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Since 2020, breast cancer has remained the most prevalent cancer worldwide and the World 
Health Organisation projects significant increases by 2040, with new cases expected to exceed 3 
million annually (a 40% increase) and deaths to surpass 1 million (a 50% increase), highlighting 
the urgent need for advancements in detection and treatment. Current detection of metastasis 
is highly dependent on labour-intensive and error-prone pathological examination of large-scale 
biotissue. Given the high-resolution (100,000 × 100,000 gigapixels) but limited quantity of open-
source pathological slide datasets, existing deep learning models face preprocessing challenges. 
This paper introduces HI-Net, a high-speed panoramic feature-extraction pyramid network for 
rapid and accurate detection of metastatic breast cancer, balancing panoramic segmentation and 
local attention. Additionally, a lightweight pathological slide dataset optimised for 512 x 512-
pixel resolution, derived from downsampled and reassembled competitive datasets, accelerates 
training and reduces computational costs. HI-Net demonstrates superior performance on existing 
medical imaging competition datasets and our lightweight dataset, evidencing its effectiveness 
across datasets and potential for contributing to the generalisation of intelligent diagnostics.

1. Introduction

1.1. Current developments in breast cancer and pathology

The International Agency for Research on Cancer (IARC), through the World Health Organisation (WHO), has stated that since 
2020, breast cancer has been the most commonly diagnosed type of cancer in the world [1,2], with more than 2.26 million cases. By 
2022, this number had risen slightly to 2.31 million cases, making it the second most common cancer, but it is still the leading cause 
of cancer death in women [3]. The WHO highlights the consistent global presence of breast cancer and its status as the most common 
cancer in women in 157 countries in 2022, underlining its significant health impact [4]. Future projections indicate a substantial 
increase in breast cancer cases and deaths by 2040, with estimates suggesting more than 3 million new cases annually, a 40% rise, 
and over 1 million deaths, a 50% increase. This anticipated growth emphasizes the urgent need for advancements in detection and 
treatment, particularly in transitioning countries where the disease’s impact is intensifying [5].

One of the critical professional goals of pathology is to provide patients with a definitive diagnosis of disease. Therefore, an 
accurate, traceable, and experimentally reproducible pathological diagnosis is essential to advance intelligent medical treatment [6]. 
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Fig. 1. Slides of tissue patches at different magnifications (the area circled in red highlights the ground truth).

However, in actual clinical practice of breast cancer diagnosis, pathologists are highly dependent on the pathological evaluation of 
tissue samples under the microscope for a large part of their diagnosis [7]. Although relatively efficient workflows prevail in pathology 
laboratories as medical equipment is updated, the display of whole slide images (WSIs) [8], on which pathologists rely to observe the 
morphology of cells, still takes close to 10 minutes. In addition, pathologists are inevitably confronted with the limitations imposed 
by microscopic images, where the lack of standardisation and empiricism lead to diagnostic errors that can be detrimental to the 
subsequent treatment of the patient and the physician’s maximum cognitive workload [9]. As shown in Fig. 1, this is a pathological 
tissue patch at various magnifications of nearly 200,000 x 260,000 pixels. Pathologists tend to obtain approximate information at 
low resolution and then magnify it to more than 40x to fully visualize the relatively accurate microscopic state of the tissue cells and 
provide a final diagnosis.

The challenges faced by pathologists in the clinical practice of breast cancer diagnosis go far beyond the limitations of evaluating 
tissue samples under the microscope. First, the inherent heterogeneity of breast cancer tissue can complicate the interpretation of 
histopathological features, potentially leading to variability in diagnosis among pathologists. Studies have highlighted the subjective 
nature of histopathological interpretation, which may result in discrepancies in diagnosis, grading, and staging of breast cancer [10]. 
The impact of such variability can be mitigated through the use of standardized criteria and training, yet it underscores the need for 
additional diagnostic support tools. Second, the high volume of cases that require evaluation can strain resources and contribute to 
diagnostic delays. As the prevalence of breast cancer rises, the workload for pathologists intensifies, increasing the risk of fatigue-
related errors [11]. Moreover, advancements in breast cancer treatments demand more precise and detailed tissue analyses, requiring 
pathologists to identify specific biomarkers and molecular subtypes of cancer. This complexity necessitates continuous education and 
adaptation to new diagnostic criteria and technologies [12]. The accuracy of these assessments is critical for guiding personalized 
treatment plans and improving patient outcomes.

Using published data from the United States as an example, there are approximately 21,000 active pathologists today, and the trend 
for future growth in numbers is pessimistic as there have been nearly 20% fewer pathologists in North America in the last 15 years 
[13]. Deep learning-based methods had already gained initial application in digital pathology prior to the use of WSIs. However, these 
early studies raised a similar nuisance: the datasets required tedious preprocessing, in these cases being image datasets consisting 
mainly of previously selected regions of interest (ROIs) [14]. These preprocessing methods mentioned in earlier studies require 
pathologists to select regions of interest in advance or manually attach weights to the regions, leading to significant labour and time 
costs. Moreover, such processes require pathologists to have interdisciplinary expertise, not to mention the fact that pathologists 
can disagree with each other [15], making them technically challenging to implement on a large scale in clinical workflows in 
the laboratory [16]. The introduction of WSIs into pathological assessment has revolutionized the field, significantly impacting the 
workflow in pathology laboratories, especially concerning breast cancer diagnosis. WSIs allow for the digitisation of entire tissue slides 
at high resolution, facilitating a more detailed and comprehensive examination of tissue samples. This technological advancement 
supports remote diagnostics, collaborative assessments, and enhanced educational opportunities by enabling pathologists to share 
and discuss complex cases with peers worldwide [17]. The benefits of WSIs in pathological assessment are manifold. They enable a 
level of detail and precision previously unattainable with traditional microscopy, improving the accuracy of diagnoses. Moreover, the 
digitisation of slides offers improved storage and retrieval efficiency, reducing physical space requirements and allowing for easier 
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access to historical cases [18]. While it will inevitably be a challenge for artificial intelligence (AI) models to handle WSIs with 
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huge resolutions of millions of pixels, its capability to implement remote pathology telework and the possibility to build large digital 
databases of pathology section images make it exceptionally important to develop deep learning models based on WSIs.

