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Abstract: Pancreatic cancer is characterized by its late detection, aggressive growth, intense 

infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and 

a strong ―desmoplastic reaction‖. The dense stroma surrounding carcinoma cells is 

composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various 

inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular 

the cellular components of the stroma produce the tumor microenvironment, which plays a 

critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of 

anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells 

produce the extracellular matrix components and are thought to interact actively with tumor 

cells, thereby promoting cancer progression. In this review, we discuss our current 

understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of 

pancreas cancer and the effects of PSC on tumor progression, metastasis and drug 

resistance. Finally we present some novel ideas for tumor therapy by interfering with the 

cancer cell-host interaction. 

Keywords: pancreas carcinoma; pancreatic stellate cell; tumor desmoplasia; EMMPRIN; 

chemoresistance 
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1. Introduction 

In the United States of America, Europe and Japan, the incidence of pancreatic cancer has risen 

slowly during the last few decades. Pancreatic ductal adenocarcinoma (PDA) is now the fourth leading 

cause of cancer related death among both men and women in the U.S. [1]. Because this cancer shows 

no symptoms in its early stage and has therefore a low probability of diagnosis, approximately  

80–90% of the patients present with local infiltration or metastatic disease at the time of initial 

diagnosis [2]. Therefore only 15–20% of the patients are candidates for surgical resection, which is the 

only chance for cure. The median survival time of patients with metastatic pancreas cancer is  

<6 months and the overall five-year survival rate is less than 5%.  

More than 90% of the pancreas cancers represent PDA, which are characterized by a late detection, an 

aggressive growth, local invasion into adjacent tissue, a rapid progression, early systemic dissemination [3], 

late diagnosis and a relative resistance to conventional chemo- and radiotherapy [4,5]. After surgical 

resection local recurrence occurs in the majority of patients. In addition, a strong ―desmoplastic 

reaction‖ is characteristic for PDA [6,7]. Fibroblasts, myofibroblasts and activated stellate cells 

produce the different connective tissue components such as collagens, fibronectin and proteoglycans [8]. 

As shown by Immamura et al. [8] in pancreas cancer and tumor associated chronic pancreatitis, the 

collagen content is 3-fold higher compared to normal pancreas. In addition, the proportion of the 

collagen types I, III and V is comparable to ethanol induced chronic pancreatitis, tumor associated 

chronic pancreatitis and pancreas cancer [8]. Whereas in pancreas cancer, collagen synthesis is 

associated with spindle shaped cells (fibroblasts and myofibroblasts), matrix-metalloproteinases 

(MMPs) and tissue-inhibitors of MMPs (TIMPs) are produced by both, stromal and tumor cells [9].  

In his ―Frank Brooks Memorial State of the Art Lecture in basic Sciences‖ at the 2001 Annual 

APA-meeting, M.G. Bachem presented data for the first time indicating an interaction of PSC with 

tumor cells. One year later, Yen et al. [10] described a pronounced increase in the number of α-smooth 

muscle actin positive cells in PDA and suggested that these cells might represent activated PSC 

producing the connective tissue surrounding carcinoma cells. Thereafter several research groups 

studied the role of PSC in pancreas cancer [11–14].  

2. Pancreatic Stellate Cells 

In an earlier report, fibroblast-like cells were suggested to be responsible for the collagen synthesis 

resulting in pancreas fibrosis [15]. However, as shown later, the matrix producing cells in pancreas 

express α-smooth muscle actin (αSMA) and show similarities to activated hepatic stellate cells (HSC) 

or myofibroblast-like cells [16,17]; for a review see [18]. Normal fibroblasts do not express desmin or 

αSMA. In addition, by using microarray technology to analyze the gene expression profile of 

(i) normal fibroblasts; (ii) activated HSC and (iii) activated PSC, respectively, significant differences 

between stellate cells (HSC and PSC) and fibroblasts could be demonstrated [19]. Vitamin A storing 

cells have been found in different organs of vertebrates such as the liver, pancreas, kidney, lung, skin 

and others. HSC have long been known to play a major role in repair after injury and in liver 

fibrogenesis [20,21]. The cellular vitamin A content, primarily retinyl palmitate, is visible during 

excitation with UV-light as a rapidly fading fluorescence. Some cytoskeleton proteins might also be 
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used to identify these cells (see Figure 1). PSC are of mesangial origin but, as we have learned recently 

in injury and cancer, part of these cells also originate from bone marrow (see below). 

