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Abstract

The p53 tumor suppressor invokes cellular responses to stressful stimuli by coordinating distinct gene expression programs.
This function relies heavily on the ability of p53 to function as a transcription factor by binding promoters of target genes in
a sequence specific manner. The DNA binding activity of the core domain of p53 is subject to regulation via post-
translational modifications of the C-terminal region. Here we show that the ubiquitin specific protease, USP7 or HAUSP,
known to stabilize p53, also regulates the sequence-specific DNA binding mediated by the core domain of p53 in vitro. This
regulation is contingent upon interaction between USP7 and the C-terminal regulatory region of p53. However, our data
suggest that this effect is not mediated through the N-terminal domain of USP7 previously shown to bind p53, but rather
involves the USP7 C-terminal domain and is independent of the deubiquitylation activity of USP7. Consistent with our in
vitro observations, we found that overexpression of catalytically inactive USP7 in cells promotes p53 binding to its target
sequences and p21 expression, without increasing the levels of p53 protein. We also found that the USP7 C-terminal domain
was sufficient for p21 induction. Our results suggest a novel mode of regulation of p53 function by USP7, which is
independent of USP7 deubiquitylating activity.
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Introduction

The tumor suppressor p53, often referred to as the guardian of

the genome, functions by integrating signals of cellular stress and

controlling cell fate [1]. Depending on the nature of stimulus and

the extent of cellular stress, p53 orchestrates responses that range

from transient cell cycle arrest, allowing for DNA repair and cell

survival, to programmed cell death or apoptosis [2]. Aberrant

function of a tumor suppressor like p53 would lead to unchecked

growth and onset of cancer. It is thus not surprising that

inactivation of p53 function through either mutations or

interactions with cellular or viral proteins is one of the most

common oncogenic events in human cancers [1,3,4].

p53 fulfills its tumor suppressive function primarily by acting as

a transcription factor. p53 binds DNA as a dimer of dimers in a

sequence specific manner to a consensus site comprising of two

decamer repeats of 59-PuPuPuC(A/T)(T/A)GPyPyPy-39 (where

Pu is a purine and Py is a pyrimidine) separated by 0 to 13 base

pairs [5]. p53 predominantly activates transcription of target

genes, though evidence of transcriptional repression by p53 also

exists [6]. A growing body of work has also unearthed a cytosolic

and transcription-independent function of p53 [7]. In this role,

p53 interacts with anti apoptotic and pro-apoptotic BCL family of

proteins and helps bring about permeablization of the outer

mitochondrial membrane, which subsequently results in apoptosis.

Though cytoplasmic functions of p53 are not strictly dependent on

p53 transcription activation, transcriptional regulation by p53 is

still tied to the cytosolic functions of p53 since some of the BCL

family members are direct transcriptional targets of p53 [7]. The

importance of DNA binding and therefore transcriptional control

by p53 is further highlighted by the observation that many of the

p53 mutations found in tumors are clustered in the DNA binding

domain [8] (UMD p53 database 2008_R2; http://p53.free.fr/).

The p53 protein is organized in distinct functional and

structural domains. Transcription activation is mediated by the

N-terminal transactivation domain (residues 1–70). Residues 94–

292 form the DNA-binding domain, which binds DNA in a

sequence-specific manner and is also referred to as the core

domain. Further downstream is the oligomerization region

(residues 320–360) which mediates p53 tetramerization, the

functional form of p53 as a transcription factor. The extreme C-

terminus of p53 (residues 360–393) forms a lysine and arginine

rich basic region and possesses sequence-nonspecific DNA binding

activity that is independent of the core DNA binding domain. This

region, also known as the regulatory region, was initially thought

to negatively regulate the DNA binding activity of the core

domain. This notion was based on the observations that deletion

and post-translational modifications of the regulatory region or its

interaction with an antibody (PAb 421) directed at a C-terminal

epitope, lead to an increase in DNA binding by the core domain

[9,10,11,12,13]. It was proposed that these modifications of the C-

terminal regulatory domain of p53 induce an allosteric confor-

mational change that switches the core domain from a latent form

with low affinity for its DNA binding site to an active form with

higher affinity for DNA [9,14,15]. These studies however mostly

relied on short stretches of naked DNA containing p53-binding
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sites. The conformational change model was not supported by an

NMR-study that showed that full length p53 (latent form) and p53

lacking the C-terminal regulatory domain (active form) were

identical in structure [16].