1.2. Deep learning-based approaches for WSIs

The advancement of deep convolutional neural networks is needless to mention, and the introduction of the transformer archi-
tecture in 2017 [19] has opened up more possibilities for the efficient processing of medical images and the widespread availability 
of intelligent medical infrastructures. Both transfer learning-based cancer detection [15,20–22] and transformer-based improved 
medical image processing networks [23–25], and the continued progress of other branching tasks [26–31], follow a similar pattern. 
Additionally, the Tubule-U-Net proposed by Tekin et al. in 2023 [32] was tested on five different WSIs, all achieving excellent breast 
cancer tumour grading results, confirming the dominance of deep learning-based approaches in the detection and localisation of 
WSIs for cancer metastasis. Models for WSIs are typically trained by extracting small image patches from the whole slide image at the 
preprocessing step in a split and multi-step manner. These methods are accompanied by the use of a sliding window, starting with 
sparse sampling at the finest magnification and finishing with performing classification prediction. These methods have demonstrated 
remarkable success in improving diagnostic accuracy, particularly in the analysis of WSIs, by enabling the detailed examination of 
tissue samples at various scales and complexities. However, practical implementation faces several challenges, including the need for 
extensively annotated datasets for training, computational resource requirements, and the integration of these technologies into ex-
isting clinical workflows without disrupting standard pathological practices. Additionally, there is a growing need for interpretability 
and explainability in deep learning models to gain the trust of medical professionals and to comply with regulatory standards.

Based on the characteristics mentioned above brought about by the disease itself and the detection approaches, panoptic segmen-
tation [28] and accurate local information acquisition are the characteristics that potential target models are expected to possess. The 
ability of the two tasks to be combined and the ability to achieve high accuracy is challenging. Still, if a network can be designed to 
perform the above task properly, it would be an auspicious approach for megapixel-resolution WSIs. Specifically, a single network 
can be designed to perform global segmentation and local feature extraction. The backbone of Feature Pyramid Network (FPN)-based 
networks [28] is a promising choice. By combining lateral connections with top-down connections, feature maps of different reso-
lutions can be obtained, and they all contain the semantic information of the original deepest feature maps. Although the semantic 
features of the higher layers are passed down through lateral connections, only the semantic information of the feature pyramid is 
enhanced. It is unavoidable to go through many layers of the network in the middle, so much of the object information at the bottom 
has been lost. Furthermore, although the lateral connections can address the limitation of significantly increased inference time for 
each layer of the characterised image pyramid, the generic process of the semantic branch to upsample is relatively redundant.

1.3. Solutions proposed in this paper

In addressing the challenge of pathological image diagnosis, particularly with a focus on achieving precise localisation within 
histopathologic images, the conventional approach of utilizing multiple lateral connections for sampling may not be essential. This 
realisation comes from the observation that, from the acquisition of the original image to the derivation of the bottom feature map, 
a significant portion of the critical object information is lost [33]. This loss is primarily attributed to the information being processed 
through several layers within neural networks. During these top-down information transfers, the process does not account for the 
variability in the importance of different features, leading to a non-optimised distribution of weights across the network layers. 
Therefore, we proposed a novel feature pyramid-based network for histopathologic image segmentation called HI-Net that takes 
an attention mechanism [34,35] accompanied by weight consideration as a promising solution. Moreover, we proposed a shortcut 
module within the semantic branch, allowing the input to skip multiple convolutional layers and regularisation operations directly.

Moreover, the task of developing deep learning models for WSIs suffers from two hard-to-avoid issues at this stage: one is cumber-
some preprocessing, and the other is the lack of open-source datasets with nonuniform formats. Most existing works tend to simply 
segment the original image into small patches of the same size [36]. Some works have also suggested that pre-sampling a set of 
patches in each slide can improve efficiency [7], but this will undoubtedly limit the breadth of patches seen during training. For the 
limited dataset of open-source WSIs, it has been argued that a data enhancement approach based on geometric reconstruction is an 
effective solution [37]. However, our proposed lightweight histopathology slide dataset integrates multiple competition datasets. It 
features a much larger number of images than the competition datasets and has been annotated to better serve the deep learning 
network for this task. It is also segmented into lightweight resolution slides with uniform colour gamut and annotation form after 
multiple downsampling while maintaining quality. Thus, this article features the following main contributions:

1. This paper introduces HI-Net, a novel network for histopathology image segmentation with an innovative top-down attention 
(TDA) module that ensures precise semantic and object information transfer, reducing information loss significantly.

2. Along with HI-Net, a streamlined shortcut module optimises the pyramid architecture’s lateral connections, accelerating medical 
image processing by simplifying convolution and regularisation operations.

3. This paper presents a first-of-its-kind downsampled lightweight slide dataset for histopathologic segmentation, containing 7927 
images, surpassing existing datasets in scale and providing a new benchmark for research.

4. HI-Net demonstrates superior performance in both new and existing datasets, outperforming advanced models. The shortcut 
3

module markedly improves training speed, showcasing efficiency and accuracy improvements in medical image analysis.
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Fig. 2. Overview of the distribution analysis of tumor size percentages across different datasets and the effects of threshold-based region selection. Sub-figures (a), 
(b), and (c) illustrate the distribution of tumor size percentage images in the comparison datasets CAMELYON 16, CAMELYON 17, and ICIAR 2018, respectively. 
Sub-figures (d) and (e) present the distributions of the proposed dataset before and after applying threshold-based region selection. The optimized distribution in 
sub-figure (e) shows a more uniform spread of tumor sizes, achieving a more balanced and effective dataset for subsequent analysis.

2. The proposed lightweight dataset

Despite the limited quantity of gigapixel WSIs available, each contains numerous lesion areas of interest for segmentation. This 
paradox highlights the rich, yet under-exploited, potential of existing WSI resources for detailed pathological analysis. The challenge 
of gigapixel WSI’s large image resolution, which prevents direct neural network input, is addressed through a standardised sliding 
window approach. This method simplifies the otherwise cumbersome preprocessing required for each study, significantly reducing the 
barrier to entry for high-resolution medical image analysis. Variability in annotation methodologies across datasets poses a significant 
challenge for consistent analysis. Therefore, given a gigapixel pathology image (shown in Fig. 1), the deep learning-based models aim 
to assist pathologists in classifying whether the image contains a tumor or not and in localizing the tumor. This section of the paper 
describes the process of constructing our proposed lightweight dataset, where the CAMELYON 16 [38], 17 [39] and ICIAR 2018 [40]
datasets provided by the competition organizers are considered as the benchmark, and the Automated Slide Analysis Platform (ASAP) 
[41] is selected as the tool for ultra-high resolution image display and manual annotation.