Figure 1. Characteristics of quiescent (fat-storing phenotype) and activated PSC 

(myofibroblast-like phenotype). In acute and chronic pancreatitis, but also in pancreas 

carcinomas, PSC change their phenotype from a quiescent fat-storing phenotype to a 

highly active myofibroblast-like phenotype. Hereby the cells lose their Vitamin A 

containing fat droplets, express other cytofilaments, increase their proliferation rate and 

produce growth factors, cytokines, connective tissue, MMPs and TIMPs. In addition, as we 

have learned recently from animal models, part of the activated PSC originate from 

stem/progenitor cells of bone marrow.  

 

Vitamin A storing cells in the pancreas were first described in the year 1982 by Watari et al. using 

electron and fluorescence microscopy of mice pancreas tissue after vitamin A loading [22]. A few 

years later, vitamin A storing cells were found in normal human and rat pancreas and in fibrotic human 

pancreas [23]. In 1998 we, and the Apte-Wilson-Group in Sydney, isolated and characterized 

vitamin A storing stellate-shaped cells from rat and human pancreas [16,17]. Because of their 

similarity to HSC we named the cells pancreatic stellate cells [17]. In normal pancreas low numbers of 

quiescent fat-storing PSCs can be detected interlobular and in the periacinar space [16,17]. 

Comparable to the stellate cell-activating mechanisms in liver injury, also in acute and chronic 

pancreatitis and in pancreas cancer (but also in primary culture), the cells are activated and change 
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their phenotype (Figure 1). The fat storing phenotype of PSC is quiescent (low mitotic index, low 

capacity to produce matrix and growth factos), has numerous perinuclear fat droplets containing 

retinyl-palmitate and expresses the cytofilaments vimentin, desmin, glial fibrillary acidic protein 

(GFAP), Nestin and synemin (Figure 1). 

In pancreas injury (e.g., acute and chronic pancreatitis), but also in pancreas carcinoma [24], the 

quiescent fat-storing phenotype of PSC loses its retinoids, develops a prominent rough endoplasmic 

reticulum and transforms into a highly active matrix producing myofibroblast-like cell (Figure 1). This 

cell type is primarily found in interlobular fibrotic areas or adjacent to carcinoma cells. The activated 

PSC (myofibroblast-like) are vimentin and αSMA positive, have a high mitotic index, express the 

receptors for PDGF and TGFß, express ICAM-I, are able to contract and move, produce the 

extracellular matrix components collagen I, III, XI, fibronectin and periostin, also synthesise MMPs 

and TIMPs and release the growth factors PDGF, FGF, TGFß1, CTGF, IL1ß, IL-6, IL-8, IL-15, 

Rantes, MCP1, ET1 and VEGF (see Figure 1). In addition, PSC which have been isolated from 

pancreas carcinomas also contain lipid droplets [14] and express vimentin and αSMA (Figure 2). 

These tumor derived PSCs also produce collagen I and III, fibronectin, growth factors, and proteases in 

significant amounts [13,14,24]. 

Figure 2. Immunofluorescence microscopy of cultured PSC, which have been isolated 

from pancreatic ductal adenocarcinoma. (a) vimentin immunofluorescence (red); 

(b) alpha-smooth muscle actin immunofluorescence (red). Cell nuclei are stained blue 

(Hoechst 33258). FB, alpha-smooth muscle actin negative fibroblast. 

 

Cell culture experiments have shown that TGFß, TNFα, IL-1, IL-6, IL-8, ethanol, acetaldehyde, and 

oxidative stress stimulate the transformation from the fat storing phenotype to the myofibroblast-like 

phenotype (Figure 1). Activated PSC are stimulated by injured acinar cells [25], aggregating platelets, 

inflammarory cells, ethanol and acetaldehyde to proliferate, produce matrix, and MMPs [26], and 

synthesize growth factors and cytokines (Figure 3) ([27]). The most important paracrine factors 

stimulating fibrogenesis in activated PSC are TGFß1, FGF, PDGF, ET-1, and acetaldehyde. TNFα, 

IL-1, TGFß, and IL-6 are related to ECM degradation and remodeling (Figure 3). Because activated 

PSC synthesize TGFß1, CTGF, PDGF, ET-1, IL1, IL6, IL8, activin-A, periostin, and COX-2, 

autocrine stimulatory loops might also play a role in chronic pancreatitis and PDA (Figure 3). 
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Additionally, activated PSC also produce IL15, which reduces lymphocyte apoptosis, again leading to 

further PSC activation [28]. 