More recent lines of evidence have suggested a positive role for

the regulatory region in DNA binding by the core domain. First, a

deletion mutant lacking the C-terminal region (p53D30) shows

weaker DNA binding ability than WT p53, when longer molecules

of DNA are used [17]. Second, efficient recognition of target sites

in circular DNA or stemloop structures requires the C-terminal

region of p53 [18,19]. Third, it was shown that the C-terminal

region of p53, through its nonspecific DNA binding activity, helps

p53 slide along stretches of DNA [20,21]. Linear diffusion along

DNA allows the p53 core domain to sample sequences and find its

target sites. Thus, the p53 C-terminus positively contributes to

sequence specific DNA binding by the p53 core domain through

mechanisms that are not fully understood.

An important regulator of p53 function is the herpesvirus

associated ubiquitin specific protease, HAUSP or USP7, which

deubiquitylates p53 and protects it from proteasome-mediated

degradation [22]. Deletion analyses have shown that the C-

terminal regulatory region of p53 (residues 351–382) binds USP7

and that the N-terminal domain (residues 53–208) of USP7 is

sufficient for this interaction [23,24]. Crystal structures of the

USP7 N-terminal domain showed that it is a TRAF domain and

that a groove on its surface forms interaction with p53 and other

targets [25,26,27]. USP7 was originally identified as a binding

partner of the ICP0 protein from herpes simplex virus [28] and

was shown to interact with another herpesvirus protein, EBNA1 of

Epstein-Barr virus (EBV) [29]. We have shown that EBNA1 can

alter cellular processes, including p53 function, through its

interaction with USP7 [25,30]. However, EBNA19s more

traditionally known functions rely on its DNA binding activity to

mediate replication and segregation of the EBV genome and

transactivation of viral genes [31]. Interestingly, we have shown

that USP7 stimulates the DNA binding activity of EBNA1 and is

important for transcriptional activation by EBNA1 at the latent

origin of EBV replication [32]. However it was unclear whether

this ability of USP7 to stimulate DNA binding activity was only

relevant for EBNA1 or might also apply to other USP7 targets.

Given that USP7 binds the C-terminal domain of p53 [24] and

that this domain regulates DNA binding by the p53 core domain,

we asked whether USP7 affects the DNA binding activity of p53

and downstream p53 functions. In this study, we discuss

observations that support a role of USP7 in regulating p53 DNA

binding. This provides a novel aspect of p53 regulation by USP7,

since it is independent of p53 deubiquitilyation.

Results

Effect of USP7 on DNA Binding by p53
To assess the effect of USP7 on p53 DNA binding, we conducted

electrophoretic mobility shift assays (EMSAs) using a Cy-5 labeled

consensus p53 binding sequence as a probe and a version of p53

spanning the core DNA binding and the C-terminal regulatory

regions (p5382–393) but lacking the transactivation domain,

(Figure 1A). Purified p5382–393 was incubated with the labeled

DNA in the presence of USP7 or BSA as a negative control. This

version of p53 is termed the latent form since in EMSAs it exhibits

decreased sequence-specific DNA binding, as characterized by the

smearing of DNA-protein complexes and, at high protein concen-

trations, a small amount of a discreet band in the shifted DNA probe

(see Figure 1B, lanes 2–5 and Figure 1C lanes, 6–8). In contrast, in

the presence of USP7, p5382–393 formed DNA complexes that

migrated as distinct bands as is characteristic of sequence-specific

DNA binding (Figure 1B, lanes 6–9 and Figure 1C lanes 3–5).

