptor for BAs that is expressed in intestinal and biliary epithelial cells among other
cell types [59,60]. TGR5 has widespread effects throughout the body, including regulation
of intestinal motility [61]. Taurine-conjugated BAs activate TGR5 more effectively than
unconjugated or glycine-conjugated BAs [62]. TGR5 signaling can activate epidermal
growth factor receptor (EGFR) [63]. EGFR is also a BA receptor that, once bound, initiates
a signaling pathway ending in inhibition of CYP7A1 [43,64]. In the gut, primary bile salts
can be microbially biotransformed to dozens of metabolites whose concentrations and
affinities can impact host physiological response in the intestine.

3.2. Microbial Bile Acid Metabolism

Bile acids that enter the colon are metabolized by gut microbiota through a combina-
tion of de(re)conjugation, 7α/β-dehydroxylation, and epimerization (Figure 2). The first
step of microbial BA metabolism, known as deconjugation, mainly occurs in the small
intestine and involves the hydrolysis of the C-24 N-acyl bond linking the conjugated amino
acid to the BA. This reaction is catalyzed by bile salt hydrolase (BSH) encoded by diverse
microbiota, including Clostridium [65,66], Bacteroides [67,68], Lactobacillaceae [69], Bifidobac-
terium [70,71], Enterococcus [72], and archaea [73]. BSHs have differing substrate specificity
and subunit size, but often have conserved active site Cys, Arg, Asp, Asn, and another
Arg [74]. BSHs have a pH optimum of 5–6 and are typically intracellular [65,70], although
activity has been reported extracellularly in some cases [66]. Interestingly, re-conjugation
of BAs by gut microbiota has recently been observed with unique amino acids: Phe, Tyr,
and Leu [75].

There are multiple hypotheses on the evolutionary role of BSH in microbial fitness:
interspecies competition, detoxification, and release of an energy source. Deconjugated
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BAs are more toxic than conjugated bile salts to some bacterial species; thus, deconjugation
may serve a competitive function to inhibit other bacteria [4]. However, the reverse may
also be true. Some bacteria are more sensitive to conjugated BAs and, thus, BSH may help
them detoxify their environment [76]. Amino acids released from deconjugation could
be an important energy source for certain microbiota, such as Clostridium that can utilize
amino acids through Stickland fermentation [77].

Deconjugated primary BAs can be 7-dehydroxylated by a select few species within
the gut, including Clostridium scindens, C. hylemonae, and C. hiranonis (now reclassified as
Peptacetobacter hiranonis) [4,78–80]. Through this process, the primary BAs CA and CDCA
are converted to “secondary” deoxycholic acid (DCA; 3α,12α-hydroxy) and lithocholic acid
(LCA; 3α-hydroxy), respectively. Although so few species encode the 7α-dehydroxylation
pathway, secondary BAs make up the majority of excreted BAs [74,81,82], meaning these
microbiota have extensive dehydroxylation capacity.

The 7-dehydroxylation pathway is encoded by the polycistronic BA-inducible (ba-
iABCDEFGHI) operon [4,83,84]. The first step is the import of unconjugated primary BAs
by a BA transporter BaiG [85]. Next, ligation of CoA to the unconjugated BA is catalyzed
by BA CoA ligase encoded by baiB, requiring ATP and Mg2+ [86]. Then, the 3α-hydroxyl
group is oxidized by BaiA [87]. Three baiA genes from C. scindens have been reported in C.
scindens VPI 12708, although completion of the C. scindens American Type Culture Collec-
tion (ATCC) 35704 genome revealed the presence of only two, with baiA2 located in the bai
operon [88–91]. These enzymes are NAD(H)-dependent BA 3α-HSDHs that are specific
for BA-CoA conjugates [87]. BaiCD is an NADH:flavin-dependent oxidoreductase that
creates a C-4=C-5 double bond on 7α-hydroxy BA intermediates, while BaiH has the same
function on 7β-hydroxy BAs [92]. CoA is then hydrolyzed by BaiF or BaiK and transferred
without requirement of ATP to an incoming primary BA [93]. Subsequent 7α-dehydration
is the rate-limiting step in the pathway, catalyzed by the baiE product [94]. 7β-Dehydration
is predicted to be carried out by BaiI [95]. Recently, a recombinant flavoprotein encoded
by baiN, which is not a part of the bai operon, was shown to convert 3-dehydro-DCA to a
product 4 amu less than the substrate [96]. Further characterization is necessary, but this
suggests that baiN may catalyze reduction of both ∆4 and ∆6-intermediates following
7-dehydration [96]. Alternatively, BaiCD and BaiH were reported to be sufficient for
C-4=C-5 and C-6=C-7 metabolism in the oxidative and reductive arms of the pathway [97].
The final step in the pathway, converting the 3-oxo intermediate to a secondary BA, is likely
to be carried out by the products of one or both copies of baiA [98]. The BA exporter
is not yet known [4]. However, two genes co-localized with baiN have been proposed,
but not yet confirmed, to catalyze the final reaction and BA export, named BaiO and BaiP,
respectively [99]. Several additional candidate export proteins were identified through
transcriptomic analysis of C. scindens ATCC 35704 after BA induction [91].

