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synthesis, are developmentally regulated.8–11 In contrast, 
member A3 of the adenosine triphosphate (ATP) binding 
cassette family of proteins (ABCA3) is highly expressed 
in type II cells, where it is localized to the limiting mem-
brane of the lamellar body, and appears to have an essen-
tial role in lamellar body biogenesis and likely in surfactant 
lipid metabolism.12,13 Surfactant is secreted by exocytosis 
of the lamellar body contents, where it unravels into an 
intermediate known as tubular myelin before adsorbing 
to the air–liquid interface. Surfactant lipids and proteins 
are both recycled by the type II cell through an endocytic 
pathway, as well as being catabolized by alveolar macro-
phages, which are dependent on granulocyte-macrophage 
colony stimulating factor (GM-CSF) for their appropri-
ate maturation.

About 10% of mammalian surfactants by weight is 
composed of protein, and, while the majority of protein 
in surfactant is derived from serum, specifi c proteins 
found primarily or largely in surfactant have been identi-
fi ed that have important roles in its function and metabo-
lism. Surfactant proteins A and D (SP-A, SP-D) are 
hydrophilic proteins that are part of the collectin family, 
having both a collagenous domain and a carbohydrate 
binding or lectin domain. In their native forms in the 
airspaces, both are composed of high-order multimers. 
Both are encoded on chromosome 10, with two genes 
(SFTPA1, SFTPA2) contributing to the SP-A protein and 
a single gene (SFTPD) for SP-D.14 The principal roles for 
SP-A and SP-D appear to be in innate immunity and 
regulation of local pulmonary infl ammation.15,16 Although 
both are highly expressed in the lung, SP-A and, even 
more so, SP-D are also expressed in extrapulmonary 
tissues.17–21 Multiple allelic variants of SFTPA1, SFTPA2, 
and SFTPD that alter their encoded protein sequences 
have been identifi ed, and genetic association studies have 
linked certain SFTPA and SFPTD alleles to susceptibility 
to a variety of pulmonary diseases, ranging from RDS in 
premature newborns and viral infection in children to 
chronic obstructive pulmonary disease and lung cancer in 

Introduction

Pulmonary surfactant is the complex mixture of lipids 
and proteins needed to reduce alveolar surface tension 
at the air–liquid interface and prevent alveolar collapse 
at the end of expiration. It has been recognized for almost 
50 years that a defi ciency in surfactant production due to 
pulmonary immaturity is the principal cause of the respi-
ratory distress syndrome (RDS) observed in prematurely 
born infants.1 Secondary surfactant defi ciency due to 
injury to the cells involved in its production and func-
tional inactivation of surfactant is also important in the 
pathophysiology of acute respiratory distress syndrome 
(ARDS) observed in older children and adults.2,3 In the 
past 15 years, it has been recognized that surfactant defi -
ciency may result from genetic mechanisms involving 
mutations in genes encoding critical components of the 
surfactant system or proteins involved in surfactant 
metabolism.4,5 Although rare, these single gene disorders 
provide important insights into normal surfactant metab-
olism and into the genes in which frequently occurring 
allelic variants may be important in more common pul-
monary diseases.

Overview of Pulmonary Surfactant

Pulmonary surfactant is synthesized, stored, and secreted 
by alveolar type II cells. Alveolar type II cells contain a 
specialized, lysosomally derived organelle, the lamellar 
body, in which surfactant lipids and proteins are stored.6 
Surfactant phospholipids, particularly disaturated or 
dipalmitoyl phosphatidylcholine, are critical for its ability 
to effectively lower alveolar surface tension.7 A large 
number of enzymes are involved in surfactant lipid syn-
thesis, but in general these enzymes are found in many 
tissues and are not specifi c for type II cells. Only a few, 
such as fatty acid synthase and CTP:phosphocholine cyti-
dylyltransferase (CCTα), the rate-limiting enzyme in PC 
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adults.22–28 However, the functional signifi cance of these 
variants is uncertain. Currently, no human diseases due to 
genetic mechanisms disrupting either SP-A or SP-D pro-
duction or structure have been reported. It may be that 
defi ciencies of these two proteins do not result in human 
lung disease or that the phenotype associated with defi -
ciencies of these proteins has not yet been determined. 
Mice genetically engineered to be defi cient in SP-A have 
been generated, and, although more susceptible to a 
number of different pathogens, they do not have respira-
tory distress at birth or spontaneously develop lung disease 
with age.29–34 Moreover, as there are two SP-A genes, 
complete defi ciency of SP-A will likely have to result from 
a major deletion involving their loci. In contrast, SP-D 
null mice develop a pulmonary lipoidosis and emphysema 
with age, and thus SP-D remains a candidate gene for 
pulmonary disease.35–37 As both SP-A and SP-D contain 
collagenous domains and form higher order multimers in 
the airway, it is possible that mutations introducing struc-
tural changes in the collagenous domains or elsewhere 
could prevent oligomerization and thus result in defi ciency 
of SP-A or SP-D by a dominant negative mechanism.

Surfactant proteins B and C (SP-B, SP-C) are small, 
hydrophobic proteins that have essential roles in surfac-
tant’s ability to lower surface tension. Both SP-B and 
SP-C when combined with surfactant lipids yield a sur-
factant that effectively lowers surface tension in vitro and 
is effective in treating animal models of RDS. Both are 
found in varying amounts in mammalian derived exoge-
nous surfactant preparations used clinically to treat 
human infants with RDS.38,39 Abnormalities in both SP-B 
and SP-C expression and structure due to mutations in 
the genes encoding these proteins have been associated 
with acute and chronic human lung disease and are dis-
cussed in more detail later. While regulation of expres-
sion of both SP-B and SP-C is distinct, both are increased 
with glucocorticoids.40–42 The promoter regions of both 
genes have been extensively studied, and numerous tran-
scription factors are involved in their expression as well 
as that of other key components of the surfactant system, 
with thyroid transcription factor 1 (TTF-1, also known as 
Nkx2.1), forkhead box A2 (Foxa2), and CCAAT/enhancer 
binding protein α (C/EBPα) of particular importance in 
determining tissue specifi city and developmentally regu-
lated expression.43–51 Selective inactivation of these tran-
scription factors in the distal respiratory epithelium of 
experimental animals results in perinatal lethality with 
decreased production of surfactant proteins and lipids.