Experiments were performed both by titrating p53 with a fixed

amount of excess USP7 (Figure 1B) and by incubating a fixed

amount of p53 with increasing amounts of USP7 (Figure 1C), with

similar results. The latter experiment showed that USP7 had a

dose-dependant stimulatory effect on the DNA binding ability of

p5382–393 while the BSA negative control had little to no effect

(Figure 1C). Neither USP7 nor BSA detectably bound the DNA

probe under these conditions, even at the highest concentrations

(Figure 1C, lanes 9 and 10). These results show that USP7 stimulates

the DNA binding activity of p53.

USP7 Stimulates p53 DNA Binding Through Interactions
with the p53 C-terminal Regulatory Region

To test whether USP7 binding was responsible for the

stimulatory effect on sequence-specific DNA binding by p53, we

conducted EMSAs using another version of p53, p5382–360

(Figure 1A), which differs from p5382–393 in that it lacks the C-

terminal regulatory region responsible for both USP7 binding [23]

and nonspecific DNA binding. This version is termed the active

form of p53 as it lacks autoinhibition from the C-terminal region.

As expected, p5382–360 efficiently binds DNA, at concentrations

much lower than that used for latent p53, as indicated by the

distinct shifts in the mobility of the DNA probe (Figure 1D, lanes

2–5). While, the active p5382–360 binds better than the latent form,

p5382–393, its DNA binding was hardly affected by USP7

(Figure 1D, lanes 6–9), indicating that USP7 acts through a

specific interaction with the p53 regulatory region.

USP7 C-terminal Sequences Stimulate p53 DNA Binding
It has been shown that the N-terminal domain of USP7 (USP7-

NTD) is sufficient to interact with p53 [24]. Therefore we

examined whether the interaction mediated by USP7-NTD

(shown in Figure 2A) was sufficient to stimulate the DNA binding

activity of p53. To this end, we performed EMSAs with latent

p5382–393 in the presence and absence of USP7-NTD. Surprisingly

the USP7-NTD did not stimulate sequence-specific DNA binding

by p5382–393, as the p53-DNA complexes migrated as smears

rather than discreet bands both in the presence and absence of the

USP7-NTD (Figure 2B). This suggests that interactions occur

between p53 and USP7 regions other than the USP7-NTD, which

is responsible for the stimulatory effect of USP7 on p53 DNA

binding.

USP7 C-terminal regions downstream of the catalytic domain

are also known to mediate some protein interactions [33,34]

including weak interactions with p53 [24]. Therefore we tested

whether the USP7-CTD (amino acids 560–1102 as shown in

Figure 2A) could account for the effect of USP7 on p53 DNA

binding by assaying the DNA binding activity of p5382–393 in the

presence and absence of this USP7 domain (Figure 2C). Similar to

what we observed with full-length USP7, the USP7-CTD

stimulated sequence-specific DNA binding by p53, as compared

to the BSA control, suggesting that it is largely responsible for the

p53-USP7 interaction that results in increased p53 sequence-

specific DNA binding.

USP7 Promotes p53 DNA-binding in vivo
We next investigated whether USP7 stimulates p53 DNA-

binding in cells. To this end, p53-negative H1299 cells were

transfected with a plasmid expressing p53 alone, with or without a

plasmid expressing WT USP7 or a catalytically inactive mutant of

USP7, C223S. C223S binds p53 but does not stabilize it due to the

USP7 Increases p53 DNA Binding
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lack of ubiquitin cleavage activity and has been shown to

destabilize p53 through a dominant negative effect [24]. The use

of this USP7 mutant ensured that any stimulation of p53 function

was not due to increased levels of p53. Promoter occupancy by

p53 was measured by chromatin immunoprecipitation (ChIP)

using p53 antibody and quantitative PCR of various p53 target

sequences (p21, Mdm2, Bax and PIG3) 24 hours post transfection.