Figure 3. Paracrine and autocrine stimulation of activated pancreatic stellate cells in 

culture. Injured acinar cells, activated inflammatory cells, aggregating platelets, ethanol 

and acetaldehyde stimulate PSC proliferation, matrix- and MMP-synthesis and PSC 

motility. Via autocrine stimulatory loops PSC proliferation and ECM-synthesis are also 

stimulated. AM, adrenomedullin; SDF-1, stromal cell-derived factor-1; ET-1, endothelin-1. 

 

Accumulating evidence suggests that part of the PSC in fibrotic pancreas are derived from bone 

marrow [29,30], express several stem/progenitor cell markers such as CD34, Nestin, p75NTR, GFAP, 

Bcrp1, Aldh, Notch (for review see [31]), and are able to differentiate into other pancreatic cell types [32]. 

Pan and coworkers have shown that bone marrow-derived progenitor cells contribute to the stellate cell 

and inflammatory cell population near metaplastic tubular complexes and carcinoma cells [33]. Based 

on their data, these authors suggest that bone marrow-derived progenitor cells could influence 

pancreatic cancer growth by modulating tumor microenvironment [33]. 

3. Cell-Cell Interactions between PSC and Carcinoma Cells 

Experimental and clinical data indicate that acute and chronic pancreatitis represent potent risk 

factors for PDA [34–36]. Tissue injury (e.g., acute pancreatitis) [37], oncogene activation like 

Hedgehog/Ras [38–40] or Notch [41,42] and TGFα activation [43] induce and accelerate acinar-ductal 

metaplasia and PanIN development. Notch activity is thought to play a major role in cancer 
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development because TGFα induced acinar-to-duct conversion requires Notch activation [42], and 

Notch and Kras coactivation cause a rapid acinar-to-duct-like phenotype [41]. Chronic pancreatitis also 

accelerates Kras-driven PanIN and PDA development [34]. In addition, accumulating evidence 

indicates that in tissue injury, and pancreatitis activation of PSC, is linked to tumor progression. Erkan 

and colleagues quantified the extent of activated stromal cells in situ by quantifying what they called 

the ―activated stroma index‖ (ASI) [44]. They stained consecutive tissue sections of cancer patients 

with antibodies against aSMA or with aniline blue revealing collagen deposition. What they observed 

was that a high coefficient of aSMA / collagen staining correlated with a poor prognosis and vice 

versa. This indicates that high PSC numbers and a high activation grade of PSC (strong aSMA 

staining), but not a strong desmoplastic reaction (collagen synthesis), are related to tumor progression. 

The cell type that gives rise to precursor lesions, termed pancreatic intraepithelial neoplasia 

(PanIN), is still in debate. Pancreatic duct epithelial cells [45] or centroacinar cells [46,47] have been 

suggested as cancer-initiating cells, but evidence accumulates that acinar cells represent the bad guys 

[41,48–50]. There are also hints that PSC might participate in the initiation of PDA [51]. Beside the 

growth factors mentioned above, other factors might also be involved in CC-PSC interaction and 

contribute to cancer progression (see Figure 4). Firstly, PSC store retinaldehyde esters within lipid 

droplets, which may be oxidized by aldehyde dehydrogenases to retinoic acid (RA). Upon activation of 

PSC, the lipid droplets disappear, thereby releasing their contents. RA promotes cell differentiaton—a 

physiological process needed to maintain tissue homeostasis, e.g., for restricting acinar cell 

proliferation. Following continuous activation of PSC though, RA stores may be depleted and 

proliferation of acinar cells may continue once initiated. Secondly, collagen I, which is produced by 

activated PSC, has been shown to directly weaken E-cadherin mediated cell-cell interactions of tumor 

cells, and to stimulate cell proliferation by b-catenin-mediated up-regulation of c-myc and cyclin D1 

expression [52]. Additionally, collagen I was shown to increase N-cadherin expression and the 

metastatic potential of CC in vivo [53]. In this context, one might speculate that, for example, 

phagocytosis of necrotic acinar cells [54] or bacteria [55] by PSC may lead to local activation of PSC 

and collagen production, finally stimulating acinar cell proliferation. In adult mice chronic pancreatitis 

has been shown to be essential for the induction of ductal adenocarcinomas by K-Ras oncogenes [34], 

and from humans it is known that both idiopathic and alcoholic pancreatitis are associated with a  

15-fold higher risk of developing pancreatic cancer [56]. In summary, the local activation of PSC, 

simply as a result of local tissue injury, may in turn ‗accidentally‘ initiate or promote cell proliferation 

of acinar cells. 

