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ABSTRACT The envelope of vesicular stomatitis virus was fused with the apical plasma 
membrane of Madin-Darby canine kidney cells by low pH treatment. The fate of the implanted 
G protein was then followed using a protein A-binding assay, which was designed to quantitate 
the amount of G protein in the apical and the basolateral membranes. The implanted G 
protein was rapidly internalized at 31 °C, whereas at 10°C no uptake was observed. Already 
after 15 min at 31°C, a fraction of the G protein could be detected at the basolateral 
membrane. After 60 min 25-48% of the G protein was basolateral as measured by the protein 
A-binding assay. At the same time, 25-33% of the implanted G protein was detected at the 
apical membrane. Internalization of G protein was not affected by 20 mM ammonium chloride 
or by 10 ~M monensin. However, the endocytosed G protein accumulated in intracellular 
vacuoles and redistribution back to the plasma membrane was inhibited. We conclude that 
the implanted G protein was rapidly internalized from the apical surface of Madin-Darby 
canine kidney cells and a major fraction was routed to the basolateral domain. 

Enveloped RNA viruses have provided excellent tools to study 
the intracellular pathway of membrane proteins from their 
site of synthesis to the plasma membrane (see reference 8). 
Recently, the use of viruses and their envelope glycoproteins 
has been extended to study endocytosis of the cell surface (12, 
30). 

In the preceding paper we developed another approach to 
study the traffic to and from the cell surface in Madin-Darby 
canine kidney (MDCK) cells (17). In this case the proteins 
were not introduced into the plasma membrane from within 
after synthesis, but inserted there from the outside by low pH- 
induced fusion of the viral envelope with the cellular plasma 
membrane (16, 3 l, 32). MDCK cells are polarized epithelial 
cells, the plasma membrane of which is differentiated into 
two structurally and functionally different domains separated 
by tight junctions, namely the apical surface facing the growth 
medium and the basolateral surface facing the neighboring 
cells and the substratum (4, I l, 19, 20, 24). Normally during 
vesicular stomatis virus (VSV) infection of MDCK cells the 
G proteins are mainly transported to the basolateral plasma 
membrane (25). In the present study we implanted the G 
protein of VSV into the apical plasma membrane of these 
MDCK cells. Our previous morphological study (17) showed 

that the implanted G proteins are rapidly endocytosed and 
that some of them are distributed to the basolateral surface. 
In the present study we used a protein A-binding assay to 
characterize the internalization and redistribution of the im- 
planted G proteins in more detail. 

MATERIALS AND METHODS 

The cells, virus preparations, the implantation procedure of the G protein into 
the apical plasma membrane of MDCK cells, and the immunofluorescence 
staining technique are described in our previous study (17). 

1251 Protein A-binding Assay: The assay was adapted from that 
described for chicken embryo fibroblasts infected with Semliki Forest virus (7). 
To assay antigens in the apical cell surface, we fixed cultures directly before the 
~2~I protein A-binding assay. To assay the whole cell surface, we made the 
basolateral antigens accessible for the reagents prior to fixation by washing 
briefly twice with 2 ml of PBS lacking Ca ++ and Mg ++ and incubating the cells 
for 5 min at 31°C with 5 mM EGTA (see also, in reference 17, Fig. 2). Both 
solutions were prewarmed to 31"C. Fixation was performed in the cold with 
3% (wt/vol) formaldehyde, which was thereafter quenched with 50 mM NI-LCI 
at room temperature. All solutions used for EGTA-treated cells after the fixation 
step lacked Ca ++ and Mg ++. Fixed cells were overlaid with 250 #l of antibody 
diluted in PBS containing 0.2% (wt/vol) of gelatin (PBS-gelatin) and incubated 
for 30 min at room temperature. After three washes with PBS-gelatin the cells 
were incubated with 250 #l of ~2Sl protein A prepared in PBS-gelatin for 30 
rain at room temperature. The label was removed and the plates were washed 
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four times with PBS-gelatin. The cells were soluhitized in 0.5 ml of 2% (wt/ 
vol) SDS prewarmed to 80"C, incubated for 1 h at 37"C and scraped off the 
plates for counting of cell-associated radioactivity. Nonspecific binding of 12sI 
protein A was determined using antibodies against fowl plague virus glycopro- 
teins (15). The background values, which were 3-10% of those obtained with 
the appropriate antibody, were substracted from the experimental values. The 
concentrations of the antibodies used were titrated using untreated cells (anti- 
aminopeptidase) or cells fused with 1 ug of VSV (protein) and EDTA-treated 
to remove unfused viruses (anti-VSV antibody). Nearly saturating concentra- 
tions (0.28 ug/ml of anti VSV antibody or 20 ug/ml of anti-aminopeptidase 
antibody) were used. The specificity of ~2~I protein A was confirmed in com- 
petition experiments using unlabeled protein A. A 50%-inhibition of binding 
of '251 protein A was obtained with a concentration of 24 and 30 ng/ml of 
unlabeled protein A for anti-VSV antibody and anti-aminopeptidase antibody, 
respectively. 