The 7α/β-dehydroxylation pathway results in a net two-electron reduction, meaning
a net of one NAD+ is produced when a primary BA is used as an electron acceptor [74].
The 7α/β-dehydroxylation pathway is likely coupled to glucose metabolism, benefitting
7α/β-dehydroxylating bacteria [91]. The pathway may serve another function in produc-
ing secondary BAs, which are more hydrophobic and toxic to gut bacteria, to regulate
the growth of competing gut microbiota [7,100]. For example, DCA has a minimum in-
hibitory concentration tenfold lower than CA against many Lactobacillus and Bifidobacterium
species [100].

Both primary and secondary BAs can be oxidized and epimerized at position C-3, C-7,
and/or C-12 reversibly from the α-orientation to an oxo-intermediate and further to the
β-orientation by microbial HSDHs. Epimerized BAs have specific nomenclature: those
containing 3β-hydroxyl groups are iso-BAs, while 7β- and 12β-BAs are recommended
to be denoted epi-BAs preceded by the hydroxyl position, according to Hofmann et al.
(1992) [101]. However, 7β-BAs are generally accepted to be named urso-BAs. For simplic-
ity in this review, each prefix refers to only one of the β-hydroxyl positions: iso for 3β-,
urso for 7β-, and epi for 12β-hydroxyl (Figure 3). Similarly to humans, mouse α-muricholic
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acid (3α,6β,7α-hydroxy) and β-muricholic acid (3α,6β,7β-hydroxy) can be oxidized and
epimerized toω-muricholic acid (3α,6α,7β-hydroxy) via a 6-oxo-intermediate [102]. Nu-
merous microbiota are capable of oxidoreduction of BAs, including Eggerthella lenta [103],
C. scindens [23,87], C. hiranonis [23], C. hylemonae [23], Escherichia coli [104], and Bacteroides
fragilis [105].
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Figure 3. Microbial bile acid hydroxysteroid dehydrogenase metabolism. After deconjugation by bile salt hydrolase,
the primary bile acids (BAs) chenodeoxycholic acid (CDCA) and cholic acid (CA) can be 7α-dehydroxylated or reversibly
biotransformed by NAD(P)(H)-dependent hydroxysteroid dehydrogenases (HSDHs). CDCA is converted to the oxo-
intermediate, 7-oxolithocholic acid (7-oxoLCA), and further to ursoDCA (UDCA) in the urso-BA pathway catalyzed by 7α-
and 7β-HSDH. The secondary BAs lithocholic acid (LCA) and deoxycholic acid (DCA) are produced through the multi-step
7α-dehydroxylation of CDCA and CA, respectively. 3α-HSDH biotransforms DCA into 3-oxoDCA, and 3β-HSDH converts
3-oxoDCA to isoDCA in the iso-BA pathway. DCA is converted to 12-oxoLCA by 12α-HSDH and from 12-oxoLCA to
epiDCA by 12β-HSDH. HSDHs can recognize other BAs with the correct hydroxyl group position and orientation beyond
those depicted.