Furthermore, in recent years we have learned from different tumors that the tumor 

microenvironment plays an active role in tumor progression, invasion, chemoresistance, escape from 

apoptosis and anoikis and metastasis [57–60]. At the invasion front, stroma and tumor cells interact 

and exchange factors (enzymes, growth factors, cytokines) that degrade local ECM and stimulate 

migration, promote proliferation, angiogenesis and tumor cell survival. Pancreas carcinoma 

microenvironment contains the angiogenesis stimulating factors VEGF, PDGF, FGF1, FGF2, collagen-I, 

periostin, adrenomedullin, prokineticin-1, MMPs and uPA, the migration-stimulating factors PDGF, 

EGF and SDF-1, proliferation stimulating factors such as TGFß, FGF2, PDGF, EGF, CTGF, 

adrenomedullin [61], Gal-3, and SDF-1, invasion promoting factors such as MMPs, thrombospondin [62], 

uPA, and tPA, and factors responsible for drug resistance (NO
•
, IL-1ß) and inhibition of 
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anoikis/apoptosis (collagens, fibronectin, laminin). Tumor cells, as well as fibroblasts, myofibroblasts, 

and in particular activated PSC, are responsible for the production of these factors (see Figure 4). 

Figure 4. Interaction of PSC with pancreas carcinoma cells. Pancreas carcinoma cells (CC) 

accelerate transformation of quiescent PSC to the myofibroblast-like phenotype. This cell 

type is attracted by CC and stimulated to proliferate, produce ECM and growth factors. 

PSC stimulate angiogenesis, CC proliferation, chemoresistance, invasion, and motility. In 

addition, PSC reduce anoikis/apoptosis of CC. AM, adrenomedullin; SDF-1, stromal 

cell-derived factor-1. 

 

To study PSC-CC interactions, we performed co-culture experiments of CC and PSC (see Figure 5) 

or stimulated cultured PSC with CC-supernatants and vice versa. The results and the data of others 

regarding the interaction of PSC with carcinoma cells are summarized in Figure 4. By producing 

TGFß1 and other fibrogenic mediators, pancreas CC stimulate the transformation of the quiescent fat-

storing phenotype of PSC to the highly active myofibroblast-like phenotype. In addition, CC attract 

PSC (Figure 5c,d) and stimulate motility, proliferation and matrix synthesis of PSC [14,27]. The result 

of this stimulation is a strong desmoplastic reaction surrounding carcinoma tissue [13,14]. The 

activated PSC proliferate strongly in response to PDGF, IGF1, and ET-1. Migration of PSC is 

stimulated by PDGF, matrix synthesis is stimulated primarily by TGFβ1, FGF-2, and sonic hedgehog. 

In addition, CC induce MMP synthesis via the release of IL1, TGFß1, TNFα, and EMMPRIN. In 

particular MMP-2, MMP-9, and plasminogen-activator (uPA) are involved in tumor dissemination. As 

shown by Gress et al., MT1-MMP, MT2-MMP, MMP-2, MMP-9 are strongly expressed in pancreas 

cancer [9]. Recent data from our group shows that PSC significantly contribute to MMP-2 secretion in 
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the desmoplasia of pancreatic cancer in vivo and in vitro [63]. MMP-2 staining was found primarily in 

PSC adjacent to cancer cells [14] and secretion of MMP-2 by PSC by far exceeds that of cancer cells [63], 

although pancreas carcinoma cells express some MMP-2. Furthermore, there is evidence that cancer 

cells induce uPA expression in stromal cells, which then bind to the urokinase receptor (uPAR) 

expressed on cancer cells (for review see [64]). After binding, uPA converts plasminogen to plasmin, 

which then degrades fibrin, collagen IV, fibronectin and laminin. Beside the action of MMPs, this also 

enables tumor cells to migrate through tumor surrounding ECM.  