Respiratory Distress Syndrome

The primary lung disease related to surfactant is RDS 
caused by defi cient production of surfactant due to pul-
monary immaturity. The primary pathologic changes 

observed in the lungs of infants dying from RDS are 
diffuse atelectasis and the formation of hyaline mem-
branes lining small airways. Although a great deal of 
effort initially focused on the role of the hyaline mem-
branes in the pathophysiology of RDS, the seminal obser-
vations of Avery and Mead in 1959 demonstrated the 
functional absence of surfactant and its ability to lower 
surface tension as the primary cause of the disease.1,52

Respiratory distress syndrome results not from the 
selective production of one surfactant component but 
from global decreases in surfactant lipid and protein 
production. Immature type II cells do not contain well-
developed lamellar bodies but are instead rich in glyco-
gen, which disappears as lamellar bodies appear.8,53 The 
expression of SP-A, SP-B, and SP-C, as well as other 
proteins involved in surfactant lipid production and 
homeostasis such as ABCA3, fatty acid synthase, and 
CCTα, are developmentally regulated, with their expres-
sion increasing with advancing gestation.11,12,54–61 
Decreased expression of SP-A and SP-B has been 
observed in lung tissue from newborns that died from 
RDS compared with controls.62 Measurements of surfac-
tant lipids in amniotic fl uid, including PC (also known as 
lecithin), disaturated phosphatidylcholine, and phospha-
tidylglycerol (PG), as well as assessments of lamellar 
body counts, can be used to predict maturity of the sur-
factant system in the fetus. Clinical testing for fetal lung 
maturity introduced in the 1970s resulted in a reduction 
in iatrogenic RDS.63,64

Along with technical advances in neonatal mechanical 
ventilation, RDS is now very effectively treated with 
exogenous surfactant preparations that have substan-
tially reduced mortality from RDS in premature in-
fants.65–67 Respiratory distress syndrome is principally a 
disease of premature infants, with the risk for RDS pri-
marily dependent on gestational age, although it may also 
be observed in full-term or near-term infants. As many 
more infants are born at >35 weeks, RDS in larger infants 
represents a considerable cause of neonatal morbidity, 
although mortality in such infants is low.68,69 With the 
effectiveness of modern therapies for RDS in reducing 
mortality, the phenotype of severe RDS unresponsive to 
current treatment strategies is one that suggests another 
etiology for lung disease, particularly a genetic or devel-
opmental mechanism disrupting lung development or 
impairing surfactant metabolism.

Surfactant Protein B

Surfactant protein B is encoded by a single gene (called 
SFTPB) located on the short arm of chromosome 2, span-
ning approximately 10 kb.70,71 The gene contains 11 exons, 
of which the last is untranslated. The gene is transcribed 
into an approximate 2 kb mRNA, which is translated into 
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a 381 amino acid preproprotein.72 After cotranslational 
cleavage of a signal peptide, the proprotein (pro-SP-B) 
undergoes several proteolytic processing steps at both 
the amino- and carboxy-terminal ends to yield the 79 
amino acid mature SP-B protein that is secreted into the 
airspaces. Proprotein SP-B has homology to the saposins, 
proteins that bind to and interact with a number of lipids, 
and contains three saposin domains. Mature SP-B is 
encoded in exons 6 and 7 of the gene, which corresponds 
to the middle domain.73,74 Proprotein SP-B contains one 
potential site for N-linked glycosylation in the carboxy-
terminal domain and a possible second site in the amino-
terminal domain depending on which variant of a 
commonly occurring single nucleotide polymorphism 
(SNP) is present in codon 131.75 Alternative splicing at 
the beginning of exon 8 yields a small percentage of tran-
scripts lacking four amino acids from the carboxy-
terminal domain. The functional consequences of this 
alternative splicing are unknown, although this transcript 
may be overrepresented in RNA from diseased lung 
tissues.76 Surfactant protein B is expressed in both non-
ciliated bronchiolar epithelium in the lung and alveolar 
type II epithelial cells, although only alveolar type II cells 
fully process pro-SP-B to mature SP-B.60,77 Hereditary 
SP-B defi ciency was the fi rst recognized inborn error of 
surfactant metabolism, with the fi rst report in 1993.78 The 
index patient was a full-term infant with diffuse lung 
disease clinically and radiographically suggestive of sur-
factant defi ciency. Unlike premature infants with surfac-
tant defi ciency, who generally improve toward the end of 
the fi rst week of life, this child had persistent hypoxemic 
respiratory failure and eventually died at age 5 months. 
The family history was notable for a previous child born 
to the same parents who also died from neonatal lung 
disease. Lung biopsy fi ndings included changes similar to 
those of alveolar proteinosis in adults, with distal air-
spaces fi lled with granular eosinophilic material. This 
pathology had also been observed rarely in newborns 
with clinically similar lung disease, often with a positive 
family history.79,80 A selective absence of SP-B in lung 
tissue from this infant was demonstrated by immunologic 
assays, and SP-B defi ciency was established as the basis 
for the lung disease with the demonstration of a frame 
shift mutation that precluded SP-B production on both 
SP-B alleles in affected infants.81

Surfactant protein B defi ciency is an extremely rare 
disorder. Approximately 50 cases have been reported in 
the literature, and extrapolations from estimates of the 
population frequency of the most frequently encountered 
SFTPB mutation yields an expected disease incidence of 
about 1 in 1 million live births in the United States.82–84 
Although the disease is almost always fatal, affected 
infants can survive for months with aggressive support, 
and it is thus important to establish the diagnosis so as to 
avoid futile therapy or provide timely referral for lung 

transplantation, as well as for proper counseling regard-
ing recurrence risk.

