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Abstract 
In biomedical research, network analysis provides a conceptual framework for interpreting data from high-
throughput experiments. For example, protein-protein interaction networks have been successfully used to identify 
candidate disease genes. Recently, advances in clinical text processing and the increasing availability of clinical 
data have enabled analogous analyses on data from electronic medical records. We constructed networks of 
diseases, drugs, medical devices and procedures using concepts recognized in clinical notes from the Stanford 
clinical data warehouse. We demonstrate the use of the resulting networks for clinical research informatics in two 
ways—cohort construction and outcomes analysis—by examining the safety of cilostazol in peripheral artery 
disease patients as a use case. We show that the network-based approaches can be used for constructing patient 
cohorts as well as for analyzing differences in outcomes by comparing with standard methods, and discuss the 
advantages offered by network-based approaches. 
Introduction 
Data mining of electronic health records (EHRs) is on the rise due to increasing availability of the data as well as to 
advances in clinical text processing1-3. EHR mining has been used for detecting adverse drug event associations4-6 
and for profiling off-label use of drugs7, among other uses8,9. Simultaneously, in bioinformatics research, network 
analysis has provided the conceptual framework to interpret protein-protein interaction, gene-disease association and 
drug-target associations. For example, network analysis of protein-protein associations led to the identification of 
candidate genes for inherited Ataxias10, and revealed clusters of highly interacting proteins of functional relevance11. 
Similarly, EHRs can be used to construct a large-scale network representation of associations among clinical 
entities. For example, a network representation of disease associations learned from clinical problem summary lists 
has been used to uncover unexpected associations12 and a network representation of patients based on their 
associated ICD9 codes has been used for patient stratification13. Both types of networks have even been combined, 
for instance the integration of cellular networks with comorbidity networks constructed from Medicare data could 
generate hypotheses about disease mechanisms14.  
However, most approaches are restricted to associations among drugs and diseases, and are based on the structured 
clinical data. In contrast with existing uses of network analysis in EHR mining, we construct networks from the 
unstructured clinical text and we include medical devices and procedures in addition to drugs and diseases. We 
hypothesize that we can use the resulting networks for accurate control group construction and outcomes analysis. In 
particular, we apply our network-based approaches to examine the safety of cilostazol in peripheral artery disease 
(PAD) patients, and we compare our results with standard methods used in comparative effectiveness research. We 
believe that network analysis offers ways to visualize and analyze associations mined from EHRs, which can 
provide novel insights into the data by taking into account the connectivity of the clinical events and entities. 
Methods 
Data Collection and Processing: We used data from the Stanford Translational Research Integrated Database 
Environment (STRIDE), which spans 17-years of data from 1.7 million patients with over 10.5 million unstructured 
clinical notes. We processed the clinical notes as described previously6. In brief, we used an optimized version of the 
NCBO Annotator3,6 with a set of 19 clinically relevant ontologies, removed ambiguous terms15-18, and flagged 
negated terms and terms attributed to family history19,20. We normalized all drugs to their ingredients using RxNorm, 
such that the terms “pletal” and “cilostazol” are both normalized to the ingredient “cilostazol.” In addition, we made 
use of the hierarchies of the ontologies to aggregate concepts. More details on the data processing can be found in 21. 
Study and control group construction: Using the timestamp of the 
clinical note in which the treatment concept (cilostazol) was first 
mentioned, we defined an index time point of treatment for all patients and 
grouped the annotations into two groups: concepts associated with clinical 
events that happened before treatment (which can be used for matching 
control groups) and concepts associated with events that happened after 
treatment (which can be interpreted as outcomes). We defined a cohort of 
11,547 PAD patients using the expert-selected concepts listed in Table 1. To reduce bias introduced by difference in 

