
Published online 6 February 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 1
doi: 10.1093/nargab/lqaa006

Poly-Enrich: count-based methods for gene set
enrichment testing with genomic regions
Christopher T. Lee 1, Raymond G. Cavalcante2, Chee Lee2, Tingting Qin2, Snehal Patil2,
Shuze Wang2, Zing T. Y. Tsai2, Alan P. Boyle 2 and Maureen A. Sartor 1,2,*

1Biostatistics Department, University of Michigan, Ann Arbor, MI 48109, USA and 2Department of Computational
Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA

Received July 25, 2019; Revised December 12, 2019; Editorial Decision January 27, 2020; Accepted January 30, 2020

ABSTRACT

Gene set enrichment (GSE) testing enhances the bi-
ological interpretation of ChIP-seq data and other
large sets of genomic regions. Our group has pre-
viously introduced two GSE methods for genomic
regions: ChIP-Enrich for narrow regions and Broad-
Enrich for broad regions. Here, we introduce Poly-
Enrich, which has wider applicability, additional ca-
pabilities and models the number of peaks assigned
to a gene using a generalized additive model with a
negative binomial family to determine gene set en-
richment, while adjusting for gene locus length. As
opposed to ChIP-Enrich, Poly-Enrich works well even
when nearly all genes have a peak, illustrated by us-
ing Poly-Enrich to characterize pathways and types
of genic regions enriched with different families of
repetitive elements. By comparing Poly-Enrich and
ChIP-Enrich results with ENCODE ChIP-seq data, we
found that the optimal test depends more on the
pathway being regulated than on properties of the
transcription factors. Using known transcription fac-
tor functions, we discovered clusters of related bio-
logical processes consistently better modeled with
Poly-Enrich. This suggests that the regulation of cer-
tain processes may be modified by multiple binding
events, better modeled by a count-based method.
Our new hybrid method automatically uses the op-
timal method for each gene set, with correct FDR-
adjustment.

INTRODUCTION

Regulatory genomics experiments help us understand how
cells use more than their genetic sequence to carry out a

vast repertoire of cellular programs. Common regulatory
genomics methods include chromatin immunoprecipitation
followed by high-throughput sequencing (ChIP-Seq) and
ATAC-seq, which identify transcription factor (TF) bind-
ing sites and open chromatin regions, respectively, across
the genome. Other types of data, such as DNA methylation
assays, copy number alterations, repetitive element families
and groups of SNPs, also lead to large sets of genomic re-
gions that potentially play a specific role in regulatory ge-
nomics, with each type having notably different properties
in terms of the number, size and location of genomic re-
gions.

Proteins that bind near a gene can regulate it in ways
such as improving structural properties or physically block-
ing other proteins, often positively or negatively regulating
the gene’s expression, respectively. Additionally, some pro-
teins bind DNA several times in a clustered region (1) or in
distant enhancer regions that interact with the same or dis-
tinct proteins bound in promoter regions (2). Binding sites
also differ in strength; a protein may bind in only a portion
of cells in a sample at the time of immunoprecipitation, ei-
ther due to weak binding or due to varying chromatin ac-
cessibility among the cell types in the sample. These binding
sites along the genome are interpreted as peaks of varying
strengths, depending on the signal-to-noise ratio or signifi-
cance level of the peak. In general, interpreting each peak’s
target gene(s) and effects remains an active area of research,
which over time may improve results on downstream tests
such as gene set enrichment.

Gene Set Enrichment (GSE) is an approach to test for
over (or under) representation of genes in a set of genes
with similar functionalities. Gene Ontology (3), Reactome
(4), KEGG pathways (5) and MsigDB (6) are widely used
gene set databases. Although originally developed for gene
expression data, GSE testing is now often used to help in-
terpret ChIP-seq peak sets and other sets of genomic re-
gions. Most of these tests are competitive, meaning that
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when testing gene sets, the null hypothesis is that genes
in a gene set have no more signal (i.e. associated genomic
regions) than genes not in the gene set, opposed to self-
contained, which has the null hypothesis that the genomic
regions in the gene set are not more significant than none
(7). Existing methods for general GSE tests include Fisher’s
exact test, random sets, logistic regression (e.g. LRPath
(8)) and GSEA-type tests (9). GSE methods specific for
ChIP-seq data include Genomic Regions Enrichment of
Annotations Tool (GREAT) (10), ChIP-Enrich (11) and
Broad-Enrich (12).

With so many different tests, one may wonder which test
is optimal for their data, but there is no single recommen-
dation across data types. Different tests are needed for dif-
ferent types of genomic regions as properties such as peak
widths, number of peaks and location relative to genes all
make a difference. Thus, GSE testing for genomic regions
should not be a one-size-fits-all test; some methods work
better than others in specific scenarios. For example, Cav-
alcante et al. showed that Broad-Enrich is more powerful
than ChIP-Enrich for broad regions, but lacks power for
narrow regions (12). As another example, GREAT does not
account for variability among genes, so it is best used in situ-
ations where the probability of a peak is constant across ge-
nomic space (e.g. per kb), as opposed to clustered near tran-
scription start sites or displaying variability among gene
loci.

Our previous method, ChIP-Enrich, uses a binary score
to classify a gene as having at least one peak. We saw that
ChIP-Enrich tends to underperform when nearly all genes
have at least one associated genomic region; in this case,
ChIP-Enrich will not yield meaningful results. We hypoth-
esized that a count-based, competitive enrichment method
that captures the frequency of binding would perform bet-
ter in those situations. In this paper, we introduce such a
method, Poly-Enrich, to expand our available methods to
be suitable for any set of narrow genomic regions includ-
ing those that tend to saturate genes. The flexible struc-
ture of the Poly-Enrich test also allows additional capabil-
ities, such as accounting for the strength of each ChIP-seq
peak. Whereas ChIP-Enrich has the hypothesis that a sin-
gle binding site is sufficient for regulation, Poly-Enrich al-
lows for regulation that is incremental, i.e. more genomic
regions correspond to stronger or more likely regulation.
To identify under which situations one is more appropri-
ate than the other, we performed a comparison of Poly-
Enrich and ChIP-Enrich using a set of 90 transcription
factor (TF) ChIP-seq datasets from the Encyclopedia of
DNA Elements (ENCODE) (13). We also introduce a hy-
brid test that combines information from both ChIP-Enrich
and Poly-Enrich.