Over 40 different mutations in SFTPB have been iden-
tifi ed. The fi rst identifi ed mutation consists of a substitu-
tion of GAA for C in codon 121 of the SP-B mRNA and 
has been termed 121ins2.81 This mutation has accounted 
for 60%–70% of the mutant alleles in patients of North-
ern European descent, and the fi nding of a common 
mutation likely is the result of a common ancestral origin 
or “founder” effect.85 Other mutations have been found 
in more than one unrelated family in specifi c ethnic 
groups. Although some mutations allow for the produc-
tion of pro-SP-B, processing to mature SP-B is impaired 
such that all known mutations lead to an absence or 
severe reduction in the amount of mature SP-B and can 
thus be viewed as loss-of-function mutations.86 The disease 
is inherited as an autosomal recessive condition, with 
mutations needed on both alleles to manifest disease.

The usual clinical presentation is that of a full-term 
infant without risk factors for lung disease or infection 
who presents with symptoms of respiratory distress, 
hypoxemia, and diffuse, homogenous infi ltrates on chest 
radiographs. Although many of the initial reports of 
infants with this condition involved children with very 
severe lung disease who often required extracorporeal 
membrane oxygenation for support, it is clear that some 
affected infants may have milder disease initially and 
may not require mechanical ventilation for days to 
weeks.87,88 The disease is progressive, and the diagnosis 
should thus be considered in full-term infants with a 
history of neonatal lung disease that is progressive after 
the fi rst week of life, especially if there is a family history 
of neonatal lung disease.

The pathophysiology of the lung disease due to SP-B 
defi ciency is incompletely understood. Certainly the lack 
of mature SP-B could contribute to poorly functioning 
surfactant and thus accounts for some of the initial clinical 
symptoms consistent with severe surfactant defi ciency. In 
addition, defi ciency of SP-B results in a block in process-
ing of pro-SP-C to mature SP-C. This results in both 
defi ciency of mature SP-C as well as an accumulation of 
partially processed SP-C-related peptides that are secreted 
into the airspaces but are not very surface-active and 
contribute to the pathophysiology of the lung injury.89,90 
Type II cells in SP-B-defi cient lung do not contain nor-
mally form lamellar bodies, indicating a fundamental 
intracellular role for SP-B or pro-SP-B, and the lack of 
normal lamellar bodies may explain the impaired process-
ing of pro-SP-C, as the fi nal processing steps for pro-SP-C 
take place in a distal cellular compartment.6,91,92

Genetically engineered SP-B knockout mice have been 
generated and have a phenotype that recapitulates the 
human disease, with homozygous null mice dying at birth 
from respiratory failure.93 The lung pathology of mice 
dying in the neonatal period is notable principally for 
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atelectasis and does not have many of the histopathology 
features observed in lung tissue from human infants 
with SP-B defi ciency (described in detail later). Potential 
reasons for the differences in histopathology fi ndings 
include the inherent variations between species, the fact 
that some changes may take time to develop after birth 
or are a result of the treatments used to sustain life in 
human infants with SP-B defi ciency, or some combina-
tion of these factors. Homozygous SP-B null mice are 
completely lacking in mature SP-B protein and also have 
abnormal lamellar bodies and aberrant processing of pro-
SP-C to SP-C, indicating that these are due to the primary 
defi ciency of SP-B and are not secondary to other post-
natal factors.94

Mice that conditionally express SP-B under the control 
of a tetracycline responsive promoter have also been gen-
erated and bred with knockout mice in order to generate 
animals that can survive the neonatal period and then 
have SP-B production shut off when the antibiotic is 
removed from their diet. These animals develop lung 
disease when SP-B levels fall below 20%–25% of the 
levels in control mice, indicating that there is a critical level 
of SP-B needed for proper lung function.95 This concept is 
supported by the observation that human patients with 
SP-B mutations allowing for some SP-B production survive 
longer than those with null mutations.87,88 Mice heterozy-
gous for one SP-B null allele survive and have only mild 
abnormalities in lung function but are more susceptible to 
pulmonary oxygen toxicity.96,97 Genetic control of SP-B 
levels could thus be an important determinant of risk for 
lung disease, with individuals who have a lower capacity 
for SP-B production being at risk for lung disease should 
additional environmental factors (premature birth, infl am-
mation) further reduce SP-B levels.

Multiple polymorphic variants have been identifi ed 
within the SFTPB locus, including an SNP in codon 131 
that alters a potential site for N-linked glycosylation, 
several SNPs in the promoter region that could affect 
gene transcription, and a variable tandem nucleotide 
repeat sequence in intron 4.26,98–102 This latter variant in 
intron 4 has been associated with increased risk for 
several pulmonary diseases, ranging from RDS and 
bronchopulmonary dysplasia in premature infants to lung 
cancer in adults.101,103–107 The mechanisms by which this 
variant affects SP-B expression are unknown, although 
effects on gene transcription based on potential tran-
scription factor binding sites and on mRNA splicing have 
been proposed.104,108 The codon 131 SNP has been associ-
ated with both risk for RDS in premature infants as well 
as acute and chronic lung injury in adults.99,109,110 The 
observed associations have been relatively weak, however, 
and often in combination with other risk factors or genetic 
variants at other loci. Additional studies will be needed 
to fully address the question of whether and which SFTPB 
alleles may predispose to different disease conditions.