The CAMELYON 16 dataset collected from Radboud UMC and UMC Utrecht consists of 400 WSIs, divided into 270 for training and 
130 for testing. While CAMELYON 17 follows the data of the previous generation and uses it as lesion-level training data, it expands 
the dataset to 1000 slides. The ground truth of the CAMELYON series was obtained by professional pathologists for the delineation of 
metastatic cancer areas on WSIs. The data is provided in two formats: an XML file containing annotated contours of cancer metastasis 
locations and a WSI bidirectional mask indicating the location of cancer metastasis. The main difference between ICIAR 2018 and 
the CAMELYON series sits in its relatively small resolution, only approaching 2000 x 1500 pixels. It contains 400 WSIs in which four 
different cancer states are labelled, with the distinction between benign and cancerous.

Thus, several obvious drawbacks need to be addressed, shown as the bullet points below, and according to the existing obstacles, 
the lightweight dataset proposed in the paper provides corresponding optimisations.

1. Despite the limited quantity of gigapixel WSIs available, each contains numerous lesion areas of interest for segmentation. This 
paradox highlights the rich, yet underexploited, potential of existing WSI resources for detailed pathological analysis.

2. The challenge of gigapixel WSI’s large image resolution, which prevents direct neural network input, is addressed through a 
standardised sliding window approach. This method simplifies the otherwise cumbersome preprocessing required for each study, 
significantly reducing the barrier to entry for high-resolution medical image analysis.

3. Variability in annotation methodologies across datasets poses a significant challenge for consistent analysis. Our dataset intro-
duces optimisations for annotation consistency and colour space uniformity.

2.1. Downsampling and threshold-based region selection

Our proposed lightweight histopathology breast cancer slide image dataset is based on the three competition datasets mentioned 
above to downsample the CAMELYON series dataset 4 times according to the original WSI map resolution size, but not for ICIAR 2018. 
The downsampled images of the new dataset were then slide-intercepted as 512 × 512 pixel patch slides. To save computational 
costs and to integrate the cumbersome data preprocessing of WSIs in other studies, the article opted to focus the analysis on the 
regions on the slides that were most likely to contain cancer metastases. Identifying tissues within WSIs to exclude background white 
space and removing WSIs where the area of the cancer region is disproportionately large for the entire image were the goals of the 
dataset creation, shown as Fig. 2. Therefore, we introduced a threshold-based segmentation method to automatically detect eligible 
4

segmented slides, where the downsampled images were shifted from RGB colour space to V colour space, and then the installation of 
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Table 1

Number of slides in the benchmark datasets and ours.

Dataset Training set Test set Validation set Total

CAMELYON 16 [38] 270 130 - 400
CAMELYON 17 [39] 500 500 - 1000
ICIAR 2018 [40] 300 100 - 400
Ours 6345 800 782 7927

the Otsu algorithm [42] calculated the optimal threshold for each channel, allowing the mask generation for the H and S channels 
to be combined into the final masked image. This optimisation process was guided by the goal of achieving the highest possible 
diagnostic precision within our dataset.

Addressing the exclusion criteria for slides with tumor presence below 5% or above 95%, our decision was driven by a rigorous 
evaluation of data balance and training efficiency. Initially, including slides with very high tumor coverage (>95%) appears to 
introduce valuable data for feature extraction. However, our analyses indicated that retaining these slides could lead to a dataset 
imbalance, with an overrepresentation of tumor-rich images. Such imbalance would skew the model’s training towards predominantly 
identifying tumor regions, potentially compromising its ability to accurately distinguish between tumor and non-tumor tissues in a 
balanced manner. To mitigate this risk and enhance the model’s robustness, we chose to exclude slides with tumor coverage beyond 
99.5%. Moreover, our investigation revealed that slides with minimal tumor presence (<5%) are more abundant than those with 
higher tumor coverage. Considering the relatively lower informational value of such minimally affected slides for training purposes, 
we aimed to further balance the dataset and improve training efficiency by excluding these extremes. To validate this approach, 
we conducted extensive quantitative experiments across various datasets, including our newly established dataset, to meticulously 
assess the distribution of tumor area ratios. Shown as Fig. 2(e), these experiments confirmed that our threshold settings (excluding 
slides with tumor presence below 5% and above 99.5%) are well-justified, striking a balance between dataset representativeness and 
training efficacy.

Typically, a single original image divided by a fixed scale with conditional selection can generate more than 4 slides with partial 
cancer areas that meet the requirements, which results in the number of our proposed dataset that contains part of the cancer area and 
is targeted for the medical image deep learning task is expanded extremely. We divided the resulting 7927 new slides into a training 
set, a test set and a validation set in a ratio of 8:1:1, shown as Table 1. Each image has a corresponding label associated with it.

2.2. Chromosomal regularisation

Manual relabeling is a prerequisite for a complete annotation of the tumor area to be performed with the assistance of ASAP. 
Moreover, to address the problem of varying colour fields of annotation in different datasets, the paper conducted chromosomal reg-
ularisation of the newly generated slides, where the selected hematoxylin staining resulted in a uniform violet bias in the regularised 
images. Notably, WSI binary masks were also recreated and added to the dataset for validation. Thus, during model training, the 
input fixed-size slides and ground truth image annotations would indicate the location of regions containing metastatic cancer in 
each WSI.

An overall sample dataset presentation is shown in Fig. 3. After optimising the highly repetitive and complex data preprocessing 
conducted in most other studies into a uniform downsampling operation, and consolidating it at a fixed size of 515 x 512 pixels patch 
into a remarkably lightweight public dataset relative to the 100,000 x 100,000 gigapixels competition dataset, deep learning models 
for histopathology images, including the proposed HI-Net described later in this paper, can better assist pathologists in segmenting 
and localising cancer regions.