Figure 5. Microphotographs of PSC (isolated from PDA) in co-culture with primary 

pancreas carcinoma cells (ULA-PaCa). (a) phase contrast; (b) alpha-smooth muscle actin 

immunofluorescence (red); (c) vinculin, red-yellow, f-actin, green; (d) paxillin, red-yellow; 

f-actin, green. Cell nuclei are stained blue (Hoechst 33258). CC, panceas carcinoma cells 

(ULA-PaCa); PSC, pancreatic stellate cells. 

 

In particular, MMPs are suggested to play an important role in cancer progression that is in early 

metastasis, angiogenesis, and release of growth factors from ECM [65,66]. Early trials with MMP 

inhibitors though did not result in significant benefits for cancer patients, probably due to their 

application in late stage cancer, their usage as monotherapy, and missing information about good and 

bad responders [66]. However, new target-specific inhibitors are being developed [67,68]. 

Data from our group [14,63] and from the lab of H. Fries [69] have shown that CC express 

EMMPRIN (Extracellular Matrix Metalloproteinase Inducer) and thereby stimulate the synthesis of 

MMPs in PSC. EMMPRIN, also named Basigin or CD147, which is a type I transmembrane 

glycoprotein, has been extensively studied because it is involved in tumor cell migration and  
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invasion [70–73], apoptosis [74,75], angiogenesis [76–78], and chemoresistance [79,80] in a variety of 

cancers (reviewed by [81]). In pancreatic cancer, serum levels of EMMPRIN are elevated compared to 

healthy volunteers, though serum levels do not correlate with TNM status [69]. Experiments in nude 

mice showed that EMMPRIN promotes tumor growth of CC in vivo [82]. 

Most effects of EMMPRIN have been reported to be mediated by the induction of MMPs. For 

example, positive correlations between the expression of MMPs and EMMPRIN in various cancers 

can be found in numerous reports [83,84]. Furthermore, co-culture of cancer cells with stromal 

fibroblasts induces MMPs, which can be blocked by EMMPRIN antibodies [72,85,86]. In addition, 

there is a positive feedback regulation of EMMPRIN and MMP-dependent generation of soluble 

EMMPRIN [87]. Finally, the up-regulation of MMP expression in PSC by CC-derived EMMPRIN 

accelerates tumor growth in vitro and in vivo [63]. Because of the central role of EMMPRIN in tumor 

progression, antibody- or siRNA-based therapies have already been tested in mouse models of various 

cancers with some success [82,88,89]. However, some evidence exists that EMMPRIN does not induce 

MMP-synthesis in certain cell systems, tumor types, and animal models. In murine melanoma cells, for 

example, knockdown of EMMPRIN did not reduce the tumor cell-mediated induction of MMP-2, -9, 

and -14 both in vitro and in vivo [90], but impaired angiogenesis and metastasis formation [77]. 

EMMPRIN exists as high and low glykosylated isoform. Their proportion is partly regulated by the 

interaction of EMMPRIN with caveolin-1 in the Golgi complex [91] and varies between different 

pancreas CC lines [63,69]. In order to mediate intercellular signals, the transmembrane protein 

EMMPRIN can be solubilized from the cell membrane by microvesicle shedding [92,93] or by 

proteolysis of the extracellular part of EMMPRIN by MMPs [87,94].  

PSC also express varying amounts of EMMPRIN [63,69]. This is of interest, because so far there is 

no convincing data identifying the receptor for EMMPRIN. The most favored mechanism of action of 

EMMPRIN is the homophilic interaction of soluble EMMPRIN and membrane-bound EMMPRIN [86,95]. 

This interaction and the consecutive induction of MMPs can be blocked by unglycosylated recombinant 

EMMPRIN—the ineffective form of the protein—or by antibodies against EMMPRIN [86]. The main 

obstacle of this proposed mechanism is the way by which the signal is transduced into the cell. 

Obviously, EMMPRIN itself has no kinase or phosphatase activity and is not coupled to ion channels 

or any other known signal transduction molecules. However, following addition of soluble EMMPRIN 

to cultured cells activation of downstream mediators such as p38-MAPK [96], SAPK/JNK [73], or 

phospholipase A2 and 5-lipoxygenase [97] have been described. 