3.3. Microbial Bile Acid Hydroxysteroid Dehydrogenases

Microbial HSDHs catalyze the NAD(P)(H)-dependent oxidation and reduction of
hydroxyl groups on BAs in the gut (Figure 3). Human interest in ursodeoxycholic acid
(UDCA; 3α,7β-hydroxy) has a long and fascinating history. Asiatic black bear bile has
been used in traditional Chinese medicine to treat disease for over 1000 years [106]. In the
early 1900s, a BA was isolated from polar bear bile and, later, the same BA was crystallized
from the American black bear. This BA was named ursodeoxycholic acid after the Latin
name ursus [107]. UDCA makes up about 3–4% of the human BA pool but, in contrast
to bear bile, is a secondary BA in humans [108,109]. UDCA and other urso-BAs are
produced by combined microbial 7α-HSDH and 7β-HSDH activity in the human gut.
Both microbial 7α- and 7β-HSDHs are typically NADP(H)-dependent, and they frequently
exhibit specificity for dihydroxy-BAs (e.g., CDCA and UDCA) over trihydroxy-BAs (e.g.,
CA and UCA) [104,105,110–114], although exceptions have been reported [115,116].
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Urso-BAs are more hydrophilic and less toxic both to microbiota and to the host than
DCA or LCA [7]. Indeed, DCA and LCA are involved in various diseases, such as cancers
of the colon and liver [117–120]. UDCA is currently approved for treatment of biliary
disorders [121], is being studied for both chemoprevention and chemotherapy of various
cancers [108,122], and is undergoing clinical trials as part of a combination chemotherapy
for colorectal cancer (clinicaltrials.gov identifier: NCT00873275). Its mechanism of action
likely involves the displacement of more toxic BAs in the BA pool and its choleretic
effect of inducing secretion of BAs from the liver [123]. However, UDCA can be 7β-
dehydroxylated by certain gut microbiota or isomerized back to 7α-hydroxy prior to
7α-dehydroxylation [124,125]. 7β-Dehydroxylation of UDCA forms LCA, which may
explain various toxicities associated with UDCA treatment [126].

The iso-BA pathway is catalyzed by the paired action of BA 3α- and BA 3β-HSDH.
Generally, 3α-HSDHs utilize NAD(H), whereas 3β-HSDHs require NADP(H). They also
usually prefer dihydroxy-BAs (derivatives of DCA or CDCA) over trihydroxy-BAs (deriva-
tives of CA) [17,18,112,127]. BA 7α-dehydroxylating bacteria express a 3α-HSDH (BaiA)
that differs greatly in substrate specificity as it reacts with CoA conjugates, not free BAs [87].
Iso-BAs are present ranging from 0% to about 20% of the total BA pool in the gut [109].
Iso-BAs have greatly decreased detergent nature and are thus less cytotoxic to gut micro-
biota, as well as the host, than DCA or LCA [6,17]. 3α/β-HSDHs may be of pharmaceutical
use with respect to modulating the BA pool in favor of less toxic iso-BAs. Iso-BAs are
intrinsically poor detergents and impede nutrient absorption. The liver epimerizes iso-BAs
back to the 3α-hydroxyl form via a cytosolic 3β-HSDH [128]. Further studies are needed to
determine the viability of developing strategies to favor iso-BAs.

Compared to the iso- and urso-BA pathways, the least is known about the epi-BA
pathway. While multiple 12α-HSDHs have been characterized [18,23,103,116,129,130],
BA 12β-HSDH was only studied in cell extracts until the discovery of the first gene
encoding this activity by our lab [24,131,132]. 12-Oxolithocholic acid (12-oxoLCA; 3α-
hydroxy,12-oxo), the product of 12α-HSDH oxidation of DCA, is often one of the most
abundant oxo-BAs found in human feces, at concentrations of about one half DCA in
some studies [81,133,134]. Of note, levels of 12-oxoLCA were increased in rats with
high incidence of tumors after being fed a diet high in corn oil or safflower oil [135].
Measurement of epi-BAs is rare in the literature. EpiDCA (3α,12β-hydroxy) was first
identified in human feces by Eneroth et al. (1966) [136]. Recently, Franco et al. (2019)
measured 3-oxo-12β-hydroxy-CDCA in humans, but little is known about concentrations
of epiDCA or epiCA (3α,7α,12β-hydroxy) in feces [81]. EpiDCA has also been identified
in the biliary bile of angelfish; hence, 12β-HSDH activity is likely present within the
microbiome of diverse vertebrates [41].

Many gut microbial 12α-HSDHs have NADP(H) specificity [18,23,129,130], while
others are NAD(H)-specific [116]. 12α-HSDHs generally have higher activity with free and
dihydroxy-BAs than conjugated or trihydroxy-BAs [18,23,129]. The only gut microbial BA
12β-HSDH characterized to date, from Clostridium paraputrificum ATCC 25780, has affinity
for NADP(H) and greater activity with dihydroxy-BAs [24,132]. Two additional 12β-
HSDHs have been shown to react with 12-oxoLCA and epiDCA with NADP(H) as co-
substrate, although their substrate specificities have not been fully characterized [24].
Interestingly, 12β-HSDH activity recognizing side-chain cleaved steroids derived from BAs
has been observed in multiple environmental microorganisms. This activity is displayed by
Comamonas testosteroni TA441 [137] and Pseudomonas sp. strain Chol1 [138] as they convert
a 12-oxo-intermediate into 7α,12β-dihydroxy-androsta-1,4-diene-3,17-dione (12β-DHADD)
in a cholic acid degradation pathway.