Degradation of Viral Proteins: Degradation of the viral proteins 
was monitored by following the total cell-associated radioactivity and the total 
and trichloroacetic acid-soluble radioactivity of the incubation medium as 
described in Marsh and Helenius (12). 

Fluid-phase Uptake: Huorescein-conjugateddextran(FITC-dextran) 
was used to determine the fluid phase uptake (27) of MDCK cells. The cultures 
were overlaid with 1.0 ml of FITC-dextran (20 mg/ml) in minimal essential 
medium containing 0.2% (wt/vol) bovine serum albumin and antibiotics (pH 
7.3) and incubated at 31"C. At indicated time points, duplicate plates were 
transferred on ice, and the monolayers were washed ten times with 2 ml of cold 
PBS. The cells were scraped offthe plates, pelleted at 3,000 rpm, washed twice 
with 5 ml of PBS and lysed with 2 ml of PBS containing 0.1% SDS. The 
fluorescence intensity of the lysates was measured using an exitation wavelength 
of 490 nm and an emission wavelength of 520 rim. The endocytosed volume 
was determined by comparison with a standard curve. 

Materials: [5,6-3H]Uridine (52 Ci/mmol) and L-13SS]methionine (1,445 
Ci/mmol) were obtained from Amersham Corp. (Amersham, United King- 
dom). [t2Sl] protein A (86-89/~Ci/ug) was obtained from New England Nuclear 
(Boston, MA). Cell culture media and reagents, and fetal calf serum were 
purchased from Gibeo Biocult (Glasgow, Scotland), and FITC-dextran 40 from 
Pharmacia Fine Chemicals (Uppsala, Sweden). Cycloheximide and ammonium 
chloride were obtained from Merck (Darmstadt, Federal Republic of Germany 
[FRG]), and all buffers, protein A, EDTA and EGTA from Sigma Chemical 
Co. (St Louis, MO). Monensin was purchased from Eli Lilly and Co. (Indian- 
apolis, IN) and N-tosyl-L-phenylalanine chloromethyl ketone-trypsin from Flow 
Laboratories (Meckenheim, FRG). Antibodies against VSV G protein, fowl 
plague virus spike proteins, and aminopeptidase, as well as goat antirabbit 
immunoglobulin conjugated to rhodamine were prepared as described earlier 
( IL  15, ]6). 

RESULTS 

12Sl Protein A-binding Assay 
To implant the envelope glycoprotein G of VSV into the 

apical surface of MDCK cells, 0.5-1.25 ~g of VSV (protein) 
was added together with 125,000 cpm of [3H]uridine labeled 
VSV in binding medium (pH 6.3) to plates containing 2 x 
106 MDCK cells, and incubated for 1 h in the cold. The 
unbound virions were washed away with binding medium. In 
the presence of calcium the tight junctions remain intact and 
only the apical surface is accessible to the virus (5, 14, 17). 
From each amount of virions added ~ 13% was bound to the 
cell surface (Fig. 1A). The rest of the plates were then put on 
a waterbath of 37"C and overlaid for 20 s with fusion medium 
(pH 5.4) prewarmed to 37"C to allow the envelope of the 
virions to fuse with the apical membrane of the cells. The 
monolayers were then treated with 0.5 mg/ml of trypsin for 
90 rain in the cold to release bound but unfused virions from 
the cell surface. For each amount of VSV added to the cells, 
3% was fused with the cellular plasma membrane (Fig. l A). 
To another set of cultures 0.5-1.25 ~g of unlabeled VSV 
(protein) was added. After the binding and fusion steps the 
unfused virions were removed by a 5-rain incubation with 20 
mM EDTA in the cold (17). The cells were then fixed, treated 
with anti-VSV antibody, followed by 125I protein A, solubi- 

lized, and counted for cell-associated radioactivity. Fig. 1 B 
shows that the assay was linear for various amounts of G 
protein at the apical surface. 