To illustrate the usage of Poly-Enrich, we apply it to
sets of repetitive elements in the human Alu and LINE1
families, revealing for the first time a comprehensive view
of the processes and functions enriched or depleted with
these repetitive elements in the human genome. Finally,
we describe several updates to our ChIP-Enrich website
and chipenrich Bioconductor package, including additional
methods for assigning genomic regions to target genes, new
gene set databases, and more supported species.

MATERIALS AND METHODS

Datasets

All ChIP-Seq data were obtained from Encyclopedia of
DNA Elements (ENCODE) at University of Califonia,
Santa Cruz (13). We used a total of 90 experiments over the
three Tier 1 cell lines (Gm12878, H1-hESC and K562), and
all 35 transcription factors that had available ChIP-seq data
for at least two of the three Tier 1 cell lines (Supplementary
Table S1).

The gene sets used were from Gene Ontology: Biological
Processes (GOBP) ver. 3.4.2 (3). We filtered out gene sets
with <15 genes or >2000 genes as gene sets with too few
genes generally have insufficient power and may not satisfy
the assumptions of the statistical model, and gene sets with
too many genes are too vague to be biologically informative.
In total, there were 5015 gene sets used.

Assigning regions to genes

The UCSC knownGene database for hg19 was used to de-
fine the transcription start sites across the genome (14).
Each gene locus definition (e.g. nearest TSS, <5 kb etc.) was
generated as a table containing the columns: chromosome,
Start, End and gene ID.

Poly-Enrich model: a generalized linear model with a negative
binomial family

We model the number of genomic regions assigned to each
gene using a generalized linear model (GLM) with a nega-
tive binomial (NB) family. The model is:

log (μi ) = β0 + β1GSi + f (log (LLi ∗ m + 1)

where for each gene i , GS is an indicator for whether the
gene is in the gene set of interest or not (= 1 if in the gene
set; 0 otherwise), μ is the mean of the negative binomial
distribution for the number of genomic regions assigned to
each gene, and the overdispersion parameter θ is simulta-
neously estimated so that Var (Y|GS) = μ + θμ2, where Y
is the number of genomic regions for the gene. The func-
tion f is a cubic smoothing spline that adjusts for the gene’s
locus length and optionally adjusts for m, the mappability
of the gene’s locus. Details about how we adjust for map-
pability can be found in the ChIP-Enrich manuscript (11).
We use the gam function in the mgcv R package to fit the
model, which uses a penalized likelihood maximization, and
the smoothing spline penalty is a squared second deriva-
tive penalty (15). Use of a cubic smoothing spline to adjust
for the genes’ locus lengths was first introduced in ChIP-
Enrich, and has been shown to be a powerful, flexible way
to model this relationship (11).

A likelihood ratio test (LRT) on the coefficient for the
gene set is used to test for enrichment (or depletion) of
each gene set: the test statistic is defined as L = −2(l0 − l1),
where L follows a χ2

1 distribution under the null hypothe-
sis that there is no association between gene set member-
ship and number of genomic regions (i.e. β0 = 0), and l0, l1
are the maximum log likelihoods under the null and alter-
native hypotheses, respectively. We use the LRT instead of
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the Wald test, because the LRT was shown to perform sig-
nificantly better than the Wald test with generalized linear
models using a negative binomial family (16). We then look
at the sign and significance of β1 to test for enrichment,
where a positive β1 indicates enrichment, and a negative
value indicates depletion (fewer regions than expected at
random). For each gene set of interest, we estimate a differ-
ent set of model parameters, and correct for multiple testing
afterwards.

Poly-Enrich with weighting based on genomic region scores

In certain cases, each genomic region in a dataset may be as-
sociated with a numeric score. For example, ChIP-seq peak
finding results often include a value denoting the strength
of a peak, (e.g. signalValue in ENCODE dataset results or
-10*log10(P-value) in MACS2 results). Poly-Enrich weights
based on these scores by giving each genomic region a
weight proportional to its signal value (or other score) and
normalizing such that the mean of all weights is equal to
1. For every genomic region assigned to a gene, we sum all
weights and substitute the weighted sum in place of the orig-
inal count. The same model can still be used on non-whole
number data as calculations are equivalent while using the
Gamma function instead of a factorial.

Comparing P-values between methods

To compare P-values between methods, we use a scatter-
plot, plotting a signed -log10 P-value per gene set. If a
gene set is enriched, the sign is positive, and if the gene is
depleted, the sign is negative. This allows us to detect if
there are any cases where two methods may contradict each
other’s conclusions.

Spline approximation for Poly-Enrich and ChIP-Enrich

With a library of over 20 000 genes and most gene sets
being <1000 genes, the cubic smoothing spline estimate
changes very little between gene sets. Thus, we have con-
firmed we can reasonably assume that the spline is approxi-
mately equal for any gene set of interest, including the spline
with no gene set (Supplementary Figure S1A,B).

We first run the same model except without the gene set
(GS) term: log(μi ) = β0 + f (LLi ). We then extract the fit-
ted spline using the predict function with type = ’terms’
from the mgcv R package to obtain a spline-adjusted locus
length for each gene. This new value is then input as a co-
variate in the model for every gene set, which allows us to
fit a spline only once instead of once for each gene set. This
saves a significant amount of time when testing a large num-
ber of gene sets (∼75% time saved when testing 4000 gene
sets). Compared to the original model, we find that the -log
P-values from the spline approximation model are nearly
identical (Supplementary Figure S1C, D).