Currently there is no specifi c effective therapy for SP-
B defi ciency other than lung transplantation. Children 
with SP-B defi ciency have been transplanted in early 
infancy, with short- and long-term outcomes comparable 
to those for lung transplantation for other disorders in 
infancy.111 As lung transplantation carries with it signifi -
cant burdens for the family as well as long-term morbid-
ity and mortality risks, compassionate care is also an 
appropriate option once the diagnosis is established. 
Identifi cation of the responsible mutations allows for 
proper genetic counseling and the option for prenatal or 
even preimplantation diagnosis for future pregnancies.

Surfactant Protein C

Surfactant protein C is encoded by a single gene (SFTPC) 
on the short arm of chromosome 8. The gene is relatively 
small, spanning some 3,500 bases, and contains 6 exons, 
of which the last is untranslated.112 The gene is transcribed 
into an approximately 0.9 kb mRNA, which directs the 
synthesis of a 191 or 197 proprotein (pro-SP-C), depend-
ing on alternative splicing at the beginning of exon 5.38,72 
Proprotein SP-C does not contain a signal peptide but is 
a transmembrane protein in which the domain corre-
sponding to mature SP-C acts as the membrane anchor-
ing domain, with the amino-terminus oriented toward the 
cytoplasm.113,114 Proprotein SP-C undergoes a number of 
posttranslational modifi cations, including palmitoylation 
of cysteine residues within the mature peptide domain, 
such that SP-C is a proteolipid.115,116 Like SP-B, pro-SP-C 
is proteolytically processed at both the carboxy and 
amino termini, to yield the 34 or 35 amino acid mature 
SP-C, whose protein sequence is encoded within exon 2 
of the gene and is secreted into the airspaces along with 
SP-B and surfactant lipids. The carboxy-terminal domain 
of pro-SP-C has homology with a group of proteins linked 
to forms of familial dementia and cancer (BRICHOS 
domain), with their common pathogenesis hypothesized 
as being related to abnormal protein folding and hence 
conformational diseases.117,118 Surfactant protein C expres-
sion is confi ned to type II cells within the lung, and the 
SP-C human and mouse promoter sequences have been 
widely used in animal experiments to drive lung-specifi c 
gene expression.47,119–121

Lung disease due to SFTPC mutations is rare, although 
the incidence and prevalence are unknown as popula-
tion-based studies have not been performed. The major-
ity of reported cases have involved single cases or families 
or small series of cases, and patients have been evaluated 
primarily by phenotype. The typical presentation in 
infancy is with symptoms and signs of diffuse lung disease, 
including tachypnea, retractions, and hypoxemia in 
room air; digital clubbing and failure to thrive may also 
occur.84,122 Most affected infants do not have symptoms 
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at birth, although neonatal lung disease similar to that of 
RDS has been observed and may prove fatal in the neo-
natal period.123 A family history of interstitial lung disease 
or pulmonary fi brosis may provide a clue to the diagnosis, 
although sporadic disease may result from de novo 
germline mutations, or family members may be asymp-
tomatic.124–127 Of reported patients, the majority have pre-
sented in the pediatric age group. In one study of adults 
with idiopathic pulmonary fi brosis (n = 89) or nonspecifi c 
interstitial pneumonia (n = 46) evaluated for SFTPC 
mutations, only one patient was found to have an SFTPC 
mutation likely related to lung disease.128 Two commonly 
occurring SNPs that alter the pro-SP-C coding sequence 
in codons 138 (threonine [T] or asparagine [N]) and 186 
(serine [S] or asparagine) have been identifi ed. These 
two variants are in strong linkage disequilibrium with 
one another, and the 186N variant was found with 
increased frequency in patients with RDS compared 
with controls in one study.129 This variant is of particular 
interest, as 186S has been strongly conserved during evo-
lution, and several SFTPC mutations associated with 
lung disease have been identifi ed in nearby codons. An 
additional preliminary study noted an association with 
pulmonary fi brosis in adults.130 Further studies are needed 
to confi rm or refute these interesting preliminary 
observations.

As opposed to SP-B defi ciency in which all known 
mutations would be predicted to preclude or reduce the 
amount of mature SP-B, all known mutations in SFTPC 
associated with human disease have been missense muta-
tions, small insertions or deletions, splicing mutations that 
would maintain the reading frame, or frame shifts in the 
fourth or fi fth exons that are likely to be associated with 
stable transcripts.84,122–127,131–133 Almost all of the mutations 
have mapped to the carboxy-terminal domain of pro-SP-
C. Thus the mutations are ones that would be predicted 
to result in the production of an abnormal form of pro-
SP-C. Furthermore, mutations have generally been found 
on only one allele. When familial, the lung disease associ-
ated with SFTPC mutations is inherited in an autosomal 
dominant pattern, with a variable age of onset of lung 
disease, ranging from early infancy to the fi fth or sixth 
decade of life.102,125 Whether there is complete penetrance 
of the lung disease associated with SFTPC mutations is 
uncertain. Individuals with mutations who do not have 
lung disease have been reported, but in general these 
individuals have not been formally evaluated for lung 
disease and may simply have a later onset of disease.