p53 immunoprecipitates were enriched for all p53 target

promoters tested, with the highest level of binding detected at

the p21 promoter (Figure 3). Little to no DNA was recovered for

the negative control GAPDH region. Consistent with our in vitro

results, co-expression of USP7 or C223S stimulated binding of p53

to all the p53-responsive promoters tested and not the non-specific

GAPDH control. The finding that C223S stimulated p53-DNA

Figure 1. Effect of USP7 on the DNA binding activity of p53 in vitro. (A) Schematic representation of the p53 proteins used in this study showing
the transactivation (Trans), DNA binding core, tetramerization (Tet) and USP7-binding and regulatory (USP7/Reg) regions. (B) EMSA showing titration of
latent p5382–393 in the presence of 20 mM of BSA negative control (lanes 2–5) or 20 mM USP7 (lanes 6–9). (C) EMSA performed with fixed amount (12 mM)
of p5382–393 and with 5 mM, 10 mM or 20 mM of USP7 (lanes 3–5) or BSA (lanes 6–8). Incubation of 20 mM of USP7 alone or BSA alone with labeled probe
in the absence of p53 is also shown (lanes 9 and 10). (D) EMSA showing titration of active p5382–360, in the absence (lanes 2–5) or presence of USP7 (lanes
6–9). Quantification of the discreet shifted bands for parts B,C and D are shown in the graphs, with USP7 in black and BSA in grey.
doi:10.1371/journal.pone.0013040.g001
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interactions in cells to a similar degree as WT USP7 indicates that

this stimulation is independent of p53 stabilization.

USP7 can Stimulate p53 Function Independent of its
Catalytic Activity

The results above show that USP7 promotes binding of p53 to

its target DNA. Since the most striking results were obtained for

the p21 promoter, we focused further studies on p53 function on

inductions of the p21 gene. First, we tested whether USP7 could

stimulate p53 function in a ubiquitin-independent manner during

conditions of cellular stress such as DNA damage. To this end we

measured induction of p21 expression in U2OS cells, which

express wild type p53. p21 protein levels are normally low,

however in response to DNA damage, p53 activates transcription

of the gene encoding p21 and hence increases p21 protein levels.

U2OS cells were transfected with either an empty vector or a

vector expressing C223S. Since C223S expression does not

stabilize p53, the use of this USP7 mutant ensured that any

stimulation of p53 function was not due to increased levels of p53.

Etoposide treatment of U2OS cells transfected with the empty

vector led to stabilization of p53, which was accompanied by

accumulation of p21 (Figure 4A, compare lane 1 to 2–4). p53

stabilization was diminished in C223S-transfected cells, consistent

with its dominant negative effects (Figure 4A; compare lanes 3 and

4 to lanes 7 and 8). However expression of p21 was increased by

C223S both before and, more dramatically, after etoposide

treatment (Figure 4A, top panels, compare lanes 1–4 to 5–8).

These observations suggest that after induction of DNA damage,

in addition to stabilizing p53, USP7 can also stimulate p53 DNA-

binding and serve a dual role in p53 regulation under conditions of

cellular stress.

Next we tested whether USP7 enhanced p53 function by

examining the induction of p21 in H1299 cells after transfection of

a p53-expressing plasmid alone or in combination with a plasmid

expressing either WT USP7 or a USP7 mutant (Figure 4B). At the

levels of p53 expressed, little to no p21 expression was observed in

the p53 only sample (Figure 4B, lane 2). Consistent with the ChIP

results, coexpression of WT USP7 or C223S led to induction of

p21 (lanes 3 and 4). We also tested the effect of the USP7-NTD

and USP7-CTD on p21 expression. The USP7-CTD stimulated

p21 expression, whereas minimal effect was seen with USP7-NTD

(lanes 5 and 6). These results are consistent with the in vitro

observation that the CTD of USP7 is sufficient to stimulate p53-

DNA binding, and together these observations suggest that the

stimulation of p53 DNA-binding by USP7 leads to enhanced p53

function.

Figure 2. Effects of USP7 NTD and CTD on p53 DNA binding. (A) Schematic representation of the USP7 proteins used in this study showing
the N-terminal (NTD) or TRAF domain, central catalytic (CAT) and C-terminal (CTD) domains. The position of the C223S point mutation that inactivates
the catalytic domain is also shown. (B–C) EMSAs showing titration of latent p5382–393, in the presence or absence of 20 mM USP7-NTD (B) or 20 mM
USP7-CTD (C). Quantification of the discreet shifted bands are shown in the graphs, with USP7 in black and BSA in grey.
doi:10.1371/journal.pone.0013040.g002
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The observations above show that the USP7-CTD is sufficient