Testing Type-I error

The null hypothesis of Poly-Enrich is that there is no true bi-
ological enrichment. To test the Type-I error, we randomly

permuted genes to simulate scenarios where there is no as-
sociation between genes and the number of peaks. How-
ever, to ensure that results are not biased by gene locus
length or gene location, we performed two additional per-
mutations: one permutes genes within bins of similar locus
length, while the other permutes within bins of chromoso-
mal locations. In both cases, genes are sorted by the vari-
able of interest (locus length or location), and then assigned
to consecutive bins of 100 genes each. These randomiza-
tion tests are identical to those used in the Broad-Enrich
manuscript (11).

For each of the 90 TF peak datasets chosen, after assign-
ing the peaks to genes, we permuted the gene IDs using the
randomization of interest, and then performed enrichment
tests against GO biological processes. We ran a total of 10
trials and took the median P-value per gene set as the ran-
domization P-value. Then, the proportion of P-values less
than a defined confidence level was determined per experi-
ment to calculate the overall Type-I error. We then plotted
all 90 overall Type-I errors for each experiment in a box plot
to convey overall Type-I error.

Testing power

To test statistical power, we chose three TF peak datasets of
varying size (4194, 11129 and 40052 peaks) and two gene
sets of varying size (42 and 471 genes) as our base scenar-
ios. To illustrate how Poly-Enrich can detect enrichment for
datasets with very large numbers of peaks (beyond what
ChIP-Enrich can handle), we included two larger datasets:
an ATAC-seq dataset with 99 478 genomic regions, and an
Alu repetitive elements dataset with 1 094 736. After assign-
ing the genomic regions to genes, we randomized the genes
in bins of locus length to remove all true gene set enrichment
signal while keeping locus length association, and then ran-
domly added peaks into the gene set to simulate enrichment.
We chose three scenarios of enrichment, each with varying
levels (x% = 5, 10, 20 or 30) of enrichment:

1. CEbias: Enriched to closely satisfy the assumptions of
the binary (ChIP-Enrich) model. We added peaks to x%
of the remaining genes in the gene set without a peak.
This increases the proportion of genes with a peak, with-
out causing a large increase in the mean number of peaks
per gene.

2. PEbias: Enriched to closely satisfy the assumption of the
count-based (Poly-Enrich) model. We added a number
of peaks, equal to x% of the number of peaks in the gene
set, to a fraction of the genes in the gene set. This in-
creases the mean number of peaks per gene, with little
effect on the proportion of genes with a peak.

3. Balanced: We added a number of peaks, equal to x% of
the number of peaks in the gene set, into the gene set
weighted by gene locus length. This increases both the
proportion of genes with a peak and the mean number
of peaks per gene by a similar degree.

Defining the true positive transcription factor-GO term pairs

For each transcription factor, we identified the gene that
codes for it from R package GO.db (17), and then identified
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every GO biological process that gene is assigned to. Pol2 is
excluded as its functions are too widespread, resulting in 25
transcription factors, each of which is assigned to at mini-
mum 50 GO BP terms. This set of GO terms, along with its
parents and grandparents, is what we use as the true positive
set. We also define a true negative set of GO BP terms as ev-
ery other GO term, except ancestors, siblings and offspring
of the true positive set, and terms with ≥2000 or ≤10 genes.
Using the true positive and negative sets, we calculated em-
pirical false positive rates (FPRs) for Poly-Enrich, GREAT
and ChIP-Enrich. This estimated FPR serves as an upper
bound for the true FPR as it is not a perfect gold standard
(i.e. some negative GO BP terms may actually be novel true
findings, since some functions of a TF may be unknown).

Hybrid test

The hybrid method introduced by Zhang et al. (16), which
we employ, was shown to be especially beneficial when there
is no one optimal test in all cases. Given n tests that test for
the same hypothesis, the same Type-I error rate, and con-
verted to P-values p1, . . . , pn , the Hybrid P-value is com-
puted as: phybrid = n × min(p1, . . . , pn). This hybrid test
will have at most the same Type-I error rate as the n tests,
and if at least one test is consistent (power converges to
1 as sample size reaches infinity), the hybrid test will also
be consistent. Proofs and simulations of the test in general
were done by Zhang et al. (18). Here, we have implemented
the hybrid test for users to use two methods (n = 2): ChIP-
Enrich and Poly-Enrich. Users may also choose any two re-
sults files and run a hybrid test based on those.

Clustering and heat maps

For every GO term, we calculated the difference in –log10 P-
value for each of the 90 experiments between ChIP-Enrich
and Poly-Enrich, with positive values indicating a more sig-
nificant result for Poly-Enrich. We then focused on GO
terms where >10% of the experiments had an absolute log10
P-value difference >2. Clustering was performed using un-
centered correlation as the similarity metric and average
linkage as the clustering method. Using Java TreeView, we
extracted specific groups of GO terms that contain certain
strings such as ‘cell cycle’ or ‘positive regul.’

Repetitive elements

Data were obtained from the UCSC Table Browser with Re-
peatMasker 3.0 on the hg19 genome. We chose the two most
abundant families in the dataset: Alu and L1, as well as four
methods of peak-to-gene assignments: Intron, Nearest TSS,
>5 kb, and <5 kb. Poly-Enrich was then used to perform
gene set enrichment. Before clustering for the heat map, we
filtered out GO terms where there were 2 or fewer significant
FDR values among the 8 categories. The clustering method
was the same as mentioned in the previous section.