The exact mechanisms whereby SFTPC mutations 
result in lung disease are unclear. The abnormal pro-SP-
C resulting from the mutation may be targeted for deg-
radation, and as pro-SP-C self-associates in the secretory 
pathway, this may result in degradation of wild-type pro-
SP-C as well, leading to SP-C defi ciency due to a domi-
nant negative mechanism.113,134,135 In support of this, 

reduced pro-SP-C and mature SP-C have been demon-
strated in lung tissue associated with an SP-C mutation 
that resulted in the skipping of the fourth exon (Δexon 
4), and expression of this mutation in vitro resulted in its 
rapid degradation that was prevented by inhibitors of 
proteasome-mediated degradation.131,134,136 Surfactant 
protein C null mice also develop lung disease in a strain-
dependent fashion, with progressive interstitial lung 
disease and aging.137,138 Thus SP-C defi ciency may be 
involved in the pathogenesis of lung disease in some 
patients with SFTPC mutations, although precisely how 
defi ciency of mature SP-C results in chronic lung disease 
is not known. Although complete SP-C defi ciency does 
not result in RDS at birth, SP-C-defi cient surfactant 
may not be as effective at maintaining low surface tension 
at low lung volumes and may be particularly important 
if SP-B levels are also decreased, and thus relative 
defi ciency of SP-C may lead to intermittent alveolar atel-
ectasis over time.137,139 In addition, SP-C binds lipopoly-
saccharide, and SP-C defi ciency may therefore lead to an 
increased infl ammatory response.140–142

A second mechanism whereby SP-C mutations may 
result in lung disease is direct toxicity due to the effects 
of mutated pro-SP-C. Proprotein SP-C contains the 
extremely hydrophobic epitopes of mature SP-C, and 
mutations in pro-SP-C may allow exposure of these epi-
topes with secondary deleterious effects. Transfection of 
a construct expressing an SP-C missense mutation 
(L188Q) into lung epithelial lines in vitro resulted in 
cytotoxicity as demonstrated by lactate dehydrogenase 
release.102 Abnormally folded pro-SP-C due to mutations 
could also form aggregates, and abnormal accumulation 
of pro-SP-C containing the SP-C Δexon 4 mutation has 
been demonstrated in vitro and in lung tissue from at 
least one infant with a small in-frame deletion in 
SFTPC.126,136 Pro-SP-C molecules containing mutations 
are likely to be misfolded and hence trigger the unfolded 
protein response in the endoplasmic reticulum with resul-
tant endoplasmic reticulum stress. Transfection of con-
structs expressing the SP-C Δexon 4 mutation identifi ed 
in index patients has been shown to be associated with 
induction of the unfolded protein response and with sec-
ondary apoptosis of alveolar epithelial cells.134,143 In addi-
tion, cells stably transfected in vitro with constructs 
expressing the SP-C Δexon 4 mutation that induced a 
state of chronic endoplasmic reticulum stress were more 
vulnerable to viral infection, thus suggesting a mecha-
nism by which environmental insults could trigger or 
exacerbate lung disease primarily due to a genetic mech-
anism.144 The potential toxic effects of abnormal pro-SP-
C have also been demonstrated in vivo in that transgenic 
mice expressing the human SP-C Δexon 4 mutation had 
markedly disrupted lung development that correlated 
with amount of transgene expression.134 Although there 
are currently no specifi c treatments for the lung disease 
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due to SFTPC mutations, agents that facilitate traffi cking 
through the secretory pathway that are currently under 
evaluation for other genetic lung diseases may also be of 
benefi t for SP-C-related lung disease.136,145,146

Member A3 of the Adenosine 
Triphosphate Binding Cassette 
Family of Proteins

ABCA3 is a member of the ATP binding cassette family 
of proteins, transmembrane proteins that hydrolyze ATP 
in order to translocate a wide variety of substrates across 
biologic membranes.147 The gene encoding ABCA3 
(ABCA3) is located on the short arm of chromosome 16 
and spans over 80 kb, containing 33 exons.148 The gene 
directs the synthesis of a 1,704 amino acid protein and is 
considered a full transporter with 12 membrane spanning 
domains and 2 nucleotide binding domains. A number of 
tissues express ABCA3, but it is highly expressed in lung 
tissue where it is localized to the limiting membrane of 
lamellar bodies.12,57 As the ABCA subfamily is often 
involved in transport of lipids, this localization for 
ABCA3 is consistent with a role for ABCA3 in importing 
lipids needed for surfactant function into lamellar 
bodies.149,150

The importance of ABCA3 in surfactant metabolism 
has been demonstrated by the observation that muta-
tions on both ABCA3 alleles resulted in severe lung 
disease in full-term newborns who had clinical and radio-
graphic features of surfactant defi ciency.13,151–153 In addi-
tion, surfactant isolated from bronchoalveolar lavage 
specimens of children who required lung transplantation 
for ABCA3 defi ciency was shown to have markedly 
reduced ability to lower surface tension and an abnor-
mal composition, with a particular reduction in phospha-
tidylcholine content observed.152 In an in vitro study, 
downregulation of ABCA3 expression was associated 
with decreased lipid uptake into lamellar bodies of alve-
olar type II cells, and cells transfected with constructs 
expressing forms of ABCA3 containing mutations iden-
tifi ed in patients had reduced uptake of lipids into lyso-
somes compared with cells transfected with wild-type 
ABCA3.154 Collectively these observations support a 
fundamental role for ABCA3 importing surfactant lipids 
into lamellar bodies, although the exact substrates remain 
to be determined. Thus quantitative and functional defi -
ciencies of surfactant components likely contribute to 
the symptoms of surfactant defi ciency observed in 
ABCA3-defi cient infants. As lamellar body biogenesis is 
interfered with, processing of pro-SP-B and pro-SP-C to 
their mature forms may also be hindered in this condi-
tion, leading to defi ciencies of these surfactant compo-
nents as well.151