Another possibility of EMMPRIN signaling might be endocytosis of dimeric or multimeric 

EMMPRIN (following binding of soluble EMMPRIN) with other components, for example 

cyclophilin B, which has been shown for the entry of measles virus into epithelial cells [30]. Recently, 

in vitro and in vivo experiments have revealed the interaction of EMMPRIN with monocarboxylate 

transporters, proteins, which confer lactate export from cells in tissues with reduced oxygen supply 

like solid tumors [82], providing an additional explanation for the tumor promoting effect of 

EMMPRIN in conjunction with the Warburg hypothesis [98]. 

Another way EMMPRIN can exert its effects is by the direct binding of MMPs to the tumor cell 

surface and subsequent local organization of the enzymes in the cell membrane (e.g., a directed 

localization towards invadopodia), which has been shown for lung carcinoma cell-derived  
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MMP-1 [99]. This strongly accumulated MMP could again locally activate further MMPs, for example 

PSC-derived MMP-2 and MMP-9. 

Mutual activation and inactivation of MMPs plays an important role in regulation of MMP activity 

(for review see [100]). Additionally to EMMPRIN (and other factors), these proteases are also tightly 

regulated by tissue inhibitors of MMPs (TIMPs). In PDA, an imbalance of MMP and TIMP expression 

compared to healthy controls has been observed [101]. As tumor cells proliferate, the total amount of 

MMPs (inactive pro-MMPs as well as active MMPs) would concomitantly increase and further 

activate PSC-derived MMPs. Hereby, a positive feedforward loop on ECM remodeling is generated. 

By producing multiple cytokines and growth factors including PDGF, FGF, TGFβ1, CTGF, IL-1β, 

IL-6, IL-8, SDF-1, Rantes, TNFα, MCP-1, and ET-1 activated PSC also influence proliferation, 

motility, invasion, and chemoresistance of CC (see Figure 4). In addition, via the production of VEGF, 

PDGF, FGF1, FGF2, IL-8, coll-I, periostin, adrenomedullin, prokineticin-1, MMPs, and uPA, 

activated PSC also promote angiogenesis (see Figure 4). CC proliferation is stimulated via the growth 

factors TGFß, FGF2, and PDGF [13,14], invasion via the production of MMPs, and motility via PDGF 

and EGF. These data have been confirmed by C. Logsdon‘s group which has shown that PSC 

supernatants increased tumor cell proliferation, migration, invasion, and colony formation [102]. 

Furthermore, gemcitabine and radiation therapy were less effective in tumor cells treated with PSC 

supernatant. Although all the responsible mediators have not been identified as yet, activation of 

MAPK and Akt pathways have been observed after addition of PSC supernatant to cultured tumor 

cells [102]. Very recently X. Wang‘s group identified another soluble factor in PSC supernatant 

(stromal cell-derived factor-1 = SDF-1) promoting proliferation, migration and invasion of cancer 

cells [103]. In addition, very interestingly the presence of PSC increased the incidence of tumor 

formation when limiting numbers of CC were orthotopically injected into nude mice [102]. These data 

were confirmed by M. Apte‘s group using orthotopically transplanted MiaPaCa-2 cells in combination 

with PSC from different human donors [104]. They identified PDGF as the primarily responsible 

factor for the tumor promoting effects of PSC (in vitro). Interestingly, the group also reported the 

existence of SMA-positive human cells in liver nodules together with a higher incidence of distant 

metastases on transplantation of CC with PSC than without (50% vs. 10%), indicating that some PSC 

might have comigrated with the CC. Our in vivo data, showing the induction of subcutaneous tumors 

in nude mice, also indicate that, in the presence of PSC, tumor progression is accelerated [13,63]. 

Others have shown that direct contact of tumor cells with PSC activated the Notch signaling pathway 

and resulted in even stronger stimulation of tumor cell proliferation compared to stimulation by 

supernatant [105]. 

In summary, all these observations support the hypothesis that PSC provide a microenvironment 

which is advantageous for tumor cell growth and survival. Interestingly, several growth factors, such 

as TGFß, FGFs, PDGF-BB and insulin-like growth factor-I (IGF-1) are sequestered within the ECM, 

which thus acts as a sponge for these factors [105]. Proteases from CC or MMPs from PSC (which are 

induced through EMMPRIN from CC) might degrade the ECM and release these bound growth factors. 