to promote DNA binding by p53 in vitro and p21 expression in

cells, suggesting that the USP7-CTD contributes to transcriptional

activation by p53. To test this more directly, we cotransfected

H1299 cells with a reporter plasmid in which expression of the

luciferase gene is under control of the p21 promoter, along with a

p53-expression plasmid or corresponding empty plasmid

(Figure 4C). The reporter construct alone or the p53 expression

vector alone showed minimal to no luciferase activity, while

expression of p53 with the reporter construct gave luciferase

activity above background. However coexpression of USP7-CTD

with p53 resulted in a 5-fold increase in luciferase activity,

indicating that the USP7-CTD can stimulate p53 transactivation

from the p21 promoter.

Discussion

The DNA-binding ability of p53 is critical to its function as a

transcription factor and thus as a tumor suppressor. The

significance of sequence-specific DNA binding for p53 tumor

suppressor function is highlighted by the substantial number of

tumor-associated mutations in the core DNA-binding domain

[35]. An important determinant of DNA binding by the core

domain is the autoregulation of this activity by the C-terminal

regulatory domain of p53. The C-terminal domain is heavily

modified post-translationally and these modifications affect the

ability of p53 to bind DNA [36,37]. Here we propose that binding

to the ubiquitin specific protease, USP7, is yet another means of

regulating this property of p53.

Full length p53, with the core DNA binding domain and the C-

terminal domain intact, is referred to as the latent form, since it

Figure 3. USP7 promotes p53 DNA-binding in vivo. H1299 cells
were either transfected with an empty plasmid (Vector) or transfected
with a p53-expressing plasmid alone or in combination with constructs
expressing either WT myc-tagged USP7 (+USP7 WT) or myc-tagged
C223S (+C223S). p53 occupancy of various promoters in transfected
cells was measured by chromatin immunoprecipitation using a p53
antibody and Q-PCR of the target sequences indicated. GAPDH was
used a negative control region for Q-PCR. Results were normalized to
p53 levels determined for each sample by Western blotting (see
Figure 4B for an example) to adjust for any small variations in p53 levels.
doi:10.1371/journal.pone.0013040.g003

Figure 4. Catalytically inactive USP7 stimulates p53 function. (A) U2OS cells were transfected with an empty vector or vector expressing the
myc-tagged C223S mutant of USP7 and treated with etoposide for 0, 1, 2 or 4 hours as indicated. Equal amounts of cell lysates were analyzed for
protein expression by western blotting using the indicated antibodies where actin is the loading control. (B) H1299 cells were either transfected with
an empty plasmid (Vector) or transfected with a p53-expressing plasmid alone or in combination with constructs expressing myc-tagged USP7 and
USP7 mutants as indicated. 24 hours post-transfection, cells were lysed and protein levels were measured by Western blotting using the antibodies
indicated. The higher p53 band in lane 4 corresponds to monoubiquitylated p53 which becomes apparent due to the dominant-negative effects of
C223S [24]. (C) H1299 cells were transfected with plasmids expressing p53 and myc-tagged USP7-CTD and a luciferase reporter construct in the
combinations indicated. 48 hours post-transfection, cells were lysed and luciferase activity was quantified. The results are shown relative to the p53
plus reporter sample for three independent experiments.
doi:10.1371/journal.pone.0013040.g004
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shows poor sequence-specific DNA binding in in vitro binding

assays. This effect is attributed to autoinhibition of sequence-

specific DNA binding by the C-terminal domain due to increased

DNA sliding [20,21]. Incubation of latent p53 with USP7 in

EMSAs stimulated sequence-specific DNA binding by latent p53,

suggesting that USP7-binding can reverse this autoinhibition.

DNA binding by a C-terminal deletion mutant of p53, p5382–360,

which lacks the USP7 binding sequences, was not stimulated by

USP7, suggesting that binding to USP7 is required for this effect.

The observation that USP7 stimulates sequence-specific DNA

binding by p53 through interaction with the C-terminal regulatory

region of p53 further support the notion that this region of p53 is a

positive regulator of p53 DNA-binding and p53 function [20].