Table 1: Peripheral artery disease definition 
Concept UMLS CUI 
Peripheral arterial diseases C1704436 
Peripheral vascular diseases C0085096 
Peripheral arterial occlusive disease C1306889 
Intermittent claudication C0021775 
Claudication (finding) C1456822 
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data coverage, we excluded patients having less than one year’s worth of data after their first PAD mention, 
reducing the number of PAD patients to 5,746. For the cilostazol study group, we selected 223 PAD patients who 
had a cilostazol mention after or at the same time as their first PAD mention. 
Propensity score matching (PSM): We used PSM to address biases introduced by confounding variables. We 
manually defined 15 potential confounders including demographic variables such as gender, race, age at the first 
PAD mention, and co-morbidities as well as co-prescriptions. All covariates except for the demographic variables 
were defined by the first mention of the respective concept before the index time point. We used the Matching 
package for R22 to perform PSM and to check balance in the variables between the cilostazol and control groups.  
Patient-patient similarity: We used all concepts before the index time point and constructed a patient-feature matrix, 
where each row represents a patient and each column a concept. The cells indicate the presence or absence of the 
concept in any clinical note before the index time point. To reduce dimensionality, we used the Human Disease 
Ontology to aggregate disease concepts and SNOMED CT to aggregate procedures. For drugs, we used the ATC 
hierarchy to group drugs into classes at the third level (therapeutic subgroup). We used the patient-feature matrix to 
compute pairwise patient similarity (sp) using Jaccard index and visualized the resulting patient-patient similarity 
matrix as a network using Cytoscape 23. We then applied 1:1 nearest neighbor matching to construct a control group.  
Outcome analysis: For analyzing the outcomes of patients, we used only the concepts after the index time point.  
Logistic regression analysis: We defined a set of 9 expert-selected outcome variables. These outcome variables 
include major adverse cardiovascular events (MACE), major limb events (MALE) and cardiac arrhythmias. We 
computed odds ratios and 95% confidence intervals using logistic regression.  
Concept-concept association network: We used co-occurrence statistics 
(Equation 1) to compute the association (sc) between different concepts 
(cid1, cid2) from the clinical notes. We filtered scores based on the 
strength (sc>= 2) and significance (p <= 0.05, one-sided Fisher’s exact test) of the association. The nodes in the 
networks represent the clinical concepts (drugs, diseases, devices and procedures) and the edges their associations. 
We used associations between concepts for the cilostazol and control groups separately to construct a network for 
each group. To compare the outcomes in the cilostazol group with those in the control group, we merged the two 
concept-concept networks and only kept those nodes and edges that are over or under-represented in the cilostazol 
group compared to the control (p <= 0.05, one-sided Fisher’s exact test). We then visualized the resulting network 
using Cytoscape.  
 

Results 
Our results show that network-based methods are at par with standard methods in comparative effectiveness 
research in terms of control group construction and analysis of clinical outcomes for the case of cilostazol use for 
PAD. PAD is a major health problem affecting millions of patients worldwide. It is defined by obstruction of infra-
renal aorta and lower-extremity arteries leading to claudication and leads to a significant impairment of quality of 
life. Cilostazol is the most effective treatment for PAD and has a black-box warning for cardiovascular events, 
especially in patients with congestive heart failure due to prior experience with a similar drug24.  

Equation 1 
𝑠!(𝑐𝑖𝑑1, 𝑐𝑖𝑑2) =

𝑃(𝑐𝑖𝑑1, 𝑐𝑖𝑑2)
𝑃(𝑐𝑖𝑑1)𝑃(𝑐𝑖𝑑2) 