Quantitation of G Protein at the Apical Surface 
VSV (1 #g of protein) was bound and fused to 2 x 10 6 cells 

as above, followed by EDTA-treatment to release unfused 
virions. As previously shown, about 26,000 G proteins are 
implanted per cell under these conditions (3, 17). After im- 
plantation the cultures were incubated at 3 l*C and the G 
protein at the cell surface was quantitated by the ~2sI protein 
A-binding assay. The amount of G protein at the apical 
surface decreased rapidly (Fig. 2, solid circles). After 60 min 
the level of G protein had declined to ~25-33% (range of 10 
experiments). The decrease of G protein at the surface was 
due to internalization rather than release into the medium. 
This was verified by following the appearance of acid-precip- 
itable radioactivity into the medium during the incubation of 
cells to which [3SS]methionine VSV was fused (see below). 
The amount of G protein implanted in the apical plasma 
membrane did not influence the extent of internalization 
within the range of 0.1 to 10 #g of VSV (protein) added per 
2 x 106 cells (data not shown). No internalization of G protein 
could be detected at an incubation temperature of 10*C (Fig. 
2, squares). 

Quantitation of C Protein at the 
Basolateral Surface 

Depletion of Ca ++ ions with EGTA treatment at 37"C opens 
up the tight junctions of MDCK cells, thus allowing access of 
the reagents to the basolateral surface (5, 14). Cells with 26,000 

150 

1oo 

50 

15 

? 
o 10 

x 

5 

0.5 1.0 
~g VSV (protein) 

B 
o / 

. /  
/ 

/ 
i , L , , 

05 I 0 

pg VSV (protein I 

FIGURE I 1251 protein A-binding 
assay. (A) 0.5-1.25 ~g of VSV (pro- 
tein) was added together with 
125,000 cpm of [3H]uridine la- 
beled VSV to monolayers of 2 x 
106 MDCK cells at pH 6.3 and 
0°C. After washing away the un- 
bound virions the cell-associated 
radioactivity was determined. 
From these figures the amount of 
viral protein bound to the cells 
was calculated and plotted 
against the respective amount of 
virus added to the cell (@). The 
binding efficiency was a constant 
13% of the added virus. In an- 
other set of cultures fusion was 
induced by pH 5.4 after the bind- 
ing step and the unfused virions 
were removed by trypsin-treat- 
ment in the cold. The radioactiv- 
ity was determined to calculate 

the cell-associated amount of viral protein (O). For each amount of 
virus added, 3% was fused with the apical membrane (see reference 
17). (B) 0.5-1.25/~g of VSV (protein) was added per plate of 2 x 
106 MDCK cells and after the binding and fusion steps the unfused 
virions were removed with a 5-min incubation of the cells with 
EDTA in the cold. The cells were then fixed and treated with anti- 
VSV antibody fol lowed by 52,000 cpm of 12Sl protein A per plate. 
The cell-associated radioactivity was determined and plotted 
against the respective amount of virus originally added to the 
monolayers for implantation. 
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FIGURE 2 Redistribution of G 
protein. 26,000 G protein mole- 
cules were implanted into the ap- 
ical surface of MDCK cells by 
adding 1 /~g of VSV (protein) per 
plate of 2 x 106 cells and inducing 
fusion of the viral envelope with 
the cellular membrane by low pH. 
Unfused virions were removed by 
EDTA treatment in the cold. (A) 
The cells were then incubated at 
31 °C (closed and open circles) or 
at 10"C (squares) in the presence 
of 20/~g/ml of cycloheximide. At 
each time point the amount of G 

protein was determined by the '251 protein A-binding assay before 
(closed symbols) or after EGTA treatment for 5 min at 31 °C (open 
symbols) using 40,000 cpm of '251 per plate. (B) The data in A have 
been replotted to show the amounts of G protein at the apical (0) 
and the basolateral (O) membranes as percent of the value meas- 
ured by the assay after fusion of VSV with the apical membrane 
before incubation at 31 °C. The basolateral values were derived by 
substracting the figures obtained for '2Sl protein A-binding before 
EGTA treatment of those obtained after EGTA treatment. 