Although ABCA3 defi ciency is the most recently iden-
tifi ed inborn error of surfactant metabolism, it is likely a 
more common cause of disease than SFTPB or SFTPC 
mutations. ABCA3 mutations accounted for a combined 
24 of 35 cases of unexplained respiratory failure in two 
reports13,151 and for 8 of 12 infants who underwent lung 
transplantation in the fi rst year of life for severe lung 
disease of unknown etiology.152 Well over 100 different 
ABCA3 mutations have been identifi ed13,151–153 (and 
L. Nogee, unpublished observations) and markedly 
reduced or absent ABCA3 expression has been demon-
strated in the lung tissue of affected infants consistent 
with disease resulting from a loss-of-function mecha-
nism.151 Aside from mutations that completely preclude 
ABCA3 expression, mutations may also result in abnor-
mal intracellular routing of ABCA3 or decreased func-
tional activity.154,155 Although initial studies focused on 
children with fatal or very severe lung disease, survival 
with chronic interstitial lung disease is possible.153 Because 
identifi ed patients with interstitial lung disease shared 
one particular ABCA3 mutation, this may be a result of 
partial defi ciency, and genotype may thus be important 
in predicting phenotype in this disease. Additional studies 
are needed to evaluate this hypothesis.

Detailed studies of the clinical features associated with 
ABCA3 mutations have not yet been published. From the 
initial reports, the phenotype of patients with ABCA3 
defi ciency often resembles that of infants with SP-B defi -
ciency, with severe neonatal lung disease resembling 
RDS in premature infants.13,151 As with SP-B defi ciency, 
however, some infants may have considerably milder 
neonatal lung disease, and yet others may not have symp-
toms in the neonatal period.153 The initial lung disease 
may also improve with time such that affected infants are 
able to be discharged. The clinical picture associated with 
ABCA3 defi ciency thus overlaps that associated with SP-
B defi ciency and SP-C mutations.

The incidence and prevalence of lung disease due to 
ABCA3 defi ciency are unknown. Population studies have 
not yet been done on the frequency of ABCA3 mutations 
in the general population. It is likely that the disease is 
rare, but, particularly if milder variants contribute to 
chronic lung disease, it may prove to be more common 
than has initially been appreciated.

Lung Pathology Associated 
with Inborn Errors of 
Surfactant Metabolism

The lung pathology changes associated with all three 
single gene disorders disrupting surfactant metabolism 
are similar and overlapping (Figure 54.1) These include 
marked alveolar type II cell hyperplasia, interstitial 
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Figure 54.1. Lung histopathology of inborn errors of surfactant 
metabolism. (A,B) Representative histopathology of two chil-
dren with SFTPB mutations. Features of pulmonary alveolar 
proteinosis (PAP) with eosinophilic, proteinaceous material 
fi lling the alveoli (arrow) are shown in A. Features of desqua-
mative interstitial pneumonitis with accumulation of foamy 
alveolar macrophages in the alveoli (arrow) are shown in 
B. (C,D) Representative histopathology of two children with 
SFTPC mutations. Features of nonspecifi c interstitial pneumo-
nitis with thickened alveolar septa are shown in C. An example 
of chronic pneumonitis of infancy with both macrophages and 

granular, eosinophilic material in the alveoli (arrow) is shown 
in D. (E,F) Representative histopathology of two children with 
ABCA3 mutations. Features of PAP (arrow) are shown in 
E. Features of desquamative interstitial pneumonitis (arrow) 
are shown in F. Features of alveolar proteinosis with eosino-
philic material and/or foamy macrophages and prominent type 
II cell hyperplasia (arrowheads) are highlighted in B and F, and 
thickened alveolar septa are variably present in all three types 
of disorders. (Hematoxylin and eosin stains. All original mag-
nifi cations, ×10; bar = 20 μm.)
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thickening with variable amounts of fi brosis, and numer-
ous foamy macrophages in the airspaces. A prominent 
feature can be the accumulation of granular, eosinophilic 
material fi lling distal airspaces that stains positively 
with periodic acid–Schiff reagent or alveolar proteinosis 
material. Although fi ndings of alveolar proteinosis were 
prominent in the index patient with SP-B defi ciency and 
provided an important clue to the mechanism, similar 
fi ndings may be seen with other inborn errors of surfac-
tant metabolism due to mutations in the SFTPC or 
ABCA3 genes. The composition of this material is also 
likely different in the different disorders and differs from 
the proteinosis material observed in older children and 
adults who have alveolar proteinosis due to an immune 
mechanism.156 The proteinosis material may be minimal 
in appearance and the sensitivity and specifi city of this 
fi nding for each of the disorders has not been critically 
examined. The term congenital alveolar proteinosis is 
thus probably best avoided in describing these 
conditions.

In older children with the clinical picture of intersti-
tial lung disease histopathologic diagnoses associated 
with SFTPC and ABCA3 mutations have included 
chronic pneumonitis of infancy, nonspecifi c interstitial 
pneumonia, and idiopathic pulmonary fi brosis.124,125,131,133 
Usual interstitial pneumonia has also been reported in 
older individuals in association with an SFTPC muta-
tion.127 Desquamative interstitial pneumonia has also 
been reported as the histologic diagnoses in children 
with ABCA3 and SFTPC mutations, although the course 
is much more severe than with desquamative interstitial 
pneumonia observed in adults.153,157,158 The majority of 
these children were given this diagnosis before the 
description of chronic pneumonitis of infancy.159 
Although it has not been formally studied, it is likely 
that histology fi ndings will be unable to discriminate 
between the three known conditions. Recently the term 
surfactant dysfunction mutation has been used to encom-
pass the changes found in all three disorders, and it is 
also likely that other genetic mechanisms leading to 
disruption of surfactant metabolism will yield similar 
pathology.160