 
Figure 1: (A) Patient-patient similarity network for constructing a control group and (B) outcome analysis based on network-
based control group (similarity) and propensity-score matched control group (psm). 
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Control group construction: Figure 1A shows a network representation of the 223 cilostazol patients (red nodes) 
and their most similar PAD patients (sp >= 0.36). The thickness of the edges corresponds to the similarity between 
patients. Patients who share multiple disease, drug, device and procedure annotations are similar and thus closer in 
the network. We constructed a control group of 223 patients by choosing the nearest neighbor (1:1 match) or most 
similar patient (blue nodes) for each cilostazol patient. We also applied PSM on 15 expert-selected variables 
(potential confounders) such as age, gender, several co-morbidities and co-prescriptions. 
Comparing the cilostazol group with all other PAD patients (before matching), we observe a significant difference 
or imbalance in several variables including gender (there are more males in the cilostazol group), co-prescriptions 
(cilostazol patients are taking more drugs), vascular surgical and bypass procedures (cilostazol patients undergo 
more procedures) (Table 2). These variables are likely to be correlated with the outcome, so in a properly matched 
cohort the imbalance would be averted. As expected, using PSM removes the imbalance in all selected variables. In 
comparison, the network-based matching removes most of the imbalance, except for ACE inhibitors and Cardiac 
arrhythmias (p < 0.05). Interestingly, the network-based matching introduces imbalance in the ‘history of cardiac 
arrhythmias’ variable.  However, a slightly stricter level of significance (p < 0.01) would result in perfect balance.  
We profiled the safety of cilostazol with respect to MACE, MALE and cardiac arrhythmia outcomes. We compared 
differences in outcomes (see Figure 1B) between the cilostazol group and control groups generated via PSM (green) 
and network-based patient-patient similarity clustering (blue) using logistic regression. The results show that in most 
outcome variables, PSM and network-based approach generate equivalent control groups. 

Outcome analysis: To compare the outcomes in cilostazol patients with the controls using a network-based 
approach, we focused on those nodes and edges that are over- or under-represented in the cilostazol group. Figure 2 
depicts the resulting network, nodes represent the clinical concepts, the edges their association strength. Nodes are 
colored according to their semantic group; node height corresponds to frequency in the cilostazol cohort, and node 
width to the frequency in the control. Cilostazol is therefore a thin and tall node. We colored the edges according to 
the over-representation in the two groups of patients. Red edges are over-represented in the cilostazol patients and 
blue edges in the control group. The thickness of the edges represents the statistical significance of the over-
representation. Two main clusters are visible, in the upper right part there is a cluster of concepts over-represented in 
the cilostazol group, and in the lower left part are concepts over-represented in the control group. The cilostazol 
cluster contains different vascular surgical procedures (angioplasty, revascularization and bypass procedures) and 
some imaging procedures (ultrasonography, doppler and ultrasound imaging) used to diagnose PAD and to monitor 

Table 2: Balance in expert-selected variables before and after matching 
Variable Before Matching Similarity network PSM 

        
 Cilostazol 

(n= 223) 
Control  

(n= 5534) 
p-value* Control 

(n= 223) 
p-value Control 

(n= 223) 
p-value* 

Demographics        
 Age (at indication onset), mean (sd) 71.22  

(11.02) 
70.43  

(12.46) 
0.30 72.05  

(10.62) 
0.41 70.87  

(11.51) 
0.75 

 Gender (female), n (%) 37.22 45.94 <0.01 36.65 0.84 35.87 0.77 
 Race , (%)        

 Asian 8.52 7.41 0.56 6.33 0.37 10.31 0.51 
 Black 2.69 3.71 0.36 3.61 0.59 0.90 0.16 
 Unknown 22.87 26.17 0.25 22.17 0.82 20.63 0.57 
 White 65.47 62.22 0.32 67.87 0.55 67.27 0.69 

Comorbidities        
 Coronary artery disease, n (%) 5.38 6.47 0.48 4.98 0.83 6.28 0.70 
 Congestive heart failure, n (%) 25.56 22.84 0.36 20.36 0.21 30.49 0.36 
 Hypertension, n (%) 10.76 11.31 0.80 9.50 0.75 10.31 0.88 
Co-prescriptions        
 Beta blocking agents, n (%) 75.34 60.77 <0.001 69.68 0.20 74.89 0.91 
 ACE inhibitors, plain, n (%) 78.03 69.57 <0.01 67.87 0.01 78.92 0.81 
 Platelet aggregation inhibitors excl. 

heparin, n (%) 
91.93 79.00 <0.001 89.59 0.41 95.51 0.07 

 Vasodilators, n (%) 32.29 26.36 0.06 31.67 0.84 37.22 0.29 
History of        
 Cardiac arrhythmia, n (%) 32.29 32.17 0.97 23.08 0.03 33.18 0.84 
 Stroke, n (%) 17.94 18.31 0.89 15.84 0.61 21.52 0.34 
 Myocardial infarction, n (%) 17.94 15.87 0.43 13.58 0.24 19.73 0.64 
 Vascular surgical procedures, n (%) 74.44 47.71 < 0.001 65.61 0.05 74.44 1 
 Bypass procedures, n (%) 41.70 26.56 <0.001 36.20 0.24 40.36 0.75 
 *P-values are based on Χ2-test for categorical, and two-sample t-test for continuous variables 
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Figure 2: Concept-concept network, nodes represent clinical concepts and 
edges their associations in the clinical notes. 	
  