G protein molecules inserted into the apical surface per cell 
(see above) were incubated at 3 I*C in the presence of 20 vg 
cycloheximide/ml. 7 min before the indicated time points in 
Fig. 2A the cells were washed twice with PBS lacking Ca ++ 
and Mg ÷+, and incubated with 2 mM EGTA at 3 I*C for 5 
min. The amount of G protein detected after EGTA treatment 
at the cell surface with the ~2sI protein A-binding assay was 
larger than that detected on the apical surface only (Fig. 2A, 
open circles). The difference between the values obtained for 
the surface expression before and after EGTA treatment was 
taken to represent basolateral G protein (Fig. 2B). After 60 
min at 31°C, the fraction of basolateral G protein varied 
between 25% and 48% in 10 experiments. If cycloheximide 
was omitted from the incubation medium the same results 
were obtained. The incubation time with EGTA appeared to 
be critical. A treatment of 2 to 5 min at 3 I*C was found to 
give maximal values for I25I protein A-binding. Incubation 
times > I 0 min gave lower values since the cells begin to round 
up after prolonged treatments with EGTA and came off the 
plates in subsequent manipulations (Table I). 

An attempt was made to quantitate the amount of G protein 
in the basolateral plasma membrane directly by treating the 
cells with saturating amounts of anti-VSV antibody (0.83 vg/ 
ml) and unlabeled protein A (0.2 vg/ml) for 15 min at 0*C 
before opening of the tight junctions with EGTA at 3 I°C to 
render the apical cell surface unreactive in the subsequent 125I 
protein A-binding assay (Fig. 3). It was not possible, however, 
to quench >50% of the ~25I protein A-binding activity of the 
apical surface. Nevertheless, Fig. 3 shows that the amounts of 
basolateral G protein detected under the above conditions 
were reasonably similar to figures obtained without quenching 
of the apical surface with unlabeled protein A. 

Degradat ion  o f  In te rna l ized Viral Proteins 

VSV (1 ~g of protein) labeled with 300,000 cpm of [35S]- 
methionine was added to plates of 2 x 10 6 MDCK cells, 
followed by the binding and fusion steps and EDTA treatment 
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to release unfused virions. The cultures were incubated at 
3 I*C in the presence or the absence of 20 mM NH4CI. At 
different time points acid-soluble and acid-precipitable radio- 
activity of the medium and the total cell-associated radioac- 
tivity were determined. Fig. 4 shows that after a lag period of 
30 min acid-soluble radioactivity started to appear in the 
medium, indicating degradation of the viral proteins. There- 
after, the rate of degradation was 15%/h of the total cell- 
associated viral radioactivity. Ammonium chloride (20 mM) 
in the incubation medium inhibited degradation. Within 15 
min after the cultures had been shifted to 3 l*C there was an 
initial loss of ~15% of the cell-associated acid-precipitable 
radioactivity into the medium (Fig. 4). It most probably was 
derived from unfused virions left after EDTA treatment which 
were eluted from the cell surface by neutral pH at 31"C. No 
further loss of acid-precipitable material occurred. 

Implantation and Internalization of G Protein Do 
Not Induce Random Membrane Uptake 

FLUID-PHASE UPTAKE: TO study whether the low pH- 
induced fusion of VSV with the cell surface or internalization 
of G protein affected general parameters of the cells, we first 
measured fluid phase uptake of MDCK cell using fluorescein- 
conjugated dextran (FITC-dextran) as a marker. Untreated 
control cultures and cultures with implanted G protein 
(26,000 molecules per apical cell surface) were incubated at 
31"C with 1 ml of minimal essential medium containing 20 
mg/ml of FITC-dextran. At different time points cells were 
harvested by scraping, lysed, and the cell-associated fluores- 
cence intensity was determined. Fig. 5 shows that both sets of 

TABLE I 

Effect of EGTA Treatment on MDCK Cells 

Incubation t ime 
with EGTA Bound '2Sl protein A 

min cpm 

0 7,500 
2 11,000 (100%) 
5 11,000 (100%) 

10 10,700 (97%) 
15 10,000 (91%) 
20 8,7O0 (78%) 