Epi-BAs are understudied compared to urso- and iso-BAs. Thus, their toxicity relative
to secondary BAs is untested, although epiDCA and 12-oxoLCA are less hydrophobic
than DCA according to LC–MS [24]. It is possible that isomerization of primary BAs to
iso- or epi-BAs may impede formation of secondary BAs if they cannot be recognized
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by 7-dehydroxylation pathway enzymes. This could be of therapeutic importance because
secondary BAs DCA and LCA are not only toxic to gut microbiota, but also to the human host.

Our knowledge of microbial HSDHs is largely limited to studies in humans and
rodents. Notable recent studies extend to black bears in the search for HSDHs capable
of forming UDCA [139]. There is a rich diversity of bile salts produced in vertebrates,
such as pythocholic acid (16α-hydroxycholic acid; 3α,12α,16α-trihydroxy-5β-cholan-24-oic
acid) found in snakes, which is a 16α-hydroxylated derivative of DCA [106,140]. Avicholic
acid (3α,7α,16α-trihydroxy-5β-cholan-24-oic acid), found in birds, was identified in a
drug screen as a TGR5 agonist [141]. An NAD(P)-dependent 16α-HSD was purified and
characterized from rat kidney [142]; however, to our knowledge microbial 16α-HSDH
activity has not yet been reported in snake or bird gastrointestinal content.

3.4. Physiological Roles of Microbial Bile Acid Hydroxysteroid Dehydrogenases

The physiological function of many microbial BA HSDHs remains unclear, although
species and strain context seem likely to be important. In all cases, these redox reactions
affect NAD(P)/NAD(P)H ratios, and BA oxo-groups provide substrates for disposal of
excess reducing equivalents or acquisition of hydrides in order to detoxify molecular oxy-
gen close to the gut mucosa. Oxidation and epimerization of BA α-hydroxyl groups to
β-hydroxyl groups is also thought to function in detoxification by converting hydrophobic
BAs to hydrophilic BAs that are less damaging to biological membranes [7,17]. For exam-
ple, isoDCA has a minimum inhibitory concentration of more than double that of DCA
against various Gram-negative Bacteroides and Gram-positive species [17]. In contrast,
some HSDHs seem to favorably produce DCA from oxo-derivatives, suggesting they may
function to maintain high concentrations of DCA in the environment [23].

Culture-based studies indicate that the oxidation and epimerization of primary BAs
affects the extent of BA 7α-dehydroxylation [143]. There are several hypotheses that
could explain this observation. First, there is currently a paucity of knowledge relating
to substrate specificity of the BA transporter, BaiG, and whether oxo- and iso-BAs are
efficiently imported. Our recent study indicates that 3,7-dioxoLCA is converted to CDCA
and low levels of LCA by C. scindens [143], albeit to lower levels than CDCA addition,
suggesting import is occurring. Second, BA 7α-dehydroxylating bacteria appear to lack
significant 3β-HSDH activity and, as a result, iso-primary BAs (3β-hydroxy) are not
substrates for the BA 7α-dehydroxylation pathway [143]. As noted above, the first oxidation
step and the last reductive step in the BA 7α-dehydroxylation pathway are catalyzed by
3α-HSDH (BaiA). A 3β-hydroxyl group, thus, prevents key oxidation steps that lead to 7α-
dehydration. Indeed, LCA was not observed in cultures of C. scindens VPI 12708 induced
with CA (resulting in upregulation of Bai enzymes) and then incubated with isoCDCA [143].
While trace levels of isoLCA (<1%) have been reported in vitro during BA metabolism
by C. scindens ATCC 35704 [144], this may be due to the minor promiscuity known for
some bacterial HSDHs [96]. Iso-secondary BAs (e.g., isoDCA and isoLCA) are second
only to DCA and LCA in abundance in stool [109] and are less toxic than LCA and DCA
to intestinal bacteria [17]. Iso-BA epimerizing HSDHs also show substrate specificity
preference toward secondary BAs [18]. It is, therefore, hypothesized that isoLCA and
isoDCA are generated from LCA and DCA, respectively, in the gastrointestinal tract. A third
point is that enrichment of primary oxo- and β-hydroxy-BAs comes at the expense of primary
BAs such as CA and CDCA, which induce expression of the bai operon [145]. Indeed, culture-
based studies indicate that C. scindens VPI 12708 is capable of converting 3,7-dioxocholanoic
acid and 7-oxoLCA to LCA only if the cells were preincubated with CA [143].