As shown in Figure 6, we designed a set of experiments to demonstrate the release of growth factors 

by degradation of ECM. Activated PSC were cultured in 6-well plates until confluency. Then, the 

medium was changed and in the absence of fetal calf serum new medium was conditioned for three 

days. This PSC supernatant was added to cultured pancreas CC (Panc1 and SW850) and proliferation 
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of the CC was quantified by BrdU-incorporation (see Figure 6a and 6b). Cultured PSC were washed 

and then lysed using distilled water. After a further three washing steps, the remaining ECM was 

degraded at 37 °C by addition of 2 mL CC supernatant (containing proteases and MMPs). The 

degraded matrix was then added to cultured CC and proliferation was again measured by BrdU 

incorporation (Figure 6a and c). In addition, PSC supernatant and degraded PSC-matrix were 

preincubated for 1 h with neutralizing antibodies against TGFß1, bFGF, and PDGF-AB. 

As shown in Figure 6a and 6b, PSC-conditioned medium (PSC-SN) and degraded PSC matrix both 

stimulate the proliferation of Panc1 cells by almost 40% compared to control. Preincubation with 

neutralizing antibodies against TGFß1 and bFGF identified both factors as mitogens for CC. Similar 

results were obtained using SW850 cells instead of Panc1. In summary, these experiments demonstrate 

that (i) TGFß1 and bFGF are produced by cultured PSC; (ii) both factors are sequestered in the ECM 

and might be released by matrix degradation; (iii) both factors stimulate proliferation of pancreas 

carcinoma cell lines. 

Figure 6. Effect of PSC supernatants (PSC-SN) and degraded extracellular matrix on 

proliferation (BrdU-incorporation) of cultured Panc1 cells. (a) Activated PSC were 

cultured in 6-well plates until confluency. Then, medium was changed and in the absence 

of fetal calf serum new medium was conditioned for 3 days. The PSC supernatant was used 

to stimulate Panc1 cells (see b). The cultured PSC were washed and then lysed using 

distilled water. After another 3 washing steps the remaining ECM was degraded at 37 °C 

by addition of 2ml CC supernatant (containing proteases and MMPs). Degraded matrix was 

preincubated with neutralizing antibodies or directly added to cultured Panc1 cells (see c).  

(b), PSC supernatant was added to cultured Panc1 and proliferation was quantified by 

BrdU-incorporation. (c) Degraded matrix (with and w/o preincubation with neutralizing 

antibodies) was added to cultured Panc1 and proliferation was quantified by BrdU-

incorporation. * p < 0.05. 
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Figure 6. Cont. 
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4. Role of PSC in Chemoresistance 

As mentioned above, surgical resection of PDA in combination with chemo- or radiotherapy is the 

only chance for cure. However, only 15–20% of the patients are candidates for surgical intervention. 

Another problem is the development of chemo- and radioresistance in PDA. The synthetic nucleoside 

analogue gemcitabine, which is the most commonly used drug for chemotherapy of PDA, is a prodrug, 

which needs to be transported into the tumor cells followed by activation through various enzymes. 

Recent data show that, among these proteins, a high expression of equilibrative nucleoside transporter 1, 

which enables the entry of the compound into the cells, correlates with higher survival in gemcitabine-

treated patients [107]. Within cells, gemcitabine is phosphorylated by various enzymes and inhibits 

ribonucleotide reductase and DNA synthesis [108], but phosphatases, like 5‘-nucleotidase, or cytidine 

deaminase, which irreversibly deactivate the drug, again may limit this process. Additionally, as one 

might expect, there is a positive correlation between the expression of anti-apoptotic genes of the Bcl-2 

family, like Bcl-XL, and resistance of CC against gemcitabine or 5-fluorouracil [109]. Up-regulation 
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of these anti-apoptotic genes is mainly conferred by mutations of nuclear factor kB (NF-κB), variations 

in signaling pathways upstream of NF-κB, or continuous auto- and paracrine stimulation of NF-κB 

activity by various growth factors and cytokines. Inhibition of NF-κB increased apoptosis and thereby 

reduced chemoresistance [110]. 

Participation of PSC in the above mentioned mechanisms has not been investigated so far, but there 

are several observations indicating that PSC might play a significant role in both the manifestation and 

progression of chemoresistance. PSC-conditioned medium, for example, directly protects CC against 

the cytotoxicity of gemcitabine: Only 9% of BxPC3 cells in the presence, compared to 34% of cells in 

the absence, of PSC-conditioned medium were TUNEL-positive after 48 hours treatment with 100 µM 

gemcitabine [102]. 