Specifi c immunostaining of the lung may be helpful in 
establishing the specifi c diagnosis of SP-B defi ciency 
(Figure 54.2) With SFTPB mutations, absent or mark-
edly reduced staining for both pro-SP-B and SP-B may 
be observed, although, depending on the genotype, some 
staining for both may be detected.86 Reduced staining 
for SP-B may also be seen in association with ABCA3 
mutations, and hence absent staining for SP-B is not 
suffi cient for a specifi c diagnosis.151 However, because of 
the presence of large amounts of secreted aberrantly 
processed SP-C peptides, the extracellular material in 
SP-B-defi cient lung stains intensely with antibodies 

directed against pro-SP-C and appear to be a specifi c 
marker for this disorder.86 Specifi c staining for the sur-
factant proteins has not revealed a consistent pattern 
associated with SFTPC mutations. Proprotein SP-C may 
be readily detected in alveolar epithelial cells or may be 
markedly reduced or absent.125,131 Markedly reduced 
staining for pro-SP-C has also been observed with famil-
ial lung disease in which, however, no SFTPC mutations 
could be identifi ed.161

Ultrastructural studies may be very helpful in estab-
lishing a specifi c diagnosis. Electron microscopy of lung 
tissue from SP-B-defi cient children demonstrates specifi c 
changes within the lamellar bodies within type II cells. 
Instead of normally formed lamellar bodies with well-
organized layers and lamellae, the type II cells contain 
intracellular inclusions with poorly formed lamellae and 
vesicles of varying size (Figure 54.3).162,163 These obser-
vations are consistent with a function for SP-B in mem-
brane fusion and indicate a fundamental intracellular 
role for SP-B in lamellar body biogenesis. These abnor-
mal lamellar bodies appear characteristic for SP-B 
defi ciency.

ABCA3 is localized to the limiting membrane of 
lamellar bodies, and specifi c ultrastructural changes 
have also been observed in the type II cells of ABCA3-
defi cient infants.13,151,163–165 Normal-appearing lamellar 
bodies may appear to be absent, and instead the cyto-
plasm of alveolar type II cells contains many small, 
dense bodies that on higher magnifi cation may be seen 
to contain tightly packed membrane. An eccentrically 
placed electron-dense core in these small bodies may 
give them a “fried egg” appearance.165 Although only a 
limited number of studies are available, the fi nding of 
these bodies has had a very high correlation with the 
identifi cation of mutations in the ABCA3 gene, and they 
have not yet been reported in other conditions. 
However, the exact sensitivity and specifi city of this 
fi nding remain unknown. Anecdotal experience indi-
cates that some type II cells in infants with ABCA3 
mutations may have more normal-appearing lamellar 
bodies, and there are few data on the ultrastructural 
fi ndings in children with milder lung disease due to 
ABCA3 mutations. Currently, no consistent ultrastruc-
tural abnormalities in association with SFTPC mutations 
have been identifi ed. Some abnormally formed lamellar 
bodies were observed both in vitro and in vivo in associ-
ation with two SFTPC mutations, but normal lamellar 
bodies were also observed126,127 and additional study is 
needed. However, the ultrastructural fi ndings associated 
with SP-B and ABCA3 defi ciencies are so striking that 
the preparation of tissue for electron microscopy should 
be included in autopsies of children dying from neonatal 
respiratory disease or in biopsies of young infants with 
diffuse lung disease.166



Figure 54.2. Immunohistochemical staining for mature surfac-
tant protein B (SP-B) and proprotein surfactant protein C 
(pro-SP-C). (A,B) Specimens from a child with SP-B defi ciency 
showing absent staining for mature SP-B (A) and intense stain-
ing for pro-SP-C (B) of both alveolar epithelium and the intra-
alveolar material. (C,D) Specimens from a child with an SFTPC 
mutation showing robust staining for both mature SP-B (C) and 

pro-SP-C (D) that is confi ned to the epithelium. (E–H) Speci-
mens from two subjects with ABCA3 defi ciency. In one subject, 
staining for mature SP-B is severely reduced (E), whereas in 
the other there is robust staining for mature SP-B (G). Propro-
tein SP-C staining is robust in both subjects (F and H) and is 
confi ned to the alveolar epithelium. (All original magnifi ca-
tions, ×20; bar = 10 μm.)
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Figure 54.3. Electron micrographs of alveolar type II cells. (A) 
Normal lung, showing well-developed lamellar bodies (arrow) 
within alveolar type II cells. (B) Child with surfactant protein 
B defi ciency, demonstrating disorganized, large multivesicular 
bodies (arrow) in lieu of lamellar bodies. (C) Child with an 
SFTPC mutation, showing well-formed lamellar bodies (arrow) 

similar to those observed in normal lung (A). (D) Child with 
ABCA3 defi ciency, demonstrating small, dense bodies (arrows) 
with eccentrically placed electron-dense inclusions and tightly 
packed phospholipid lamellae (inset). (A–C, original magnifi ca-
tions, ×5,000; D, original magnifi cation, ×10,000; inset in D, 
×30,000.)