 

the vascular surgical procedures 25; thus it is 
not surprising to find a strong association 
between these concepts in the clinical notes. 
In contrast, the control cluster is more 
heterogeneous and contains concepts related 
to severe heart failure, which is a 
contraindication for Cilostazol use. 
Discussion 
One key aspect of our work is the use of 
temporal ordering of clinical notes to group 
the annotations into concepts used for control 
group construction and concepts useful for 
outcome analysis. In particular, we used the 
annotations before the treatment (e.g., 
cilostazol) to construct a patient-patient 
similarity network from which we selected a 
matched control group. By analyzing the 
balance in expert-selected variables before 
and after matching, we showed that our 
network-based approach achieves similar 
performance compared to standard PSM. 

Moreover, we profiled differences in outcome between the cilostazol and the control groups and showed that both 
matching approaches, network-based and PSM produce similar results, confirming that both control groups are 
equivalent. Here, the main advantage of the network-based approach is that no expert-knowledge is required to 
identify potential confounders. In addition, we can use all concepts found in the patient’s clinical notes to compute 
similarity between the patients in their phenotypic profiles. Others have also shown that a combination of features 
(in particular diseases, medications, findings and medical procedures) achieve better performance in classifying 
patients compared with restricting the features to one semantic group (such as diseases)26.  
We used a concept-concept association network to profile differences in outcome. In contrast to standard logistic 
regression analysis, which is restricted to those concepts considered meaningful by a medical expert, the network-
based approach does not restrict the concept space. Using the networks as a tool for visualizing associations found in 
the clinical notes, we can analyze large numbers of concepts and their associations simultaneously as well as 
uncover the same results as regular methods would; as evidenced by the agreement with standard logistic regression 
analysis (Figure 1B) and confirmed by a medical expert. In contrast to standard clustering approaches, the use of 
networks allows for user-friendly visualization of the data, and the constructed networks can easily be enriched with 
additional information to guide the analysis. For example, the patient-patient similarity networks could be layered 
with the information about which concepts contributed most to the association between two patients, such that the 
researcher understands why a control is matched to a cilostazol patient, adding transparency to the analysis.  
Limitations and future work: Automatically generated annotations of clinical notes can contain errors. However, 
with accuracies ranging from 86% for recognizing diseases, in particular 92% for identifying PAD, 93% for drugs 
and 97% for negations19, the annotation derived features are “good enough” for such a study. In contrast to logistic 
regression the concept-concept network does not provide a single score (such as an odds ratio) for each outcome 
variable. In future work, we want to use the concept-concept network to identify those variables worth being 
included in a standard outcome analysis and see if this selection agrees with expert choices. Moreover, we plan to 
compare different similarity metrics26, and to investigate the use of bipartite networks similarly as previously 
described for analyzing associations of patients and SNPs27 or cytokines28.  

 

Conclusion 
Network-based approaches are applicable for constructing control groups as well as for analyzing clinical outcomes 
as shown by our case study on the safety of cilostazol in PAD patients. Our results show similar performance of the 
network-based approaches compared to standard methods used in comparative effectiveness research29. One clear 
advantage of this approach is that the analysis is not limited to expert-selected variables, allowing the analysis of 
large numbers of variables and their associations simultaneously. In addition, visualizing associations between 
patients and concepts as networks allows for transparent interpretation. 
Acknowledgements: ABM, PJL, RH and NHS acknowledge support from the NIH grant U54 HG004028 for the 
National Center for Biomedical Ontology. 
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