Numerous gut bacteria, including Bacteroides spp. and E. coli, encode 7α-HSDH and
produce 7-oxo-BAs that are released into the lumen [105,146,147]. The formation of 7-
oxo-primary BAs precludes 7α/β-dehydration by the bai pathway and must be reduced
to proceed. It is, therefore, not surprising that BA 7α-dehydroxylating bacteria express
NADP-dependent 7α-HSDH [114]. The BA 7α-HSDH is predicted to be important both in
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regulating the NAD(H)-dependent BA 7α-dehydroxylating pathway intracellularly and in
reducing 7-oxo-BAs imported from the environment.

BA 7α-dehydroxylating bacteria also encode BA 12α-HSDH [23,148]. The formation
of 12-oxo-BAs reduces toxicity of BAs toward gut bacteria [7], which is likely why a wide
diversity of gut bacteria encode 12α-HSDH [18,23,143,149]. However, substrate specificity
of 12α-HSDHs in 7α-dehydroxylating bacteria favors the reductive direction, converting
12-oxoLCA to DCA [23]. We, therefore, hypothesize that BA 7α-dehydroxylating bacteria
express BA 12α-HSDH principally to “retoxify” 12-oxoLCA that was generated by bacteria
less resistant to DCA.

We recently demonstrated extensive oxidation of BAs by Eggerthella lenta [143]. In-
deed, E. lenta strains C592 and DSM 2243 encode 3α-, 3β-, 7α-, and 12α-HSDHs capable of
converting CA to trioxo-cholanoic acid under a nitrogen or carbon dioxide atmosphere.
However, BA oxidation was inhibited under a hydrogen gas atmosphere (Figure 4). Ge-
nomic analysis revealed genes encoding energy conserving hydrogenase (echABCDEF)
and Rnf complex (rnfABCDEG), as well as a complete Wood–Ljungdahl pathway, suggest-
ing that E. lenta is an acetogen [143,150]. The classical acetogen fixes CO2 or CO in the
presence of H2 [151]; however, acetogens are known to utilize a wide range of electron
donors. Under this scheme, E. lenta HSDH enzymes are hypothesized to generate NADH
by oxidizing BAs, which provides reducing equivalents to fix CO2. In the presence of H2, E.
lenta hydrogenases reduce NAD+ via molecular hydrogen, and BA oxidation is prevented.
Additional studies will be needed to confirm this hypothesis linking BA metabolism and
H2 partial pressure in a novel acetogen.
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The role of microbial BA HSDHs in host physiology is also relatively unclear. While
the involvement of oxo- and β-BAs in host signaling pathways has not been fully explored,
there is evidence that products in the iso-BA pathway activate various host receptors.
For example, along with LCA, 3-oxoLCA has been shown to activate the BA receptors FXR,
VDR, and PXR [8,56]. In contrast, 12-oxoLCA, 7-oxoLCA, and UDCA did not efficiently
activate either FXR or VDR [8,50]. Recently, 3-oxoLCA and a planar iso-BA, isoalloLCA,
were shown to be regulators of interleukin (IL)-17a expressing T helper cells (TH17) and
regulatory T cells (Treg) in mice [152]. Determining the full spectrum of both primary and
secondary oxo- and β-derivatives against BA-responsive nuclear and G protein-coupled
receptors will be important future work.

4. Glucocorticoid Metabolism
4.1. Host Glucocorticoid Synthesis

Glucocorticoids are involved in diverse essential physiological processes throughout
the body [153]. Cortisol and corticosterone are the primary C21 glucocorticoids present
in humans. However, cortisol concentrations are about 10 times greater than corticos-
terone [154]. Cortisol plays a major role in the stress response and maintenance of blood
glucose concentration, as well as in inhibition of protein synthesis in muscle, of lipogenesis
in fat cells, and of the immune system [155].

Cortisol is synthesized in the adrenal gland from cholesterol and involves the ac-
tion of both cytochrome P450 enzymes and hydroxysteroid dehydrogenases, much like
BA biosynthesis (Figure 2). The first step is catalyzed by CYP11A1, which side-chain
cleaves cholesterol and results in pregnenolone [9]. This is the rate-limiting step and
precursor to many other steroid hormones, including progesterone, corticosterone, aldos-
terone, testosterone, and estradiol [156]. 17α-Hydroxyprogesterone is then produced by
CYP17A1 (17-hydroxylase/17,20 lyase) and HSD3B2 (3β-HSD/∆5/4-isomerase type 2).
CYP21A2 converts 17α-hydroxyprogesterone to 11-deoxycortisol. The last reaction results
in the formation of cortisol through the action of CYP11B1 [9,10]. Cortisol circulates in
serum at concentrations between 100 and 600 nM [9]. Cortisol then acts in peripheral tissues
by binding to the nuclear glucocorticoid receptor, resulting in regulation of numerous genes,
including those involved in inflammation, immune function, and gluconeogenesis. Cortisol
can also bind to mineralocorticoid receptor, which regulates electrolyte balance [157,158].
Cortisol concentrations are tightly regulated by 11β-HSD isoforms 1 and 2. 11β-HSD1/2 in-
terconvert cortisol (C-11 hydroxyl) to its inactive form, cortisone (C-11 ketone), which
cannot bind the glucocorticoid receptor or mineralocorticoid receptor. 11β-HSD1 functions
primarily as a reductase to activate cortisol in the liver, muscle, and bone. In contrast,
11β-HSD2 acts as a dehydrogenase, inactivating cortisol to cortisone in the kidney, colon,
and salivary glands [9].