Genetic Testing

The identifi cation of single gene defects that cause both 
acute neonatal respiratory failure and chronic interstitial 
lung disease allows for potential diagnostic testing 
through analysis of genomic DNA for potential muta-
tions in these genes. Such testing has the advantage that 
it is noninvasive, potentially obviating the need for biopsy 
in an unstable patient, and can yield a specifi c diagnosis. 
Clinical testing is now available through Clinical Labora-
tory Improvement Amendments–certifi ed laboratories. 
The sensitivity of such testing in different clinical situa-
tions is unknown, the testing is not inexpensive and costs 

may not be covered by insurance, and results may take 
weeks to months to receive. The interpretation of such 
testing can be potentially problematic. It may not be pos-
sible to distinguish rare yet benign SFTPC variants from 
mutations responsible for disease, and it is apparent that 
not all ABCA3 mutations are detected by current 
methods. In the case of a child with lung disease of unclear 
etiology in whom only one ABCA3 mutation is found, it 
may be diffi cult to determine whether such an individual 
is affected with an unknown mutation on the second 
allele or whether is simply a carrier for an ABCA3 genetic 
variant that is unrelated to the cause of the lung 
disease.
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Other Proteins Important in 
Surfactant Metabolism Linked 
to Genetic Diseases

Alterations in two other proteins resulting in abnormali-
ties of surfactant expression have been reported in asso-
ciation with human lung disease. A single report associated 
infantile alveolar proteinosis and interstitial lung disease 
with abnormalities of the common β-chain of the GM-
CSF/IL-3/IL-5 receptors.167 The rationale for examining 
this protein was based on observations in genetically 
engineered mice that targeted disruption of either the 
ligand (GM-CSF) or common beta chain (βc) of the 
receptor resulted in a phenotype of alveolar proteinosis 
as the mice aged.168–171 In four infants examined, defective 
expression of the receptor was demonstrated on periph-
eral blood leukocytes, as well as decreased signaling for 
GM-CSF, but not G-CSF in vitro. Thus, these infants 
appeared to have a clear functional defect in this recep-
tor. However, in only one infant was an abnormality in 
the gene encoding βc identifi ed: a substitution of threo-
nine for proline in codon 602, which was found on only 
one allele and may well have represented a polymor-
phism. To date, no clear disease-causing mutations in this 
gene have been identifi ed, and no subsequent reports 
have appeared to confi rm these initial observations.

Thyroid transcription factor 1 (also known as Nkx2.1) 
is a homeodomain transcription factor that has been 
shown to be critical for pulmonary development and 
expression of SP-A, SP-B, and SP-C. Several reports 
have linked genetic causes of reduced amounts of TTF-1 
due to either deletion of a region containing the gene or 
loss-of-function mutations on one copy of the gene with 
neonatal respiratory disease with symptoms and signs of 
surfactant defi ciency.172–175 As TTF-1 is also expressed in 
extrapulmonary sites, not surprisingly these patients have 
had abnormalities in other organ systems, specifi cally 
transient neonatal hypothyroidism and central nervous 
system abnormalities. In general these patients have 
recovered from the neonatal lung disease, and lung 
pathology information is not available for these patients. 
Hypothyroidism and central nervous system abnormali-
ties have also been observed without any respiratory 
symptoms.176 Some have had recurrent pulmonary infec-
tions, possibly related to the reduced amounts of SP-A, 
although other explanations are also possible. The inci-
dence and prevalence of this disorder are unknown; only 
fi ve families have been reported in the literature.

Pulmonary Alveolar Proteinosis

Pulmonary alveolar proteinosis is a lung disease of insidi-
ous onset due to an accumulation of surfactant in the 
airspaces and was fi rst described in 1958.177 The accumu-

lation of material in the airspaces results in a restrictive 
lung defect with resultant hypoxemia and pulmonary 
symptoms. The disease is primarily seen in adults and may 
occur either in a primary form or secondary to a number 
of pulmonary insults, including infection and toxic inhala-
tion.156,178 The material accumulating in the lungs of 
patients with pulmonary alveolar proteinosis is rich in 
surfactant lipids and proteins, and lung lavage material 
from such patients was often the starting material for the 
purifi cation of the surfactant proteins.179,180 The surfactant 
material accumulates as the result of the decreased catab-
olism rather than increased production. Primary pulmo-
nary alveolar proteinosis in adults is now known to largely 
(if not entirely) be an autoimmune disease due to neu-
tralizing autoantibodies to GM-CSF.181–183 Such antibod-
ies have been found in both serum and bronchoalveolar 
lavage fl uid of affected patients. The absence of func-
tional GM-CSF interferes with alveolar macrophage 
function, leading to defective catabolism of surfactant 
and accumulation of the pulmonary alveolar proteinosis 
material in the airspaces.

Similar pathology can be seen in newborns and young 
infants with severe respiratory failure and has been 
termed congenital alveolar proteinosis. Although aspects 
of the pathology in these infants may be similar to that 
seen in adults with pulmonary alveolar proteinosis, the 
underlying causes are different; specifi cally, in young 
infants the disease is more likely due to the inborn errors 
of lung cell metabolism described earlier. As a result, the 
material accumulating in the lungs of these infants differs 
from that observed in adults, and the course of the disease 
differs, with a more rapid downhill course in young infants 
that is refractory to therapy. Alveolar proteinosis in young 
infants and children may also occur in children with lysin-
uric protein intolerance, a disorder of cationic amino acid 
transport due to mutations in the gene encoding the 
solute transporter SLC7A7.184,185 Children affected with 
lysinuric protein intolerance usually have other systemic 
symptoms, such as recurrent vomiting and failure to 
thrive, but the pulmonary disease may be the most promi-
nent feature and may prove fatal.

Conclusion

An intact pulmonary surfactant system is essential for 
normal respiratory function. Too little or too much sur-
factant can lead to profound lung disease, such as surfac-
tant defi ciency due to decreased production as a result of 
developmental immaturity causing RDS in newborn 
infants, and accumulation of pulmonary surfactant from 
decreased catabolism as a result of inactivation of GM-
CSF due to neutralizing antibodies leading to alveolar 
proteinosis in adults. The identifi cation of rare genetic 
variants in genes important in surfactant metabolism and 
correlation with the resulting phenotypes provides poten-
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tial insights into the role of their gene products in surfac-
tant function and support for polymorphic variants in 
these genes as having a role in more common pulmonary 
diseases.
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