Since the p53 regulatory region contributes to DNA interactions

by increasing the sliding of p53 on DNA and such sliding has been

suggested to result in decreased detectable binding to short DNA

fragments (such as used in our in vitro studies), it is likely that USP7

interactions with p53 C-terminal sequences result in decreased

DNA sliding [20].

The USP7-NTD, which is sufficient to bind p53, had no

obvious effect on the DNA-binding activity of p53. While the

interaction of p53 with the USP7-NTD is important for

deubiquitylation and stabilization of p53, the results here suggest

that interactions mediated by other regions of USP7 are important

for the effect on p53 DNA binding. In support of this assumption,

we found that the USP7-CTD can stimulate DNA binding by

latent p53. The results suggest that the USP7-CTD can also

mediate p53 interactions and that this interaction is largely

responsible for stimulating the sequence-specific DNA binding

activity of p53. This is in keeping with initial reports by Li et al

[24] that weak interaction between p53 and the USP7 C-terminal

region (637–1102) could be detected in GST pull-down assays. It

should be noted that, the USP7-CTD is also known to mediate

interactions with other proteins including FOXO [34] and the

ICP0 protein of herpes simplex virus [33].

This investigation was prompted by our previous observation

that USP7 stimulated the DNA binding activity of the EBV

EBNA1 protein [32]. There are similarities and subtle differences

in how USP7 contributes to the DNA binding activity of these two

very different proteins. The USP7-NTD has been shown to be

sufficient for binding both p53 and EBNA1 [25,33]. However,

while the USP7-NTD can stimulate DNA binding by EBNA1, it

had no effect on p53 DNA binding. For EBNA1, the USP7-NTD

did not stimulate DNA binding to the same degree as the full

length USP7, suggesting that the USP7-CTD also contributes to

this effect. Therefore, for both EBNA1 and p53, the data suggest

that USP7 regions other than the NTD can contribute to

interactions that stimulate DNA binding (albeit to differing

degrees). Another difference in how USP7 affects DNA binding

by EBNA1 and p53 may be in the degree to which it remains

associated with the DNA complex. USP7 forms a ternary complex

with EBNA1 on DNA and EBNA1 can recruit USP7 to EBNA1

binding sequences in the EBV genome where it affects histone

H2B ubiquitylation [32]. This ternary complex is evident in vitro by

the decreased mobility or supershift of EBNA1-DNA complexes

by USP7 in EMSAs [32]. In contrast, p53-DNA complexes

migrated similarly in the presence or absence of USP7 (compare

shifted bands in Figure 1B), suggesting that USP7 does not remain

stably associated with DNA-bound p53. However, this merits

further investigation, particularly in vivo where the interaction

might be stabilized by the presence of additional proteins and/or

DNA sequences.

Additionally, we showed that USP7 overexpression consistently

promoted p53 binding to several p53 response elements in cells.

Interestingly, the catalytically inactive USP7, C223S, which does

not stabilize p53, promoted p53 DNA-binding in cells just as well

or better than WT USP7. In line with these results, we found that

overexpression of C223S, leads to increased p21 levels compared

to control cells before and after etoposide treatment, without

increasing p53 levels. This is consistent with stimulation of p53

binding to the p21 promoter resulting in enhanced p21 expression.

More detailed analysis of the effect of USP7 mutants on p53-

dependent p21 expression in cells revealed that the USP7-NTD,

shown previously to bind p53, had negligible effect on p21

expression, whereas the USP7-CTD was sufficient to promote

p53-dependent p21 expression. These results are consistent with

our in vitro observations that the USP7-NTD does not stimulate

p53-DNA binding and that this stimulation is mediated by the

USP7-CTD. Taken together, our results show that USP7 can

promote p53 function in a manner that is independent of the

interaction through the USP7-NTD and deubiquitylation by the

catalytic domain. On that note, we have recently shown that USP7

promotes the degradation of PML proteins (whose gene is

activated by p53) by a mechanism that is independent of its

catalytic activity [38]. Clearly the role of USP7 in regulating the

p53 pathway is more complicated than its previously established

role as a deubiquitylating enzyme.