3. HI-Net

As shown in Fig. 4, multi-scale semantic solid features of the histopathologic image segmentation model called HI-Net are con-
structed in this paper. The WSIs incorporated into the network exhibit robust semantic features at all scales, which is attributed to 
the structure of the featured image pyramid. This structure enhances feature transmission by combining low-resolution features to 
create a robust semantic representation, which achieves consistent semantic understanding across all scales. The method works by 
seamlessly integrating two types of features: low-resolution features that carry high semantic intensity, and high-resolution features 
that have lower semantic intensity. This fusion ensures that both detailed and broader semantic information are effectively captured 
and represented. The synergy of top-down pathways and lateral connections facilitates a holistic capture of semantic nuances at 
various resolutions.

Employing ResNet101 [43] as its backbone, HI-Net revolutionises the semantic feature integration mechanism commonly observed 
in FPNs through the novel top-down attention (TDA) module, which not only ensures the precision of semantic feature delivery but also 
significantly reduces computational overhead by refining the FPN’s traditional multi-convolution approach to instance segmentation 
into a streamlined process that boasts high segmentation prediction accuracy.

The work of HI-Net for histopathologic image-based tasks is also reflected in the corresponding optimisation of the feature con-
nection mechanisms in different network layers. Specifically, the backbone network of HI-Net was deliberately selected through 
comprehensive ablation studies, contrasting various Mask-RCNN structures [44] to identify the most compelling feature extraction 
framework. Furthermore, the TDA module was proposed to address the problem of massive loss of the underlying object information 
5

after many layers of the network by using channel and spatial attention to introduce weighted feature maps.
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Fig. 3. Schematic process of the construction of our proposed lightweight dataset. The first line to the left of the dotted line represents magnified slides of tissue patches 
containing the certain tumour area, and to the right is the original image containing multiple tumour regions. The second to fourth rows present the downsampled 
and scaled slides, the hematoxylin-regularized bias purple image, and the mask.

Fig. 4. Overview of the proposed HI-Net. The backbone network begins by extracting multi-scale image features. The TDA module then enhances semantic informa-
tion transfer between layers, reducing information loss. Subsequently, the shortcut module optimises the process by redirecting redundant operations towards the 
upsampling process in the pyramid architecture, thereby improving the overall network performance.
6
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Moreover, for histopathologic image segmentation or localisation, since the newly added attention mechanism has enhanced 
the prediction accuracy, the lateral connection using the coarse map with the same size and number of channels to increase the 
accuracy becomes redundant. Thus, considering the new architecture can render traditional laterally connected coarse mapping 
methods aimed at improving accuracy through size and channel matching both obsolete and overly complex. The emergence of 
such complex attention mechanisms requires us to move away from traditional methods and adopt a more streamlined and efficient 
model architecture. Therefore, a novel skip connection was urgently required, which is why this paper proposes a shortcut module 
for multilayer features.

Our HI-Net for histopathologic image segmentation can be conceptually divided into three distinct components. The initial com-
ponent involves the extraction of the feature map from the input image. In this study, a bottom-up pathway, specifically ResNet101, 
was selected for feature extraction following comparative experiments with other backbones, including ResNet50 and ResNext101. 
The second component involves the transformation of the shared feature map into a featured image pyramid structure. This process 
generates bottom-object features enriched with semantic information via the TDA module. Subsequently, the shortcut module is 
utilised to obtain a refined prediction frame. The final component is dedicated to the classification of the prediction frame, regression 
localisation, and the prediction of the mask for each ROI within the image. This process aims to complete a pixel-level segmentation 
task. The structure and function of HI-Net, as described, ensure a comprehensive and efficient approach to histopathologic image 
segmentation.

HI-Net employs a multi-task loss function, which is an amalgamation of classification loss (𝐿𝑐𝑙𝑠) and mask loss (𝐿𝑚𝑎𝑠𝑘). The 
formulation of this function is depicted in Equation (1). This multi-task loss function serves as a comprehensive measure to optimize 
the performance of HI-Net in histopathologic image segmentation tasks.

L = 1
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where 𝑁𝑐𝑙𝑠 denotes the total number of classification categories, and the parameter 𝜆 serves as a balancing factor between the 
magnitudes of 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 . The classification loss function is represented by 𝐿𝑐𝑙𝑠. Furthermore, 𝑝𝑖 symbolizes the confidence level 
associated with the object being identified as the target. Conversely, 𝑝′i is a binary function, assuming values of either 0 or 1. In detail, 
𝐿𝑐𝑙𝑠, representing the classification loss function, can be expressed as Equation (2):
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where 𝑝𝑖 denotes the confidence level associated with the object being identified as the target. Conversely, 𝑝′
𝑖

is a binary function, 
assuming values of either 0 or 1. The function assumes a value of 1 when the object is a positive example and 0 when it is a negative 
example. Notably, the mask branch uses an average binary cross-entropy loss function, as shown in Equation (3).

Lmask = −
[
𝑚𝑖 ⋅ log(𝑚′

𝑖
) + (1 −𝑚𝑖) ⋅ log(1 −𝑚′

𝑖
)
]
, (3)

where Lmask represents the mask loss, which is the quantity the model aims to minimize during training. The binary value 𝑚𝑖 denotes 
the ground truth mask for the 𝑖𝑡ℎ pixel in the image and 𝑚′

𝑖
is the predicted mask for the 𝑖𝑡ℎ pixel in the image, as output by the 

model, showing the model’s confidence that the pixel belongs to the object of interest.
Regarding feature extraction, ResNet101 is employed as the backbone architecture for the extraction of features from breast cancer 

WSIs. ResNet101 utilises a cross-layer connection strategy, wherein each residual block is implemented via a feed-forward neural 
network and a shortcut connection. The structure of these residual blocks is defined as per Equation (4). This approach ensures a 
robust and efficient extraction of image features, thereby enhancing the performance of the overall network.

y𝑙 = 𝑥𝑙 + 𝐹
(
𝑥𝑙,

{
𝑊𝑙

})
, (4)

where 𝑥𝑙 denotes the input to the 𝑙𝑡ℎ residual block, while 𝑦𝑙 signifies the output from the same. The weight coefficient within the 𝑙𝑡ℎ
residual block is represented by 𝑊𝑙 . The residual function is denoted by 𝐹

(
𝑥𝑙,

{
𝑊𝑙

})
, which encapsulates the transformation applied 

to the input 𝑥𝑙 by the 𝑙𝑡ℎ layer of the network, parameterised by the weights 
{
𝑊𝑙

}
.