26,000 G protein molecules were implanted into the apical surface of MDCK 
cells and the cultures were incubated at 31 °C. After 45 rain duplicate dishes 
were treated for different times with 5 mM EGTA at 31 °C and the amount of 
G protein on the cell surface was estimated with the '251 protein A-binding 
assay using 42,000 cpm of the label per plate. Immediately after implantation 
15,000 cpm of 1251 protein A was bound to the cells. 
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FIGURE 3 The ;2Sl protein A-  
binding assay for basolateral G 
protein. G protein was implanted 
into the apical surface of MDCK 
cells (see Fig. 2) and the cultures 
were incubated at 31°C in the 
presence of 20/~g/ml of cyclohex- 
imide. One set of cultures was 

fixed directly and treated with anti-VSV ant ibody fol lowed by ~2Sl 
protein A before (0) or after EDTA-treatment (O). Two sets of 
cultures were treated in the cold with saturating amounts of anti- 
VSV ant ibody and unlabeled protein A (see text). One set was then 
fixed (A) and another treated with EGTA at 31°C before fixation 
(A). The ~2sl protein A-b inding assay was performed using 33,000 
cpm of the label per plate. 
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FIGURE 4 Degradation of inter- 
nalized VSV proteins. 300,000 
cpm of [3SS]methionine-labeled 
VSV and lug of unlabeled VSV 
(protein) were added per plate of 
MDCK cells. After the binding 
and fusion steps unfused virions 
were removed by EDTA-treat- 
ment and the cultures were in- 
cubated at 31 °C in the presence 

of cycloheximide (closed symbols), or both cycloheximide and 20 
mM ammonium chloride (open symbols). At different time points 
duplicate cultures were harvested and the acid-soluble (circles) and 
acid-precipitable radioactivity (triangles) of the medium, as well as 
the total cell-associated radioactivity (squares) were determined. 
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FIGURE 5 Effect of internalization of implanted G protein on fluid 
phase uptake of MDCK cells. Untreated MDCK cells (squares) or 
cells to which G protein was implanted (see Fig. 2) (triangles and 
circles) were incubated in the presence (closed symbols) or absence 
(open circles) of 20 mg/ml of FITC dextran at 31 °C. At different 
time points one set of cells (squares and triangles) were scraped off 
the plates, washed and lysed with PBS containing 0.1% SDS and 
the fluorescence intensity of the cell-associated FITC-dextran was 
determined using excitation and emission wavelengths of 490 and 
520 nm, respectively. Another set of plates (circles) was fixed and 
the amount of G protein at the apical cell surface was determined 
with the 12sI protein A-binding assay using 40,000 cpm of the label 
per plate. 

plates displayed the same kinetics of  uptake of FITC-dextran. 
Uptake was linear for at least 3 h. The rate of uptake was 4.5 
nl/h/106 cells. Some of the cultures were assayed for apical G 
protein. The same kinetics of  internalization of G protein 
were obtained in the absence or in the presence of FITC- 
dextran (Fig. 5). 

A M I N O P E P T I D A S E: Next we wanted t o  s e e  whether in- 
ternalization of G protein from the apical cell surface was 
paralleled by uptake of an apical membrane protein of the 
cell, aminopeptidase. The ~2sI protein A-binding assay was 
used to follow the level of aminopeptidase at the apical 
membrane during the time when G protein rapidly disap- 
peared from the cell surface. After insertion of G protein into 
the apical surface as before, the cultures were incubated at 
31 °C in the presence of 20 gg/ml of cycloheximide. One set 
of plates was assayed for G protein and another for amino- 
peptidase using the respective antibodies. The amount of G 
protein decreased 78% in 15 min (Fig. 6). However, the 
amount of aminopeptidase barely changed in 15 min and 
decreased only 10% in 30 min. The same decrease of ami- 
nopeptidase at the surface was obtained for cultures which 
had been incubated at 3 l °C in the presence of cycloheximide 
without G protein implantation. Thus, the slight decrease of 
aminopeptidase at the apical surface was due to the drug or 
the shift from 37°C to 3 l°C and not to the virus or the low 
pH-treatment. 