Website and bioconductor updates

The Chip-Enrich website (http://chip-enrich.med.umich.
edu) was updated from the chipenrich package version

Figure 1. Three scenarios of ChIP-seq peak distributions illustrating how
ChIP-Enrich and Poly-Enrich perform. Each color represents a different
gene locus; the left three are in a gene set and the right three are not. (A)
Peaks are relatively evenly distributed, with a small number across a subset
of genes. Given this situation, ChIP-Enrich evaluates 2/3 versus 1/3 while
Poly-Enrich evaluates {0,2,1} versus {0,1,0}; both methods perform well.
(B) Some genes contain significantly more peaks than others, such that
information is to be gained from the number per gene. ChIP-Enrich evalu-
ates 2/3 versus 1/3, Poly-Enrich evaluates {0,2,3} versus {0,1,0}; ChIP-
Enrich performs adequately, but Poly-Enrich is optimal. (C) Nearly all
genes have at least one peak, with some having significantly more than oth-
ers. ChIP-Enrich evaluates 3/3 versus 3/3, Poly-Enrich evaluates {1,2,3}
versus {1,1,1}; ChIP-Enrich would not detect any enrichment, while Poly-
Enrich can still detect gene sets enriched with more peaks.

1.7.2 to version 2.5.0. (from https://github.com/sartorlab/
chipenrich, on 8 August 2018). We have added the fol-
lowing reference genomes: human (hg38), rat (rn5, rn6),
Drosophilla melanogaster (dm6) and zebrafish (danRer10).
We also added the following databases from MSigDB (Ver-
sion 6.0): Hallmark, Immunologic, MicroRNA, Transcrip-
tion Factors and Oncogenic (6,19), and sets of genes that
are known to be affected by particular environmental tox-
ins from the Comparative Toxicogenomics Database (CTD)
(20). We also provide direction in the vignette for how to use
gene sets from other R packages, such as EGSEAdata (21).

In addition to the previous locus definitions (‘nearest
TSS’, ‘nearest gene’, ‘≤1 kb from TSS’ and ‘≤5 kb from
TSS’), we also now support gene locus definitions for re-
gions <10 kb from a TSS and gene distal regions (>10 kb
upstream of a TSS).

RESULTS

Motivation for development of Poly-Enrich

The motivation for our new methods comes from situa-
tions observed with real sets of genomic regions, often with
ChIP-seq peak datasets, but also from other sources, such
as families of repetitive elements or large sets of DNA
polymorphisms such as those different between closely re-
lated species or sub-species. Although our original method,
ChIP-Enrich, performs extremely well for most transcrip-
tion factor (TF) ChIP-seq datasets (Figure 1A), because it
uses a simple binary score for each gene, there are some sce-
narios where this simplification has a significant loss of in-
formation. For example, ChIP-Enrich models a gene with
many peaks the same as a gene with only one peak, even
though gene regulation may be affected by additional peaks
(Figure 1B). Alternatively, if nearly every gene is assigned at

http://chip-enrich.med.umich.edu
https://github.com/sartorlab/chipenrich
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least one peak, ChIP-Enrich would be unable to distinguish
among them and thus unable to detect any gene set enrich-
ment (Figure 1C).

Although the alternative current approach, GREAT, is
also a count-based gene set enrichment method, Poly-
Enrich differs significantly from it in two respects. First,
whereas GREAT counts the number of peaks in an entire
gene set, Poly-Enrich counts them per gene. By separating
counts per gene, we are able to adjust for each gene’s lo-
cus length and the variability in peak count across genes,
which we previously showed was an important adjustment
to control for Type-I error (11). Second, the binomial model
used by GREAT assumes that the background probability
of a peak is constant across the genome. Poly-Enrich uses
a more flexible, empirical approach to this that provides for
a range of different assumptions about peak distribution.
As previously shown, consequences are that GREAT does
not provide accurate significance estimates (the resulting P-
values are more significant than they ought to be), and it
tends to rank gene sets with shorter genes more highly than
those with longer genes (11). We therefore developed Poly-
Enrich as a count-based competitive method that addresses
all of the above-mentioned shortcomings of ChIP-Enrich
and GREAT.

ChIP-Enrich, GREAT, and Poly-Enrich all use a region’s
midpoint to define its location. These genomic regions can
then be assigned to genes in different ways so that regula-
tion from different types of regions (e.g. promoters, introns
or regions distal to TSSs) can be studied. We define a gene’s
locus definition as the region on the genome such that peaks
in that region are assigned to the gene. These loci are de-
fined using properties of the gene, such as within 5 kb of
a gene’s transcription start site (TSS), or simply by assign-
ing each region to the nearest TSS (Figure 2). In the new
version of our GSE website and chipenrich Bioconductor
package, we offer several additional choices, including ex-
ons, introns and distal regions only (>10 kb upstream from
a TSS). Users can also upload their own custom locus def-
inition, such as open chromatin regions for a specific cell
type, or known enhancers and their target genes.

Testing Type-1 error and power

We tested the Type-I error rate of the count-based method
under the null hypothesis of no enrichment signal. By per-
muting the genes in the peak-to-gene assignment pairs and
breaking the peak–gene relationships, we mimicked three
scenarios of no enrichment: (i) the ‘complete’ randomiza-
tion was done by shuffling the gene IDs in the whole dataset;
(ii) the ‘bylength’ randomization was performed to verify
that our method adequately adjusts for locus length, by first
grouping genes into bins of similar locus length to preserve
the locus length relationship; (iii) the ‘bylocation’ random-
ization was performed to verify that the method adequately
adjusts for relationships among genes in close proximity
to each other, by grouping genes by their physical location
to preserve relationships along the chromosomes (see ‘Ma-
terials and Methods’ section for more detail). We ran the
randomizations on our 90 selected ChIP-Seq datasets from
ENCODE (see ‘Materials and Methods’ section), and the
proportion of P-values <0.05 and <0.001 for each dataset

were plotted (Supplementary Figure S2A and S2B). We see
that the test is properly controlled at an acceptable level
for Type-1 error in all cases. That is, approximately 5% had
P-values < 0.05 and ∼0.1% had P-values < 0.001 as ex-
pected. We observed a slight inflation in the ‘bylocation’
randomization, which upon examination, we found to be
caused by certain large clusters of functionally related genes
that are located near each other, for instance a cluster of
histone genes that affected the results for Gm12878 ETS
and H1hesc TBP (Supplementary Table S2). We previously
showed that GREAT has an inflated Type-1 error under the
‘complete’ and ‘bylength’ randomizations, also using EN-
CODE ChIP-seq data (10).