The chosen backbone comprises numerous convolutional layers that maintain the same scale. In the context of the proposed HI-
Net, the last layer’s residual block from each group of convolutional layers with identical scale is extracted. This process facilitates the 
construction of the feature pyramid (from ‘channel = 64’ to ‘channel = 2048’, shown in the backone part of Fig. 4), thereby enhancing 
the network’s ability to capture and represent complex features at various scales. This comprehensive representation of variables and 
parameters contributes to a nuanced understanding of the underlying mathematical model and its practical implementation.

3.1. Top-down attention module

The task of object detection across varying scales presents challenges, particularly in the context of minuscule regions within 
expansive images. This complexity is exemplified in the endeavour to identify lesioned regions from WSIs, a task that is compounded 
by the highly localised nature of traditional convolution-based models. These models’ receptive field overlay, constructed through 
the stacking of multiple layers, often results in a receptive field that is insufficiently extensive. This limitation persists even when the 
theoretical receptive field does not attain the size of the target.

The pyramid structure can serve as a mechanism to augment semantic information, as it generates feature maps wherein each 
7

layer is enriched with semantic information, including the high-resolution lower layers. However, feature maps are closer to image 
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Fig. 5. The schematic illustration of the TDA module.

layers, which are obtained from low-level structures and are ineffective for accurate object detection. The multiscale feature map 
has better information quality. It facilitates object detection, but as shown above. However, the semantic features at higher levels 
are passed down through lateral connections; only the semantic information of the feature pyramid is enhanced. If the features are 
directly passed down from the original graph, many layers of the network have to be passed in between, and the object information 
at the bottom layer is already lost.

To address the problem of CNNs being overly local and globally insufficient so as to obtain global contextual information, the article 
argues that a redesigned module based on the attention mechanism would be a positive solution. The Convolutional Block Attention 
Module (CBAM) [34] is a groundbreaking approach that integrates spatial and channel attention mechanisms. This integration enables 
access to aggregated feature mapping of spatial information, weighted by importance, marking a significant advancement over the 
Squeeze-and-excitation network (SeNet) [45], which primarily concentrates on the channel. As a result, this paper advocates for the 
incorporation of a CBAM-inspired attention mechanism that amalgamates spatial and channel attention and then names it as the TDA 
module, serving the top-down path and effectively reducing unnecessary information loss inherent in multi-layer networks. Precisely, 
the top-down path engenders features of higher resolution by upsampling spatially coarser, yet semantically stronger, feature maps 
from a higher level of the pyramid. These features are subsequently enhanced via lateral connections that utilise features from the 
bottom-up path. Each lateral connection amalgamates feature maps of the same spatial size from both the bottom-up and top-down 
paths. Despite possessing a lower semantic level, the bottom-up feature map demonstrates more accurately localised activation due 
to a reduced number of subsamples.

Fig. 5 illustrates the architecture of the proposed TDA module. The design of TDA facilitates the passage of the feature from a 
deeper layer through a transition module, which is comprised of a convolutional layer, supplemented by a Group Normalisation (GN) 
and a Rectified Linear Unit (ReLU) activation function. This transition module then feeds into a channel and spatial-based attention 
mechanism, followed by a combination of sequential features in tandem, which ensures a robust and efficient processing of features.

In detail, the input feature map (𝐻, 𝑊 , 𝐶) to the TDA module initially traverses the ‘Conv-GN-ReLU’ transition module, as shown 
in Fig. 5. Although the benefits of Batch Normalisation (BN) for image optimisation and network convergence are acknowledged, it 
is noted that for datasets with WSIs, the mean and variance exhibit significant fluctuations. This variance can lead to inconsistencies 
between the training and testing phases, potentially causing complications. Therefore, the adoption of Group Normalisation allows 
both the input into the overarching module and the TDA feature maps to achieve feature grouping and intra-group regularisation. 
The expression of set 𝑆𝑖 of GN is shown as Equation (5) below:

𝑆𝑖 =
{
𝑘 ∣ 𝑘𝑁 = 𝑖𝑁 and

⌊
𝑘𝐶

𝐶∕𝐺

⌋
=
⌊

𝑖𝐶

𝐶∕𝐺

⌋}
, (5)

where 𝑆𝑖 denotes the set of indices corresponding to the elements in the 𝑖𝑡ℎ group. 𝑘 represents the index of an element within the 
feature map. 𝑘𝑁 refers to the batch dimension; 𝑘𝑁 = 𝑖𝑁 indicates that we’re considering the same sample in the batch for comparison. 
And 𝑘𝐶 denotes the channel dimension; 𝑘𝐶 and 𝑖𝐶 denote specific channels within the feature map. The subscript 𝑁 typically refers 
to the batch dimension, implying that 𝑘𝑁 and 𝑖𝑁 represent the 𝑘𝑡ℎ and 𝑖𝑡ℎ samples in the batch, respectively. Similarly, the subscript 
8

𝐶 typically refers to the channel dimension, indicating that 𝑘𝐶 and 𝑖𝐶 correspond to the 𝑘𝑡ℎ and 𝑖𝑡ℎ channels in the feature map, 
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Fig. 6. The overview of the proposed shortcut module and the comparison with lateral connection that are regularly used.

respectively. The variable 𝐺 signifies the number of groups, a hyperparameter set to 6 in this study, while 𝐶∕𝐺 represents the number 
of channels per group. The floor function ⌊⌋ denotes a rounding down operation, hence 

⌊
𝑘𝐶

𝐶∕𝐺

⌋
=
⌊

𝑖𝐶

𝐶∕𝐺

⌋
implies that 𝑘 and 𝑖 are 

channels within the same group, representing each group of channels arranged in order along the 𝐶 axis. This approach maintains a 
low error rate across different batch sizes, rendering it particularly suitable for training the WSIs dataset.

The normalised feature map (𝐻, 𝑊 , 𝐶) undergoes spatial compression via the top-down pathway through the channel attention 
module, resulting in a one-dimensional vector. Subsequently, the spatial information of the feature map is aggregated through average 
pooling and max pooling, generating a channel attention map. This map is then processed by a spatial attention module in a sequential 
manner, and the math principle and process can be expressed as the Equation (6):

𝐅′ =𝐌𝐜(𝐅)⊗ 𝐅,

𝐅′′ =𝐌𝐬
(
𝐅′)⊗ 𝐅′,

(6)

where 𝐌𝐜 and 𝐌𝐬 denote global maximum pooling and global average pooling, respectively. The symbols 𝐅, 𝐅′ , and 𝐅′′ represent the 
input feature maps, channel-optimised feature maps, and channel- and spatial-optimised feature maps, respectively. The operator ⊗
signifies pixel-by-pixel multiplication. This notation provides a clear and concise representation of the operations and transformations 
applied to the feature maps in the process.