Inhibition of Redistribution of G Protein 
The effect of ammonium chloride and monensin on O 

protein redistribution was tested since they have been reported 
to interrupt recycling of the cell surface receptors (2, 6, 9, 10, 
28). When 20 mM ammonium chloride was added to the 
incubation medium, implanted G protein was internalized 
rapidly from the apical surface as in the control cultures. The 
level of  apical G protein continued to decline and decreased 
in 60 rain to 7% at the apical and to 5% at the basolateral 
surface (Fig. 7). In parallel controls, ~20% of the G protein 
could be detected at the apical and ~30% at the basolateral 
surface after a 60-rain incubation. The effect of  ammonium 
chloride on the level of  G protein at the cell surface was 
concentration dependent. Similar effects were obtained with 
20 and l0 mM concentrations, but a 2-raM concentration 
showed no effect within 60 min. Essentially the same results 
were obtained with l0 ~M monensin instead of 20 mM 
ammonium chloride. The effect of ammonium chloride and 
monensin on the fate of  the implanted G protein could be 
seen also by indirect immunofluorescent labeling. In the 
presence of the drugs G protein disappeared from the apical 
surface and accumulated in large intracellular vacuoles (Fig. 
8). There was no detectable redistribution of G protein to the 
basolateral surface domain. Thus, G protein accumulated 
inside the cells in the presence of ammonium chloride or 
monensin. These results imply that most of  the G protein 
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FIGURE 6 Level of aminopepti- 
dase at the apical surface during 
internalization of G protein. G 
protein was inserted into the api- 
cal surface of MDCK cells (see Fig. 
2) and the cultures were incu- 
bated at 31 °C in the presence of 
cycloheximide. The levels of G 

protein (O) and aminopeptidase (O) at the apical surface of the cells 
were determined using the 12sI protein A-binding assay. One set of 
cultures was not treated with virus, but incubated at 31 °C in the 
presence of cycloheximide (A) and assayed for aminopeptidase. To 
assay aminopeptidase 20 #g/ml of antibody was used and the 
radiolabeled protein A was diluted with 10 nglml of unlabeled 
protein A. In the assay 15,400 cpm (0), 12,300 cpm (O), or 11,600 
cpm (A) of USl protein A was bound per plate out of 70,800 cpm 
(O) or 61,800 cpm (O, A) '2Sl protein A added per plate prior to 
incubation at 31 °C. The amount (in %) of 12sI protein A bound to 
the cell surface compared to time 0 are plotted against times of 
incubation. 

FIGURE 7 Inhibition of redistri- 
~1. bution of internalized G protein ~ 100 to the cell surface by ammonium 

chloride (12Sl protein A-binding 
/3 501-~,~ ,o . . . . . .  o assay). G protein was inserted 

[ ~l~y.....~...._~ into the apical surface of MDCK 
I "~-<~o- ~ cells (see Fig. 2) and the cultures 
i i I I T were incubated at 31°C in the 

15 30 G5 60 presence (squares) or absence 
min of 31°[ (circles) of 20 mM NH4EI. G pro- 

tein was assayed before (closed symbols) or after EGTA treatment 
(open symbols) using 45,000 (closed symbols) or 51,000 cpm {open 
symbols) of '2Sl protein A per plate. After implantation of G protein 
before incubation at 31 °C, 17,800 cpm of 1251 protein A was bound 
to the cell surface (100%). The amount of cell-associated 1251 protein 
A is plotted against the time of incubation. 
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FIGURE 8 Inhibition of redistribution of G protein to the cell surface by ammoniumchloride (indirect immunofluorescent 
staining). After implantation of G protein to the apical surface of MDCK cells as in Fig. 2, the monolayers were directly fixed (a- 
c) or incubated at 31 *C for 30 min (d-i) in the absence (d-f) or presence (g-i) of 20 mM ammonium chloride prior to fixation. In 
a, d, and g the cells were fixed and treated directly with anti-VSV antibody followed by rhodamine-conjugated anti-lgG antibody 
to stain the apical cell surface. In b, e and h the tight junctions were opened by EGTA treatment at 31 °C before fixation to gain 
access for the reagents also to the basolateral cell surface. In c, f, and i the cells were permeabilized with 0.1% Triton X-100 after 
fixation to visualize internalized antigens. For more detail see reference 17. Bar, 8 #M. 

molecules detected at the apical surface under normal incu- 
bation conditions did not represent a static and immobile 
pool, but were also capable of being endocytosed. In contrast 
to G protein, 20 mM ammonium chloride or 10 #M monen- 
sin had no effect on the level of aminopeptidase at the apical 
surface. In the presence of the drugs the same results were 
obtained as shown for control cultures in Fig. 6. 