Materials and Methods

p53 and USP7 Constructs and Purification
Constructs expressing p53 mutants for purification and the

subsequent purification of p53 proteins are described previously

[16]. USP7 proteins for in vitro studies were expressed and purified as

described by Holowaty et al [29]. To generate the pCANmycUSP7

plasmid use for expression in human cells, USP7 cDNA was PCR

amplified from the pET3a-USP7 plasmid (a gift from Roger

Everett). The amplified fragment was ligated into HindIII and XbaI

sites of the pcDNA3.1-derived plasmid, pCANmyc. pCAN-

mycC223S plasmid was generated by QuickChange mutagenesis

of pCANmycUSP7 using the following primers: 59CAGGGAGC-

GACTTCTTACATGAACAGCCTG39 and 59CAGGCTGTT-

CATGTAAGAAGTCGCTCCCTG39. USP7 NTD and USP7

CTD fragments were generated by PCR-amplification of the

sequences encoding these domains from pCANmycUSP7 using the

primers 59CGCCGCAAGCTTCCGAAAAAAAAAAAACGCA-

AAGTGATGAACCACCAGCAGCAGC 39 and 59 CCGGGA-

TCCTCACTTTGAATCCCACGCAACTCC 39 for the NTD

and 59CGCCGCAAGCTTCCGAAAAAAAAAAAACGCAAAG-

TGGAAGCCCATCTCTATATGCAAG 39 and 59GCGGGAT-

CCTCAGTTATGGATTTTAATGGCC 39 for the CTD. The

sequence coding for the SV40 T antigen nuclear localization signal

was included in the 59 primers to generate an in-frame NLS at the

N-terminus of each domain. Amplified fragments were ligated into

pCMVmyc [39] between HindIII and BamHI sites.

Electrophoretic Mobility Shift Assays (EMSAs)
The labeling of DNA double stranded probes and EMSAs were

performed according to Ayed et al [16]. Briefly, p53 was incubated

with either BSA or USP7 on ice for 5 minutes prior to incubation

with 8 pmoles of Cy-5 Dye labeled DNA double stranded probe

(GGACATGCCCGGGCATGTCC). Protein-DNA mixes were

further incubated at room temperature for 10 minutes in the

presence of 1 mg salmon sperm competitive DNA and total

reaction volume was brought up to 20 mL using reaction buffer

(20 mM Tris.Cl pH 8.0, 200 mM NaCl). Samples were resolved

on 5% polyacrylamide gels at 4uC at 100 V. Gels were scanned

using a Typhoon 9400 scanner (Amersham) and analyzed using
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the ImageQuant 5.0 software. Sequence-specific DNA binding

was quantified by determining the amount of Cy-5 in a box

containing the discreet shifted band and in the same-sized box at

the same position in each lane.

Western Blots
For Figure 4A, U2OS cells in 10 cm dishes at 80% confluency

were transfected with 10 mg pCANmyc or pCANmycC223S using

Lipfectamine 2000 (Invitrogen). 24 hours post transfection, cells

were either left untreated or treated with 10 mg/mL of etoposide

for 1, 2 and 4 hours. Cells were harvested and lysed in 9 M urea,

5 mM Tris.Cl pH 6.8, sonicated briefly and subjected to

centrifugation for 1 minute at 15,000 rpm in a microcentrifuge.