Specifically for input histopathological sections, the TDA module enables the proposed HI-Net to concentrate more effectively 
on significant regions of the graph, the cancerous areas. This sequence of operations ensures a robust and efficient extraction and 
processing of image features, thereby enhancing the overall performance of the network.

3.2. Shortcut module

The Shortcut module is distinct from the residual connections found in architectures like ResNet. While ResNet’s residual con-
nections are designed to combat the vanishing gradient problem by allowing the shortcut for gradient flow during backpropagation, 
our Shortcut module has a different focus and architecture designed to streamline information processing within the network, par-
ticularly in the semantic partitioning branch. Our network introduces the Shortcut module to optimize the transformation of deep 
model outputs into coarse maps with identical channel counts and sizes. This process is crucial for efficient information aggregation 
and fusion without significantly increasing the computational load. The module consists of a streamlined sequence: Convolution 
→ Group Normalisation → ReLU → Upsampling. This sequence is meticulously designed to adjust the output from the network’s 
deeper layers, ensuring that they are in a suitable form for effective feature fusion across different semantic levels of the network, 
shown in Fig. 6. The introduction of the Shortcut module addresses a critical concern in deep learning models: the computational 
cost associated with processing high-dimensional data and the complex inter-layer feature fusion. By simplifying the lateral con-
nections to a direct two-dimensional convolution operation, the Shortcut module significantly reduces the network’s computational 
complexity. This reduction is achieved without compromising the model’s ability to understand and segment histopathological images 
accurately.

Furthermore, this module’s design circumvents the potential for overfitting associated with the addition of more complex mod-
9

ules like the TDA module, which, despite showing some improvements in accuracy, increased the model’s parameter count and, 
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consequently, its vulnerability to overfitting. Considering that HI-Net already employs a multitasking loss function, taking advan-
tage of newly designed Shortcut or dropout operations may be a viable alternative to routinely applying 𝑙1 or 𝑙2 penalty func-
tions.

In terms of the impact on the HI-Net structure, traditional lateral joins typically involve the summation of cross-layer pixel features 
with different upsampling sizes, which introduces significant complexity and computational requirements. In contrast, the Shortcut 
module provides a more elegant solution that maintains the integrity and richness of the feature maps across the network. This is 
particularly beneficial when dealing with WSI for breast cancer diagnosis, where maintaining high-resolution feature details is crucial 
for accurate segmentation and diagnosis. Thus, in essence, the Shortcut module represents a significant architectural innovation for 
our network, striking a balance between computational efficiency and diagnostic accuracy. Its streamlined design not only improves 
the performance of the network but also makes it a more straightforward solution for a wide range of applications, including those 
with limited computational resources.

4. Implementation details

4.1. Experiment settings

Our experiments are implemented using the PyTorch framework and run efficiently on two NVIDIA GeForce RTX 3080 at a personal 
workstation. To demonstrate the performance of the proposed HI-Net on different datasets, including our proposed lightweight dataset, 
we set up a number of experiments to compare representative medical image segmentation or detection models, and the compared 
methods were trained and tested under the same settings. Cross-entropy loss was used to train the HI-Net and the comparison models. 
We trained all models for 70 epochs, over 6 batch sizes, and a learning rate of 0.0001. Moreover, multiple ablation experiments are 
implemented on the proposed TDA module and shortcut module to validate the effectiveness of the proposed method.

4.2. Dataset setting

Our proposed dataset of lightweight histopathological breast cancer slide images is based on three competition datasets: CAME-
LYON 16, CAMELYON 17, and ICIAR 2018. For CAMELYON, which provides gigapixel slides, we downsampled four times to reduce 
resolution. The collected downsampled images are slide-intercepted to generate patch slides with a fixed size of 512 × 512 pixels. In 
order to save computational cost and integrate WSI’s tedious data preprocessing into a unified pipeline, we chose to focus our anal-
ysis on regions on slides most likely to contain cancer metastases. Identifying tissue within WSIs to exclude background voids and 
remove WSIs where the area of the cancer is disproportionate to the overall image was a prerequisite for dataset creation. Therefore, 
our methodology utilises the Otsu algorithm for precise segmentation of tumor regions in WSIs, with the optimal threshold defined 
through preliminary analysis to ensure maximum contrast and diagnostic accuracy. To avoid dataset imbalance and improve training 
efficiency, we exclude slides with tumor coverage below 5% and above 99.5%, as confirmed by extensive experiments across multiple 
datasets. This approach, detailed in Fig. 2 from section 2, ensures a balanced dataset and optimizes the model’s ability to distinguish 
tumor from non-tumor tissues effectively.

Furthermore, manual re-annotation and chromosome regularisation were performed at the suggestion of pathologists, resulting in 
a uniform format and colour distribution for new slides. The 7927 new slides obtained by the above method are divided into training 
set, test set, and verification set according to the ratio of 8:1:1 so that the construction of the lightweight data set proposed in the 
article can be built.

For the control group used as a comparative experiment, the CAMELYON 16, CAMELYON 17, and ICIAR 2018 datasets were 
selected as benchmarks to validate the robustness of the proposed model. It is worth mentioning that the CAMELYON series with a 
general resolution above 100,000 × 100,000 pixels still needs to be downsampled before it can be input into the neural network. 
Furthermore, since CAMELYON 17 inherits a large part of the training set of CAMELYON 16 and has made phased optimisation, this 
paper chooses to integrate the data sets of CAMELYON 16 and CAMELYON 17 as one of the benchmarks for comparison, named 
CAMELYON series.