D I S C U S S I O N  

In this study we used a protein A-binding assay to follow the 
internalization and the reappearance at the cell surface of G 
protein after implantation into the apical plasma membrane 

of MDCK cells. Apical proteins could be monitored with the 
assay after fixation of the cell monolayer. Only the apical 
surface domain is accessible to the antibodies because the 
cells in the monolayer are sealed together by tight junctions 
(4, 5, 14, 17). Proteins present in the apical and the basolateral 
surface domains could be monitored after opening the tight 
junctions by calcium-depletion before fixation. Whether all 
basolateral proteins became accessible to the reagents after 
the EGTA treatment is difficult to judge. It is possible that 
the basolateral values obtained with this assay are underesti- 
mated because of steric hindrance through cell-cell and cell- 
substratum interactions. 

The protein A-binding assay showed that the implanted G 
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proteins were internalized rapidly from the apical surface. The 
half-life of  the implanted G proteins at the apical surface was 
<10 min at 31"C. At 10*C internalization was not observed. 
The process was thus similar with regard to kinetics and 
temperature-dependence to receptor-mediated endocytosis 
(see reference 26). The implantation procedure did not per- 
turb the properties of  the apical membrane as judged by two 
parameters. First, we found no change in the rate of fluid 
phase endocytosis after fusion of the virus with the plasma 
membrane. Second, we could not detect any appreciable loss 
of aminopeptidase from the apical membrane during the 
internalization of implanted G protein. 

The morphological studies in the preceding paper (17) 
showed that the G protein was not only endocytosed after 
implantation, but a portion was redistributed to the baso- 
lateral surface. Some also seemed to be recycled to the apical 
surface. Here the redistribution of the endocytosed G protein 
to the cell surface could be quantitated using the protein A-  
binding assay. The rate of  the appearance of G protein at the 
basolateral surface varied between experiments (cf. Figs 2 and 
7), but 15 min after implantation some basolateral G protein 
was usually detectable. After 60 min the fraction of G protein 
at the basolateral surface was estimated to be 25-48% of the 
implanted proteins. The routing of G protein to the baso- 
lateral cell surface could be almost completely inhibited both 
by the carboxylic ionophore monensin which catalyzes the 
exchange of Na ÷ and H ÷ across biological membranes (22) 
and by ammonium chloride. The latter weak base accumu- 
lates in acidic compartments and increases their pH (18, 21). 
Using these drugs the apical surface practically cleared of G 
protein and the protein accumulated in intracellular vacuoles. 
Previous studies have shown that the recycling of cell surface 
receptors can be inhibited to varying degrees by these drugs 
(2, 6, 9, 10, 28). Exactly how they exert their action is not 
known, but evidence is accumulating that endosomes might 
be the site at which these drugs affect recycling. Recent studies 
have shown that endosomes as well as lysosomes have an 
acidic pH (13, 18, 23, 29). An increase in the endosomal pH 
may prevent dissociation of ligand-receptor complexes and 
recycling to the cell surface. The immunoperoxidase labeling 
studies revealed most of the intracellular G proteins in endo- 
somes, some in multivesicular bodies, and very rarely in 
secondary lysosomes in the first 10 min after implantation 
(17). Moreover, virtually no degradation of the viral polypep- 
tides was observed within 30 min after implantation at 3 I*C. 
Thus, lysosomes may not be an obligatory intermediate on 
the transepithelial transport route. It seems more likely that 
the endosome is the organelle from which the internalized G 
protein is routed to the basolateral surface (cf. reference 1) 
and that it is here that monensin and NH4CI block the 
transepithelial transport of  the G protein. Further studies are 
underway to characterize the organelles involved in the trans- 
epithelial route. 

Our studies suggest that the apical and the basolateral 
surface domains are connected by an intracellular route in 
MDCK cells. An implication of these findings is that contin- 
uous sorting of membrane components would have to take 
place to maintain the unique composition of the apical and 
the basolateral surface domains. We are now studying the fate 
of the influenza virus hemagglutinin implanted by low pH- 
fusion into the apical plasma membrane. Hemagglutinin ap- 
pears at the apical surface of MDCK cells after de novo 
synthesis (25). A future goal of  this work will be to find out 

where in the cell apical and basolateral proteins are sorted 
from each other during endocytosis. 
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