Among others, CC express IL-1, which confers constitutive NF-κB activity and chemoresistance 

via autocrine stimulation [111]. At this point, PSC come into play: IL-1 leads to the expression of 

inducible nitric oxide synthase (iNOS) in PSC [112]. PSC do not express IL-1, but, once  

expressed, the ‗constitutively‘ active iNOS—being independent on enzyme regulators like 

calcium/calmodulin—releases nitric oxide (NO
•
). The freely diffusible molecule NO

•
 increases, as a 

paracrine mediator, the expression of IL-1 in CC, resulting in a positive feedback loop. Co-culture 

experiments using either PSC or PSC-conditioned medium revealed significantly reduced rates of 

etoposide-induced apoptosis (>50% reduction) in CC compared to CC mono-cultures. This effect was 

blocked by either an IL-1 receptor antagonist or the iNOS inhibitor aminoguanidine, but enhanced by 

the NO
•
 donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Additionally, histology revealed both 

the expression of IL-1 and iNOS in human pancreatic adenocarcinoma samples [112]. In this context, 

hypermethylation of caspase-3, -7, -8, and -9 genes, resulting in reduced expression of these effector 

enzymes of apoptotic signaling, seems to be responsible for the increased resistance to apoptosis [113]. 

Another research group has shown that culture of CC on ECM protein-coated dishes (including 

fibronectin, laminin, collagen type I and IV) directly influences CC proliferation and increases the 

resistance of CC against the cytotoxicity of 5-fluorouracil, cisplatin, and doxorubicin [114]. This 

suggests that ECM proteins, abundantly expressed by PSC, might directly promote resistance against 

anticancer drugs. Interestingly though, none of these ECM proteins changed gemcitabine-mediated 

cytotoxicity (75–400 nM; 72 hours) in any CC line investigated (Capan-1, Panc-1, MiaPaCa-2) [114], 

indicating that the increased resistance against anticancer drugs mediated by ECM proteins alone does 

not adequately reflect the situation in vivo. 

Finally, multicellular layer experiments, used as in vitro models for solid tumors, suggest a limited 

penetration of anticancer drugs through tumor tissues [115]. In case of PDA, a possible candidate gene 

directly involved in such an increased chemoresistance is the glycoprotein decorin, which is highly 

expressed on both the mRNA and protein level in activated PSC. It leads to decreased PCC 

proliferation, but increased gemcitabine resistance, probably due to direct binding of growth factors 

(affecting proliferation) [116] and small molecules like gemcitabine via it‘s leucine-rich domains. The 

net effect of decorin on proliferation (inhibition) and chemoresistance (increase) in vitro is to slow 

down CC growth [117]. 

A recent study reported major progress with respect to reducing chemotherapy resistance in PDA. 

Inhibition of hedgehog signaling (involved in tumor-stroma interaction as mentioned above) in a 
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murine model of PDA, reduced stromal expansion, thereby increasing intratumoral vascular density 

and intratumoral concentration of gemcitabine, leading to transient stabilization of disease [118]. 

In summary, accumulating data indicate that PSC participate in the development of chemoresistance 

in PDA. Accordingly, research focusing on the improvement of anticancer drug efficiency should not 

exclusively study CC, but always consider the influence of stromal cells. 

5. Conclusions 

In recent years, it has been established that cancer growth and spread are strongly influenced by the 

microenvironment. However, presently the molecular signals involved in the tumor-host cross-talk 

have only partly been identified. Hopefully in the near future, new therapeutic options might be 

developed, which directly interfere with the tumor-host cross-talk. The most promising cellular target 

for anti-stromal treatment could be the matrix and growth factor producing PSCs and endothelial cells 

playing a central role in angiogenesis. In chronic pancreatitis, cancer initiation and progression might 

be inhibited, also through inactivation of PSC, causing a reduction of matrix remodeling. Recently, it 

has been shown that forced expression of peroxisome proliferator-activated receptor g (PPAR), or 

CCAAT/enhancer binding protein a (C/EBP-), induced a phenotypic switch from activated to 

quiescent PSCs in vitro, which was dependent on the expression of albumin [119]. Effects on MMP 

expression and net effects on tumor progression in vivo, however, await further experiments. 
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