4.3. Evaluation metrics

In this task, the model prediction accuracy (Acc) corresponding to the semantic segmentation pixel accuracy needs little elabora-
tion, as it intuitively represents the proportion of correct predictions to the total predicted values. However, the proposed Mean Pixel 
Accuracy (MPA) helps to apply the model to the calculation of the proportion of pixels correctly classified for each class separately, 
with the following Equation (7):

𝑀𝑃𝐴 = 1
𝑘+ 1

𝑘∑
𝑖=0

𝑝𝑖𝑖

𝑝𝑖0 + 𝑝𝑖1 +…+ 𝑝𝑖𝑗
, (7)

where 𝑘 represents the total number of pre-determined categories, while 𝑝𝑖𝑗 denotes the aggregate number of pixels in category 𝑖
that are predicted as category 𝑗.

The Mean Intersection over Union (MIoU) serves as a conventional metric in semantic segmentation. Its uniqueness lies in its 
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computation of the ratio between the intersection and union of two sets, specifically the ground truth and predicted segmentation 
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Table 2

Ablation experiment 1: Different backbones plus pyramid ar-
chitecture and their Mean Average Precision (mAP).

Backbone mAP (Training) mAP (Testing)

ResNet101 + FPN 0.919 0.843

ResNet50 + FPN 0.841 0.813
ResNeXt101 + FPN 0.886 0.832

Table 3

Ablation experiment 2: The impact of TDA and Shortcut on the overall performance of the network.

Acc↑
MIoU↑ Resnet101 + FPN Resnet101 + FPN + TDA Resnet101+ FPN + shortcut Resnet101+ FPN + TDA + shortcut (HI-Net)

Our Dataset
0.833

0.821
0.871

0.862
0.839

0.823
0.904

0.885

CAMELYON series 
[38,39] 0.821

0.786
0.859

0.858
0.825

0.786
0.884

0.876

ICIAR 2018 [40]
0.801

0.780
0.868

0.857
0.803

0.778
0.888

0.873

in the context of image segmentation. This is encapsulated in Equation (8). Conversely, the Frequency Weighted Intersection over 
Union (FWIoU) enhances the MIoU by assigning weights to each class based on its frequency of occurrence, as depicted in Equation 
(9):

𝑀𝐼𝑜𝑈 = 1
𝑘+ 1

𝑘∑
𝑖=0

𝑝𝑖𝑖∑𝑘

𝑗=0 𝑝𝑖𝑗 +
∑𝑘

𝑗=0 𝑝𝑗𝑖 − 𝑝𝑖𝑖

, (8)

𝐹𝑊 𝐼𝑜𝑈 = 1∑𝑘

𝑖=0
∑𝑘

𝑗=0 𝑝𝑖𝑗

𝑘∑
𝑖=0

𝑝𝑖𝑖∑𝑘

𝑗=0 𝑝𝑖𝑗 +
∑𝑘

𝑗=0 𝑝𝑗𝑖 − 𝑝𝑖𝑖

, (9)

where 𝑝𝑖𝑗 and 𝑝𝑖𝑖 maintain the same definitions as previously stated. Additionally, 𝑝𝑖𝑗 and 𝑝𝑗𝑖 correspond to false positives and false 
negatives, respectively. The term 𝑘 + 1 signifies the total number of categories, inclusive of empty categories. Typically, MIoU is 
computed on a per-class basis, whereby the IoU for each class is determined, subsequently summed, and averaged to yield a global 
evaluation.

5. Experiments and results

Upon training several benchmark models alongside our proposed HI-Net under uniform standards within a particular environment, 
the study initially demonstrates the rationale for selecting ResNet101 as the backbone network through the first ablation experiment. 
This experiment underscores the superiority of ResNet101 relative to other benchmark backbone networks.

A series of ablation experiments are executed on the two innovative modules introduced in this study, namely, the TDA and the 
shortcut module. These experiments aimed to illustrate the degree to which these modules have been optimised for precision and 
training speed in histopathologic image segmentation tasks, as delineated in the preceding subsections. Moreover, a comprehensive 
comparative experiment is carried out using several cutting-edge image processing models as benchmarks. These models span diverse 
domains, including salient object detection, image segmentation, and medical image detection. Through this extensive experiment, 
utilising various datasets, this study seeks to investigate and elucidate the performance of the proposed lightweight dataset and HI-Net 
in histopathologic image segmentation tasks, thereby further substantiating its superiority.

5.1. Ablation experiment

The first ablation experiment was designed to investigate the effect of different backbone networks combined with pyramidal 
structures on the accuracy of the network. In the article, several classical Mask-RCNN structures are selected as the control group for 
comparison experiments to explore the advancement of ResNet101 as a backbone network.

The experimental results are shown in Table 2. Compared to the other two ResNet as backbone networks, ResNet101 demonstrated 
its advanced feature extraction capability through superior prediction accuracy. The experiments also justified the reason for choosing 
ResNet101 for the article.

Subsequent extensive ablation experiments were designed to investigate the impact of the proposed TDA and Shortcut module on 
the network’s overall performance. These experiments were conducted utilizing our proposed lightweight dataset, supplemented by 
several additional competition datasets. The objective was to mitigate the overfitting effect induced by the exclusive use of a single 
dataset for a specific network, thereby ensuring the attainment of as objective experimental results as possible.

As shown in Table 3, the incorporation of the TDA module substantially improved the predictive accuracy of the original amalga-
mation of the backbone network and feature pyramid structure. This enhancement was consistently demonstrated across all datasets. 
11

Conversely, the introduction of the shortcut module had a minimal impact on network accuracy. While the majority of experiments 
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Fig. 7. Ablation experiment 3 and 4: Impact of Dropout operation on accuracy (a) and comparison of Dropout operation and proposed Shortcut module on model 
training time (b).

Table 4

The comparison between HI-Net and other methods based on our proposed lightweight dataset and other competition datasets.