Human tissues metabolize cortisol in various ways, leading to its excretion primarily
in urine. However, low levels of cortisol and its derivatives are secreted in bile and enter
the gut [159]. Cortisol undergoes 5α- or 5β-reduction in the liver, while cortisone is only
5β-reduced [160]. After 3α-reduction, 5α/β-tetrahydrocortisol and tetrahydrocortisone are
produced, which are the main metabolites of cortisol and cortisone in urine, respectively [9].
Cortisol can also be metabolized by 20α- and 20β-HSDs, yielding either 20α- or 20β-
dihydrocortisol [161]. Carbonyl reductase-1 (CBR1) has 20β-HSD activity producing 20β-
dihydrocortisol, while a host 20α-HSD has been observed with specificity for progesterone,
but not cortisol [9,162]. 20α/β-Reduction of tetrahydrocortisol and tetrahydrocortisone
results in α/β-cortols or α/β-cortolones [163].

4.2. Host Androgen Synthesis

Androgens are important for metabolic homeostasis and reproductive function in men,
as well as women. Androgens are C19 steroids that are synthesized in the Leydig cells of the
testes or adrenal glands [164]. The primary active androgens in circulation are testosterone
and dihydrotestosterone, although, in the adrenal glands, the major products are the
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androgen precursors dehydroepiandrosterone (and its sulfate ester), androstenedione,
and 11β-hydroxyandrostenedione (11β-OHAD) [165].

Androgen biosynthesis in the adrenal cortex begins with side-chain cleavage of choles-
terol to pregnenolone by CYP11A1. Then, CYP17A1 hydroxylase and 17,20-lyase activi-
ties produce dehydroepiandrosterone (DHEA). HSD3B2 (3β-HSD/∆5/4-isomerase type 2)
converts DHEA to androstenedione. Alternatively, AKR1C3 (17β-HSD) can produce an-
drostenediol from DHEA, and HSD3B2 then yields testosterone. Androstenedione can be
further converted to 11β-OHAD by adrenal-specific CYP11B1 (11β-hydroxylase) [166].

Even though 11β-OHAD makes up a large proportion of adrenal steroidogenesis, it has
historically largely been ignored (except in fishes) due to its low androgenic activity [167].
Storbeck et al. (2013) reported that 11β-OHAD leads to the formation of 11-ketotestosterone
(11KT) [168], a potent 11-oxygenated C19 androgen involved in castration-resistant prostate
cancer [169,170] and polycystic ovary syndrome [170,171]. This is important because,
although 11β-OHAD is primarily produced in the adrenal glands by CYP11B1, peripheral
side-chain cleavage of cortisol to 11β-OHAD also occurs [172]. Peripheral 11β-OHAD
is not formed by CYP17A1 [173]. Thus, the enzyme responsible for cortisol-derived 11β-
OHAD may be an unknown host enzyme and/or of microbial origin. Intriguingly, 11β-
OHAD has been shown to be produced from side-chain cleavage of cortisol by human gut
microbiota [14,174–176].

Androgens signal throughout the body by binding to androgen receptor (AR) ex-
pressed in various cell types, including B cells, T cells, neutrophils, and macrophages [177],
as well as colon cancer cell lines [178]. Nuclear AR is a ligand-dependent transcription
factor that, when activated by an androgen, regulates expression of cell growth, differenti-
ation, and even carcinogenesis in some cases [179]. Intestinal cells express both nuclear
AR and membrane AR [178–180]. Importantly, the gut microbiome has evolved enzymes
that catalyze many of the same reactions described for host glucocorticoid and androgen
metabolism. This indicates that the host endocrine system has interkingdom components
in need of further exploration.

4.3. Microbial Cortisol Metabolism

The earliest evidence of microbial biotransformation of cortisol was observed when
rectal infusion of cortisol in ulcerative colitis patients led to an increase in urinary excretion
of 17-ketosteroids [181]. This increase in urinary steroids was not detected when cortisol
treatment coincided with oral neomycin [182], suggesting microbial biotransformation
of cortisol. Thereafter, side-chain cleavage of cortisol or steroid-17,20-desmolase activity
was observed when human fecal samples produced C19 steroids after incubation with
cortisol [176].