To characterize the statistical power of Poly-Enrich under
different situations, we permutated data while simulating
enrichment of a gene set, and compared results with those
from ChIP-Enrich. We used three datasets with a small,
medium, and large number of peaks, and two GO terms
with a small and large number of genes. Three types of en-
richment were simulated: one that adds peaks mainly ac-
cording to the regulatory assumptions of ChIP-Enrich (CE-
Bias), one that adds peaks mainly according to the assump-
tions of Poly-Enrich (PEBias), and one that is balanced. For
each type of enrichment, we simulated four levels of enrich-
ment 0.05, 0.1, 0.2 and 0.3, which indicate the proportion of
additional peaks added to the gene set (see ‘Materials and
Methods’ section for more detail). Finally, we chose two dif-
ferent levels of significance: α =0.05 and 0.001, as our cut-
offs.

As expected, higher simulated enrichment resulted in
higher power, since adding more signal increases the ability
of a test to detect significance. Also, larger gene sets have
higher power due to an increased confidence in the esti-
mated mean number of peaks. Overall, we see that Poly-
Enrich has more power in simulations that enrich a gene
set by increasing the number of peaks per gene, while ChIP-
Enrich has more power in simulations that enrich a gene set
by adding peaks to genes without any previous peaks. Fi-
nally, the Balanced simulation results in the two methods
having similar power in most cases (Supplementary Figure
S3A and S3B).

With the two largest datasets, we tested power for the Bal-
anced simulated gene sets to illustrate that Poly-Enrich is
able to detect signal even when ChIP-Enrich fails. We see
that ChIP-Enrich is can still perform reasonably well com-
pared to Poly-Enrich with around 100 k peaks, but starts
being unable to detect any enrichment in the dataset with
over 1 million peaks where 81% of genes are assigned a peak
in the small gene set, and actually loses power when more
signal is added in the large gene set (Supplementary Figure
S3C).

Validation with true positives

To complement our permutations and simulations, we com-
pared Poly-Enrich, ChIP-Enrich and GREAT’s ability to
find true positives while avoiding false positives with real
ChIP-seq data. To do this, we first created a set of true posi-
tives comprised of GO term-TF pairs by using the GO term
biological process (BP) assignments for the gene encoding
the transcription factor (e.g. the gene encoding for JunD is
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Figure 2. Overview of peak-to-gene assignments given gene locus definitions. Given the gene locations and definitions for a genome, several different
methods for assigning genomic regions to genes can be defined, referred to as gene locus definitions. Examples shown are: Exons––only peaks in any exon
of a gene are assigned to that gene; <5 kb––peaks within 5 kb of a gene’s TSS are assigned to that gene; and nearest TSS––peaks are assigned to the gene
with the closest TSS. A gene’s locus length is defined by the number of base pairs that could be assigned to the gene. In this toy example, peak 1 would be
assigned to the blue gene for all three example gene locus definitions, peak 2 would only be assigned to the blue gene for the nearest TSS locus definition,
and peak 3 would be assigned to the orange gene only for the <5 kb and nearest TSS locus definitions.

assigned to the GO term, ‘cell death’). This makes the rea-
sonable assumption that TFs tend to regulate genes in the
same biological processes in which they are active. Out of
the 25 TFs with at least 50 assigned GO terms, we found that
GREAT had a larger empirical false positive rate (FPR)
than both ChIP-Enrich or Poly-Enrich for 22 TFs (Supple-
mentary Figure S4). Estimated FPRs were similar between
Poly-Enrich and ChIP-Enrich, with 13 (52%) experiments
being higher for ChIP-Enrich. The overall high FPR (com-
pared to the expected 5%) can be attributed to the true posi-
tives being imperfect (see ‘Materials and Methods’ section).

Poly-Enrich with weighted genomic regions

The height and confidence of peaks in a ChIP-seq experi-
ment can vary dramatically, thus we reasoned that incorpo-
rating this additional information would improve the abil-
ity to pinpoint the truly enriched pathways. Although the
most apparent motivation for weighting genomic regions is
to account for ChIP-seq peak strength, other situations ex-
ist where each peak or genomic region may be assigned a
unique score (e.g. confidence or quality score). Due to the
flexible nature of the Poly-Enrich model, we were able to
easily add the option to weight regions by peak strength
(using peak signal value; see ‘Materials and Methods’ sec-
tion for details), and examined the extent to which adjusting
for peak strength improves enrichment results using 90 EN-
CODE ChIP-seq datasets by comparing the –log10 P-values
per gene set.

We noticed for 25% of the experiments, most enriched
gene sets were more significant with weighting, thus as we
hypothesized, binding events near genes in enriched GO
terms were stronger than those near other genes (Figure
3A,B). In another 20% of experiments, the enrichment P-
values were split between the two methods (Figure 3C). In-
terestingly, the distribution of log signal values for these ex-
periments showed a bimodal pattern (Figure 3D). This sug-
gests that some gene sets tend to have genes with signifi-
cantly stronger binding peaks than others, and that both
sets may be biologically interesting. For the remaining 55%

of experiments tested, weighting made little difference on
the results.