Algorithms Our Dataset CAMELYON series ICIAR 2018

Acc↑ MPA↑ MIoU↑ FWIoU↑ Acc↑ MPA↑ MIoU↑ FWIoU↑ Acc↑ MPA↑ MIoU↑ FWIoU↑

PSPNet [46] 0.835 0.813 0.708 0.706 0.830 0.811 0.685 0.701 0.826 0.803 0.699 0.694

FPN [28] 0.843 0.828 0.697 0.667 0.836 0.820 0.657 0.688 0.839 0.833 0.679 0.682

Mask-RCNN [44] 0.851 0.848 0.701 0.680 0.842 0.832 0.710 0.695 0.839 0.836 0.715 0.706

UNet [26] 0.876 0.870 0.774 0.861 0.797 0.784 0.730 0.744 0.848 0.822 0.770 0.749

AttentionUNet [27] 0.868 0.861 0.762 0.767 0.859 0.831 0.749 0.751 0.850 0.821 0.762 0.755

TransUNet [23] 0.881 0.875 0.782 0.787 0.879 0.871 0.780 0.792 0.872 0.866 0.792 0.778

HI-Net 0.904 0.885 0.813 0.796 0.884 0.876 0.781 0.783 0.888 0.873 0.800 0.806

indicate that it exerts a certain positive influence on overall performance, its primary effect is manifested in the reduction of compu-
tational cost. Overall, a structure like HI-Net yields optimal outcomes on both the competition dataset and our proposed lightweight 
dataset. Crucially, the central columns of the experiment further corroborate the efficacy of the proposed module.

In addition to the two novel modules proposed in this paper, the dropout operation is also mentioned in the subsection ‘Shortcut 
module’, which states that the dropout operation may be a way to save computational costs and reduce the complexity of the model. 
Therefore, this section also presents an ablation and comparison experiment between the dropout operation and our proposed Shortcut 
module to verify the effectiveness of the dropout operation and to re-emphasise the superiority of the proposed Shortcut module, 
shown as the Fig. 7.

As shown in Fig. 7(a), the Dropout operation indeed optimises potential overfitting issues that may occur when the model is 
burdened with an excess of parameters due to the integration of TDA. This results in a degree of improvement in model accuracy, 
albeit not to the extent achieved by the Shortcut module. In contrast, the merits of the Shortcut module are clearly demonstrated in 
Fig. 7(b), as it significantly curtails the model’s training duration and conserves substantial computational resources. While Dropout 
also effectively reduces training time, outperforming the original model structure in speed, it does not match the results achieved 
by the Shortcut module. Consequently, the HI-Net proposed in this study, together with its constituent modules and architecture, 
has demonstrated its advantages. Such a combination can significantly enhance the accuracy of histopathologic image segmentation 
while preserving computational efficiency. However, subsequent comparisons with other advanced models remain essential for a 
more profound validation of the model’s superiority.

5.2. Experimental results of different detection models

The results of our study, as shown in Table 4, clearly establish the efficacy of HI-Net in the domain of histopathological image 
segmentation when contrasted with various well-established algorithms across multiple datasets. HI-Net not only achieves the highest 
accuracy (90.4% in our dataset, 88.4% in the CAMELYON series, and 88.8% in ICIAR 2018) but also excels in precision and intersection 
over union metrics, critical indicators of segmentation quality. This performance is indicative of HI-Net’s adeptness at nuanced 
differentiation between tumor and non-tumor tissue, a testament to its architectural strengths. Delving deeper into the comparative 
12

analysis, it is evident that HI-Net’s design facilitates its outstanding performance.
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On our proposed lightweight dataset, HI-Net’s superior scores highlight its precision in segmenting tumor regions, a critical aspect 
considering the inherent complexity of histopathological images. Furthermore, the model’s robustness is exemplified by its consistent 
outperformance on external datasets, such as the CAMELYON series and the ICIAR 2018 benchmark, underlining its adaptability and 
the generalisability of its learning capabilities.

While other models, such as TransUNet, also exhibited commendable performance, they were slightly outperformed by HI-Net. 
This could be attributed to architectural differences where TransUNet may be more prone to the loss of low-level detail, such as edge 
information, which is crucial in the precise identification of tumor boundaries. HI-Net’s architecture, by contrast, is tailored to retain 
such critical information, ensuring that the segmentation captures the full spectrum of diagnostic features necessary for accurate 
pathology assessment.

With the architecture’s efficacy confirmed under uniform hyperparameters, the study’s findings affirm our anticipation that HI-Net 
would be a highly effective framework for digital pathology. The results go beyond validating the superiority of our model in terms 
of traditional performance metrics; they also suggest that HI-Net can meaningfully contribute to the practical field of pathology by 
providing a tool that enhances diagnostic precision. Furthermore, the consistency in high performance, particularly in delineating 
tumor regions within histopathological images, speaks volumes about the potential clinical applications of HI-Net. By setting new 
benchmarks in automated segmentation, our architecture not only stands as a significant contribution to academic research but also 
holds promise for improving clinical workflows and patient outcomes in breast cancer diagnosis.

6. Conclusion

The findings presented in this study offer a pioneering contribution to the field of histopathology image analysis. We introduce the 
first lightweight, large-scale, standardized histopathology slide dataset comprising 7,927 slides, meticulously reconstructed and size-
normalized from a variety of competition datasets. The novel threshold-based region selection method we propose ensures a balanced 
and homogeneous distribution of tumor regions across the map area, addressing a gap not previously considered in existing datasets. 
Additionally, our optimised downsampling process and uniform chromatic regularization significantly enhance dataset usability, 
eliminating the need for extensive preprocessing while maintaining consistency in format and colour spectrum.

Building on this dataset, we introduce HI-Net, a cutting-edge network specifically designed for breast cancer histopathology image 
segmentation. HI-Net features a pyramidal network structure augmented with high-speed panoramic feature acquisition capabilities, 
a novel TDA module, and a Shortcut module that collectively reduces computational overhead while maintaining high segmentation 
accuracy. The TDA module addresses the prevalent challenge of information loss at the base of pyramidal structures, thereby enabling 
more efficient semantic feature extraction. Concurrently, the Shortcut module optimizes feature summation across network layers, 
enhancing computational efficiency without compromising detail and accuracy.

Extensive ablation studies provide robust evidence for the effectiveness of the TDA and Shortcut modules, which play criti-
cal roles in enhancing HI-Net’s overall performance. Comparative evaluations on multiple benchmark datasets further demonstrate 
HI-Net’s superiority in information transfer and semantic feature integration, achieving a segmentation accuracy of 90.4% on our 
proposed lightweight dataset—outperforming existing advanced models for object detection and segmentation tasks. Additionally, 
HI-Net demonstrates a substantial increase in training speed, underscoring its efficiency and scalability. The integration of HI-Net 
with this new dataset not only provides a strong foundation for advancing histopathology image segmentation techniques but also 
significantly alleviates the diagnostic workload of pathologists, facilitating more efficient and accurate AI-driven medical diagnos-
tics.
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