In 1984, a bacterium was isolated from human fecal material exhibiting steroid-17,20-
desmolase activity producing 11β-OHAD from cortisol (Figure 2) [174,175]. This organism
was named Clostridium scindens, formerly Clostridium strain 19, which also has BA 7α-
dehydroxylation activity [4]. Additional organisms with steroid-17,20-desmolase activity
were then isolated: Butyricicoccus desmolans ATCC 43058 (formerly Eubacterium desmolans),
C. cadaveris AGR2141 [183], and the urinary microbe Propionimicrobium lymphophilum ACS-
093-V-SCH5 [184,185]. The operon encoding this activity (desABCD) has since been iden-
tified by performing RNA-Seq after inducing C. scindens ATCC 35704 with cortisol [14].
The inducible desABCD operon consists of steroid-17,20-desmolase (DesAB) encoded by
desAB, a 20α-HSDH (DesC), and a putative transporter (DesD) (Figure 5) [14,186]. C.
scindens ATCC 35704 DesAB was determined to be a heterotetramer and recognized both
cortisol and 11-deoxycortisol, which only differs from cortisol in the absence of an 11β-
hydroxyl group [186].
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C-20 reduced metabolites of cortisol have been observed in human urine, likely
attributable to host enzymes that produce 20α- or 20β-dihydrocortisol and their deriva-
tives [163,187]. However, Winter et al. (1982) showed that gut microbiota can reduce
cortisol to 20β-dihydrocortisol, exhibiting 20β-HSDH (DesE) activity [188]. B. desmolans
and C cadaveris express 20β-HSDH [183], along with Bifidobacterium adolescentis [188].
Additionally, the gut microbe Clostridium scindens ATCC 35704 can convert cortisol to 20α-
dihydrocortisol [174]. Thus, gut microbiota encode 20α- and 20β-HSDHs that biotransform
cortisol (Figure 5).

Human gut microbiota are also capable of 21-dehydroxylation of corticosteroids.
21-Dehydroxylase activity was first detected in Eggerthella lenta (formerly Eubacterium
lentum) [189,190]. E. lenta 21-dehydroxylase has substrate specificity for 11-deoxycorticosterone,
deoxycortisol, dehydrocorticosterone, and corticosterone [191,192]. The enzyme requires
NAD(P)H and flavin or only reduced flavin mononucleotide for activity [192]. Although
this enzyme seems to be specific for corticosterone, 21-dehydroxylation of cortisol to
21-deoxycortisol also occurs [176]. Interestingly, 21-deoxycortisol is a substrate for 11β-
HSD2 [193] while the 21-dehydroxylation product of corticosterone is a potent inhibitor [194].

4.4. Microbial Cortisol Hydroxysteroid Dehydrogenases

Host hydroxysteroid dehydrogenases have been established as important for biosyn-
thesis and modulation of steroid hormones such as androgens, estrogens, and glucocorti-
coids for years [5]. Since the discovery of steroid hormone-converting HSDHs in the human
gut microbiome, gut bacteria have been proposed to play an important role beyond that
of the host in modification of steroids [14]. Within the steroid-17,20-desmolase pathway,
two HSDHs have been identified that convert cortisol to 20α- or 20β-dihydrocortisol and
may act as enzymatic switches to control formation of 11β-OHAD (Figure 5).
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20β-Dihydrocortisol is excreted in urine at rates comparable to that of free cortisol
in healthy individuals [161,187]. Urinary excretion of 20α-dihydrocortisol occurs at rates
of about 1.5 times the excretion of cortisol [161,187]. Although the physiologic role of
20α- and 20β-dihydrocortisol is not extensively studied, they are elevated in patients with
Cushing’s syndrome [187], as well as in patients with hypertension [195].