Comparison of the count-based (Poly-Enrich) versus binary
(ChIP-Enrich) model of enrichment

We next compared results from Poly-Enrich versus ChIP-
Enrich on the same set of 90 ENCODE ChIP-seq datasets.
Our initial hypothesis was that some experiments would be
clearly modeled better by one method or the other (i.e. de-
pendent on the transcription factor). However, our results
strongly suggest that the optimal model for TF binding is
more dependent on the gene set tested than the TF. This is
visualized by a bifurcation in the significance levels of GO
terms between the binary and count-based methods (Fig-
ure 4A), and suggests that a single transcription factor may
regulate genes differently depending on the function of the
gene. Thus, we sought to understand this further.

The binary model used by ChIP-Enrich assumes that a
single binding event (i.e. a single genomic region) is suf-
ficient for regulation, while the Poly-Enrich count-based
model assumes that strength of regulation is incremental
with the number of binding sites. Based on results above,
we asked what kinds of genes were more consistent with ei-
ther of those assumptions. We use the true positive set of
known TF-GO combinations mentioned earlier in the val-
idation section. Observing the enrichment results using the
5 kb locus definition for these true positive GO term–TF
pairs, we used clustering to identify patterns of TFs and
GO terms that are optimal with one of the methods. We
found that the method that worked better was most often
determined by the GO term (Figure 4B). For example, GO
terms involving positive regulation of metabolic or biosyn-
thetic processes tended to do better with Poly-Enrich except
for those involving cell cycle, implying that related genes are
regulated such that more binding sites increase regulation
(Figure 4C,D). Conversely, GO terms related to ‘cell cycle’
clustered together and displayed greater power with ChIP-
Enrich, implying that related genes are possibly regulated
with only one binding site and having more have little ad-
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Figure 3. Comparison of GO term enrichment results between standard Poly-Enrich and its weighted version using signal values as weights. Each point is a
GO term’s –log10 P-value of the two methods, signed positive for enriched, negative for depleted. (A) Using weighting results in more significant enrichment
in many GO terms in the Gm12878 TAF1 ChIP-Seq experiment. (B) Using weighting results in slightly less significant enrichment in many GO terms in
the H1-hESC EGR1 ChIP-Seq experiment. (C) Using weighting on the Gm12878 NRSF experiment results in several more significant GO terms as well
as several less significant ones. (D) The histogram of log signal values from the NRSF experiment shows a bimodal pattern in the weights, suggesting that
GO terms that are more significant with weighting than without may have genes that tend to have stronger bound peaks or vice versa.

ditional effect. Parallel results using the Nearest TSS locus
definition were similar (Supplementary Figure S5).

Poly-Enrich is recommended for experiments with a large
number (>40 k) of peaks, as we showed that ChIP-Enrich
starts losing power at around 100 ks of peaks (Supplemen-
tary Figure S3C). However, in many cases, the gene set,
rather than the transcription factor, was a stronger deter-
minant of the more appropriate method, we are not always
able to recommend either Poly-Enrich or ChIP-Enrich for
an entire experiment. We therefore developed a hybrid test

that uses information from both ChIP-Enrich and Poly-
Enrich.

Hybrid test

To obtain the best results across all types of GO terms and
datasets, we developed a hybrid test that incorporates both
the binary and count-based models. After performing the
two models, the hybrid P-value of the two tests is defined
as: phybrid = 2 × min(pCE, pPE), where pCE and pPE are
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Figure 4. Comparisons of Poly-Enrich with ChIP-Enrich. (A) Comparison of GO term significance levels between ChIP-Enrich and Poly-Enrich. Each
point is the –log10 P-value of a GO term from the two methods, signed positive for enriched or negative for depleted. Several gene sets are much more
significant using Poly-Enrich and several are much more significant using ChIP-Enrich. This split pattern is representative of 32% of the tested datasets. (B)
Heat map of –log10 P-value differences between Poly-Enrich and ChIP-Enrich for GO terms and ChIP-seq experiments, where each row is a GO term and
each column is a ChIP-seq experiment. Shown are GO terms where >15% of the experiments had a –log10 P-value difference of 2 or larger. Red indicates
Poly-Enrich was more significant, and blue indicates ChIP-Enrich was more significant. Light gray indicates the transcription factor used in the experiment
was not assigned to the GO term and is omitted in the clustering. Representative GO terms are shown for each cluster. (C) GO terms containing ‘positive
regulation of metabolism/biosynthesis’ are mostly red, indicating that a count score provides a more appropriate model. (D) GO terms related to cell cycle
are mostly blue, indicating that a binary score provides a more appropriate model.
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the P-values given by ChIP-Enrich and Poly-Enrich, respec-
tively (18). This is essentially a Bonferroni-adjusted P-value
for two tests. This hybrid has been shown to be beneficial
if the two tests are sufficiently different, but loses power
and is conservative if the tests are identical or nearly iden-
tical (18). While the hybrid test is not as powerful as the
better method between ChIP-Enrich and Poly-Enrich, it is
dramatically more powerful than using the worse method,
making it the optimal method to use across all GO terms
(Figure 5). While this hybrid test currently only accommo-
dates ChIP and Poly-Enrich, it can be extended to accom-
modate several additional gene set enrichment tests.

Identifying biological processes enriched with or depleted in
repetitive element families using Poly-Enrich

ChIP-Enrich is unable to identify enriched gene sets in cases
where nearly all genes have at least one assigned genomic
region (Figure 1C). Thus, to further illustrate the utility of
Poly-Enrich, we used it to test large families of repetitive
element regions. We asked whether we could identify gene
sets that are either enriched or depleted for certain types of
repetitive elements. Significant enrichment of repetitive el-
ements in the promoter regions of genes, for example, can
sequester the transcription factors that inhibit activities at
another transcription factor binding site or other regula-
tory motif (22). Some of these mobile elements remain ac-
tive with new insertions having neutral, detrimental or bene-
ficial effects. Although repetitive element families have been
well studied for over 30 years, little is yet known about the
biological processes that they have adapted to help regulate
or that they can easily disrupt and thus are negatively se-
lected against (23). Using the database of human repetitive
elements from the UCSC Table Browser (RepeatMasker
3.0) (24), we performed GSE testing on repetitive element
families. Certain families of repetitive elements have over
a million occurrences across the human genome, and thus
virtually all genes have at least one nearby instance, making
this an example where ChIP-Enrich performs poorly. Thus,
in this situation, modeling the number of insertions per gene
is critical to identify differences.