50 mg of total protein was subjected to SDS-PAGE and transferred

to PVDF membrane (Amersham). For Figure 4B, H1299 cells in

10 cm dishes at 80% confluency were transfected using Lipfecta-

mine 2000 (Invitrogen) with 20 ng of pCDNA3.1-p53 [40] and

either 10 mg of empty vector (pCMV-myc) or 10 mg of pCANmyc

plasmid expressing WT USP7, C223S, USP7-CTD or USP7-

NTD. 24 hours post- transfection cells were lysed in RIPA buffer

(20 mM Tris pH 8.0, 150 mM NaCl, 1% NP40, 0.1% Sodium

Deoxycholate, 1 mM PMSF) containing protease inhibitor

cocktail (Sigma, P8340) and clarified by centrifugation at

15,000 rpm at 4uC. For the p21 blot, 60 mg of total protein was

subjected SDS-PAGE and western blotting, whereas 25 mg was

used for all other blots. Membranes were blocked in blocking

buffer (5% milk in PBS (137 mM NaCl, 2.7 mM KCl, 0.01 mM

Na2HPO4, 1.4 mM KH2PO4, pH 7.4)). Primary antibodies used

were R2B2 for USP7 [29], DO-1 for p53 (Santa Cruz), Ab-1 for

Actin (Calbiochem), antibody 187 for p21 (Santa Cruz, sc-817)

and antibody A-14 for c-myc (Santa Cruz, sc-789). After primary

antibody incubation, membranes were washed in PBS with 0.1%

Tween 20 (PBS-T) then incubated with the secondary antibodies

goat anti mouse-HRP (Santa Cruz, SC-2055) or goat anti-rabbit-

HRP (Santa Cruz, SC-2004). Following washes in PBS-T, blots

were developed using chemiluminescence ECL reagent (Perkin

Elmer).

Chromatin Immunoprecipitation (ChIP)
H1299 cells in 10 cm dishes at 80% confluency were transfected

with 4 mg of a plasmid expressing p53, 13 mg of vector expressing

USP7 or C223S, or an empty vector. 24 hours post-transfection,

cells were fixed with 1% formaldehyde, lysed in RIPA buffer

containing protease inhibitor cocktail (Sigma, P8340) and

sonicated briefly to shear the DNA. Clarified lysates were

precleared with Protein A/G beads (Santa Cruz, SC-2003) and

normal mouse IgG (Santa Cruz, SC-2343) prior to immunopre-

cipitation with p53 DO1 antibody (Santa Cruz). Protein cross links

were reversed in the immunoprecipitated DNA by incubating at

65uC for 16 hrs. DNA was purified using QIAquick Gel

Extraction Kit (Qiagen, 28704) and analyzed by quantitative

RT-PCR using LightyCycler 480 DNA SYBR Green I Master

(Roche, 04707516001) and a Rotorgene Q-PCR system (Corbett

Research). Primers used for quantification were as follows: p21

(Forward: 59CTGGACTGGGCACTCTTGTC 39, Reverse:

59CTCCTACCATCCCCTTCCTC 39); Mdm2 (Forward 59GG-

ATTGGGCCGGTTCAGTGG 39, Reverse 59GCGTCCGTGC-

CCACAGGTC 39); BAX (Forward 59TATCTCTTGGGCT-

CACAAG 39, Reverse 59ACTGTCCAATGAGCATCTCC 39);

PIG3 (Forward 59GATCCCAGGACTGCGTTTTGCC 39, Re-

verse 59GGGAACGAGACCCAACCTCTTG 39) and GAPDH

(Forward, 59TGTTGCCATCAATGACCCCTT 39 Reverse 59C-

TCCACGACGTACTCAGCG 39). Lysates used for chromatin

immunoprecipitation were also subjected to SDS-PAGE and

western blotting using antibodies indicated in the results section.

ChIP signal was normalized to p53 levels as determined by

Western blots developed using the ECL Plus system (GE

Amersham) and quantified on a Typhoon Imaging scanner using

ImageQuant 5.0 software.

Luciferase Assay
H1299 cells in 6 cm dishes were grown to 80% confluence and

transfected with 0.5 mg of a plasmid containing the luciferase

reporter gene fused to p53 specific sequences from the p21

promoter (p21-Luc) [41], 0.01 mg pCDNA3.1-p53 expressing p53

[40] (both plasmids kindly provided by Dr Sam Benchimol) and

4 mg of a either plasmid expressing the USP7-CTD or empty

plasmid. 24 hours post-transfection, cells were moved to 10 cm

dishes. Cells were harvested 48 hours post-transfection and

processed for luciferase assay according to the Promega Luciferase

Assay System (E1500). Luciferase activity was measured by the

Molecular Devices Spectramax M2E and analyzed by using the

Softmax Pro software v5.0.1. Results from at least 3 independent

experiments are reported.
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