One of the first organisms studied expressing 20β-HSDH activity was the soil microbe
Streptomyces hydrogenans [196]. This enzyme reacted with not only cortisol, but also corti-
sone, cortexolone (lacks C-11 oxygen group), and their 21-aldehydes [196]. More recently,
the genes encoding 20β-HSDH in B. desmolans and C. cadaveris, organisms that were pre-
viously shown to have this activity in culture, have been identified [183,184]. The gene
is denoted desE due to its involvement in the DesAB pathway and because it forms an
operon with the desAB genes [14,184]. Both B. desmolans and C. cadaveris are capable of
cortisol side-chain cleavage, as well as 20β-oxidoreduction [183,184]. 20β-HSDH has been
characterized in detail from B. desmolans ATCC 43058, which exhibits specificity for cortisol
as substrate and is NAD(H)-dependent [184]. Bifidobacterium scardovii ATCC BAA-773 and
the urinary tract microbe Propionimicrobium lymphophilum ACS-093-V-SCH5 also express
20β-HSDH according to HPLC [184], and P. lymphophilum has also been shown to encode
desAB [184,185]. Additionally, the SDR family NAD(H)-dependent 20β-HSDH product of
desE in B. adolescentis strain L2-32 has been characterized. It is specific for cortisol and was
crystallized in both the apo-form without any binding and the binary form with NADH
bound at 2.2 and 2.0 Å, respectively [15].

Thus far, 20α-HSDH activity seems to be significantly less widespread than 20β-
HSDH, with only one organism shown to exhibit the activity [14,197]. Reduction of
cortisol at the C-20 position to 20α-dihydrocortisol was observed in pure cultures of C.
scindens along with steroid-17,20-desmolase activity [175]. 20α-HSDH from C. scindens
ATCC 35704 was initially characterized from cell extracts and shown to be NAD(H)-
dependent [198]. The gene for 20α-HSDH was identified in 2013 after RNA-Seq analysis
revealed a cortisol-inducible operon including desAB and desC, encoding steroid-17,20-
desmolase and 20α-HSDH, respectively [14]. Recently, the C. scindens ATCC 35704 20α-
HSDH was crystallized for further characterization of the enzymatic mechanism. Hybrid
quantum mechanical molecular modeling simulations revealed a reaction mechanism
involving a multistep proton relay, which was validated by site-directed mutagenesis
experiments of active site and substrate binding residues [16]. An amino-acid homology
search based on C. scindens ATCC 35704 20α-HSDH within the National Center for Biotech-
nology Information (NCBI) database uncovered two additional organisms, Denitratisoma
oestradiolicum DSM 16959 and Intestinibacillus sp. Marseille-P4005, which may express
20α-HSDH, although activity has not yet been confirmed [24].

Microbial 20α- and 20β-HSDH may be important regulators of the steroid-17,20-
desmolase/DesAB pathway. By competing for cortisol as substrate with DesAB, they would
decrease the potential for 11β-OHAD formation. Microbial steroid-17,20-desmolase activity
may be one of the important missing enzymes contributing to peripheral 11β-OHAD pro-
duction in the body [199]. Recent work showed that Clostridium scindens ATCC 35704 and
the urinary microbe Propionimicrobium lymphophilum ACS-093-V-SCH5 can side-chain cleave
both cortisol and glucocorticoid drugs [185], suggesting microbial production of 11β-
OHAD may occur in both the gut and urinary tract. As mentioned above, 11β-OHAD can
be further converted to highly androgenic 11KT [168]. This has compelling implications
for androgen-dependent diseases, such as castration-resistant prostate cancer, or diseases
defined by androgen excess, such as polycystic ovary syndrome [170]. Further studies are
necessary to assess the efficacy of utilizing 20α- and/or 20β-HSDH to mediate 11β-OHAD
formation in vivo.

5. Conclusions

Overall, both host and microbial HSDHs play pivotal roles in BA and glucocorticoid
metabolism. Research on the importance of HSDH-derived BAs on host physiology is in
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its infancy. However, the immense diversity of these BA metabolites, due to combinations
of HSDH activity, means that the gut harbors a multitude of potential candidates for
host receptor signaling. Gut microbial cortisol HSDHs are likely important regulators of
steroid-17,20-desmolase activity, although additional research is needed to ascertain the
physiological significance of 20α- and 20β-HSDH products. New microbial HSDHs are
continually being discovered and characterized, which will allow mechanistic study of
their impacts in disease models.

Microbial HSDHs may have potential as therapeutic modulators in diseases such as
colorectal cancer, liver cancer, castration-resistant prostate cancer, and polycystic ovary
syndrome. However, to work toward therapeutics, we must first connect HSDH func-
tion to host phenotypes through mechanistic experiments, such as gnotobiotic animal
studies [200,201]. Such avenues include developing genetic knockouts of HSDHs in mi-
crobes naturally encoding them or, when genetic systems are unavailable, engineering
genetically tractable microbes to encode HSDHs. Furthermore, crystal structures of micro-
bial HSDHs will aid in any necessary mutagenesis to rationally design substrate specificity
for these enzymes. Integrating functional studies, genetic manipulation, structural biol-
ogy, and gnotobiotic animal experiments will be imperative to reach a clearer picture of
microbial steroid metabolism in the future.
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