We examined two of the most abundant types of repet-
itive elements: the Alu and LINE1 (L1) elements, which
make up an estimated 11% and 17% of the human genome,
respectively (25,26). We also chose four gene locus defi-
nitions: Nearest TSS, <5 kb (promoter regions), >5 kb
(distal regions) and Intron. We tested GO Biological Pro-
cesses, and used clustering to identify related groups of bi-
ological processes enriched with or depleted of the repet-
itive elements (Figure 6). We found that both Alu and
L1 elements are enriched in centrosome-related GO terms,
which validate that our approach identifies known asso-
ciations (27), and is only made possible with recent ad-
vancements in genome mapping near the centromeres (28).
For Alu elements, we also found strong enrichment in GO
terms describing metabolic processes, most significantly
‘ATP metabolic process’ and ‘rRNA metabolic process’, es-
pecially in promoter regions, which is consistent with an
analysis of Alu distribution in chromosomes 21 and 22 that
showed Alu elements on these chromosomes were enriched
in or near metabolism and signaling genes (29). Conversely,

Alu elements were sharply depleted in the promoter regions
of many development and morphogenesis processes, with
the strongest depletions in cell fate commitment and con-
nective tissue development. Interestingly, depletions were
also seen in the introns of genes in these gene sets, but not in
regions >5 kb upstream, suggesting the negative selection is
limited to the regions that are more commonly regulatory.

Novel insertions of L1 elements into or near key genes
are known to be associated with neurological diseases (30).
Consistent with this, we found that all neuro-related GO
terms in Figure 6 were depleted for L1 (but not for all of
Alu) (Supplementary Figure S6), which suggests that L1’s
evolutionarily have been selected against occurring in the
regulatory regions of neurological genes; when they are in-
serted into the introns or promoters of these genes, the in-
serted elements may have an unacceptably high risk of caus-
ing disease.

In general, we observed that the significance of the distal
upstream regions (>5 kb locus definition) was lower than
the other three locus definitions (with the exception of some
enrichments for Alu elements) (Supplementary Table S3),
implying that most repetitive element negative (or positive)
selection has occurred in the promoter regions or introns of
genes. Alternatively, the gene distal enriched and depleted
regions may be limited to a specific set of enhancer regions,
the signal from which could have been diluted in our analy-
sis. Interesting additional findings are that L1 elements are
enriched in chemical stimulus detection processes such as
detection of chemical stimulus and sensory perception of
chemical stimulus, while Alu elements are depleted in the
genes in these processes. Finally, both Alu and L1 elements
are significantly depleted in genes involved in many pro-
cesses related to development and morphogenesis.

Availability, usage and updates

Poly-Enrich is available in the chipenrich Bioconductor
package and as a web interface at http://chip-enrich.
med.umich.edu. Several additional gene set databases
and gene locus definitions (see ‘Materials and Meth-
ods’ section for details) have been added since our
original publication (see http://chip-enrich.med.umich.edu/
data/ChipenrichMethods.pdf).

To perform GSE analysis with either our Bioconductor
package or web version, the user first needs a file of ge-
nomic regions, which may be a narrowPeak, BED, or text
file with chromosome, start and end positions for each re-
gion. The user then selects a species, one or more gene
set databases, a gene locus definition and the test method
(ChIP-Enrich, Poly-Enrich, Hybrid or Fisher’s exact test).
Optionally, the user can upload a custom/user-defined list
of gene sets and/or gene locus definition. For narrow ge-
nomic regions (≤2–3 kb), we recommend using the Poly-
Enrich method for sets of >100 000 regions, and the Hybrid
method for sets of regions with fewer than this. For broad
genomic regions (>2–3 kb), we still recommend the Broad-
Enrich method (Supplementary Figure S7). The user can
then also choose to weight the genomic regions based on a
score of their choice, and apply a number of other options,
such as adjustment for read mappability (recommended for
read lengths <50 bp).

http://chip-enrich.med.umich.edu
http://chip-enrich.med.umich.edu/data/ChipenrichMethods.pdf
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Figure 5. Statistical power comparisons for Poly-Enrich (red), ChIP-Enrich (blue) and the hybrid test (gold). We compared datasets of three different sizes
(i.e. number of peaks: small, medium and large) and two gene set sizes (small and large GS), under two significance levels: α = 0.05 (A) and 0.001 (B), and
three different methods of simulated enrichment (CEbias: add peaks according to the regulatory assumptions of ChIP-Enrich, PEbias: add peaks mainly
according to the assumptions of Poly-Enrich, Balanced: add peaks proportional to each gene’s locus length). The values on the X-axis indicate the percent
of extra peaks added to simulate enrichment; a higher value simulates stronger enrichment. The hybrid test is shown to have much more power than the
wrong method, and only slightly less power than the correct method.
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Figure 6. Gene Ontology terms enriched or depleted with common repet-
itive element families. Shown are enrichment results using Poly-Enrich for
the Alu (first four columns) and L1 (last four columns) repetitive element
families using four different peak-to-gene assignments. Shown are signed
–log10 FDR, where positive values (red) indicate enrichment and negative
values (blue) indicate depletion. Only GO terms that were significant for
at least three columns at the FDR = 0.05 level are displayed. We identified
nine clusters of GO terms with similar enrichment patterns. Representative
GO terms are used to label each cluster.

The enrichment function outputs five files:

• opts: The options that the user input into the function.
• peaks: A peak-level summary showing the peak-to-gene

assignment for each peak.
• peaks-per-gene: A gene-level summary showing gene lo-

cus lengths and the number of peaks assigned to each
gene.

• results: The results of the GSE tests. Lists the tested gene
sets along with their descriptions, the test effect, odds ra-
tio, enrichment status, P-value and FDR. Also included
is the list of Entrez gene IDs with contributing signal for
each enrichment test.

• qcplot: A diagnostic plot of the gene locus lengths with a
fitted smoothing spline.

The R code used to generate analysis and figures can be
found at https://github.com/sartorlab/polyenrich.

DISCUSSION

Gene set enrichment testing methods for genomic regions
should take into account the differing properties of the in-
put datasets, including the widths and number of genomic
regions, and where they tend to occur relative to genes.
However, no single method is appropriate for all types, and
therefore no single GSE method should be recommended
for all sets of genomic regions. Although our previously de-
veloped ChIP-Enrich method for gene set enrichment with
genomic regions performs well for most transcription factor
ChIP-seq datasets (11), above we described common situa-
tions where it does not. Such cases include when nearly all
genes are assigned at least one genomic region, and when
the strength or likelihood of regulation increases incremen-
tally with the number of genomic regions. As an example,
the transcription factor NF-kappaB is known to regulate
the gene NFKBIA by binding to a few or even many motif
positions in the promoter (31), with gene expression corre-
lated with the number of bound factors. Thus, motivated by
specific examples of regulatory mechanisms, we developed
Poly-Enrich, a method that models the number of regions
per gene, empirically adjusts for each gene’s locus length,
and takes into account variability among genes in each gene
set. Poly-Enrich is also flexible, in that it easily allows for
weighting of each genomic region by any score of interest.
We used the example of weighting by peak strength, but
other examples include weighting by SNP significance in a
GWAS analysis, by the inverse distance to a gene, or by the
probability that the region is in an open chromatin region
in a particular cell type.

We showed that our count-based method, Poly-Enrich,
is optimal when almost all genes are assigned a peak. In
comparing when each test is most appropriate for typically
sized ChIP-seq datasets, we discovered that the optimal test
is mostly dependent on the gene set rather than the tran-
scription factor being studied. Because in many cases we
could not recommend a single best method to test all gene
sets for an experiment, we developed and implemented a
hybrid test that uses information from both methods and
performs better than either test across GO terms for most
datasets. However, as noted in the ‘Results’ section, specific
situations exist when one particular method is optimal, and
we therefore have provided specific recommendations to our
users in choosing the most appropriate method.

When applying Poly-Enrich to repetitive element fami-
lies, we both reconfirmed known associations and also iden-
tified novel findings. Poly-Enrich confirmed that Alu ele-
ments are over-represented in the promoters of metabolism
genes and signaling by finding enrichment for related GO
terms. Additionally, we know that L1 insertions into or near
certain neurological-related genes are associated with neu-
rological diseases (32). Indeed, we found that L1 is depleted
in neuro-related process genes, implying there is natural se-
lection against L1 elements inserting in the regulatory re-
gions of these genes. We also found that there is little enrich-
ment or depletion in the distal regulatory regions of genes,
suggesting that repetitive elements may not have as large of
an effect there due to mitigated regulatory activity at larger
distances from transcription start sites. We also detected
novel associations between repetitive element families and

https://github.com/sartorlab/polyenrich
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biological pathways. Both Alu and L1 elements were signif-
icantly depleted in development and morphogenesis-related
gene sets, such as connective tissue development and skele-
tal system morphogenesis, suggesting that it is critical to
have developmental regulatory regions for several different
development systems free from potentially disruptive repet-
itive elements during early growth.

One shortcoming of our current methods (as well as cur-
rent alternatives) is that they rely on associating each ge-
nomic region with the nearest gene(s). However, it is esti-
mated that 79–95% of DNAse I hypersensitive sites, mark-
ers for enhancer regions, actually regulate a different, distal
target gene (24,25). We are currently developing a set of en-
hancer locus definitions that identify and assign enhancer
regions to their appropriate target genes, as was recently in-
troduced by Chicco et al. (33), so peaks in enhancer regions
will be correctly assigned and false positive peaks in non-
functional intergenic regions will be filtered out. We believe
this will improve all future gene enrichment analyses.
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Poly-Enrich is available in the chipenrich Bioconductor
package and as a web interface at http://chip-enrich.med.
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SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

FUNDING

National Institutes of Health [R01 CA158286]; Michi-
gan Lifestage Environmental Exposures and Disease (M-
LEEaD) Center is funded by the National Institute of En-
vironmental Health Sciences (NIEHS) [P30 ES017885].
Conflict of interest statement. None declared.

REFERENCES
1. Gotea,V., Visel,A., Westlund,J.M., Nobrega,M.A., Pennacchio,L.A.

and Ovcharenko,I. (2010) Homotypic clusters of transcription factor
binding sites are a key component of human promoters and
enhancers. Genome Res., 20, 565–577.

2. Pennacchio,L.A., Bickmore,W., Dean,A., Nobrega,M.A. and
Bejerano,G. (2013) Enhancers: five essential questions. Nat. Rev.
Genet., 14, 288–295.

3. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet., 25, 25–29.

4. Fabregat,A., Jupe,S., Matthews,L., Sidiropoulos,K., Gillespie,M.,
Garapati,P., Haw,R., Jassal,B., Korninger,F., May,B. et al. (2018) The
reactome pathway knowledgebase. Nucleic Acids Res., 46,
D649–D655.

5. Kanehisa,M., Furumichi,M., Tanabe,M., Sato,Y. and Morishima,K.
(2017) KEGG: new perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res., 45, D353–D361.

6. Liberzon,A., Subramanian,A., Pinchback,R., Thorvaldsdóttir,H.,
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