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Propagation of Disturbances in AC 
Electricity Grids
Samyak Tamrakar1,2, Michael Conrath1 & Stefan Kettemann1,3

The energy transition towards high shares of renewable energy will affect the stability of electricity 
grids in many ways. Here, we aim to study its impact on propagation of disturbances by solving 
nonlinear swing equations describing coupled rotating masses of synchronous generators and motors 
on different grid topologies. We consider a tree, a square grid and as a real grid topology, the german 
transmission grid. We identify ranges of parameters with different transient dynamics: the disturbance 
decays exponentially in time, superimposed by oscillations with the fast decay rate of a single node, or 
with a smaller decay rate without oscillations. Most remarkably, as the grid inertia is lowered, nodes 
may become correlated, slowing down the propagation from ballistic to diffusive motion, decaying 
with a power law in time. Applying linear response theory we show that tree grids have a spectral gap 
leading to exponential relaxation as protected by topology and independent on grid size. Meshed 
grids are found to have a spectral gap which decreases with increasing grid size, leading to slow 
power law relaxation and collective diffusive propagation of disturbances. We conclude by discussing 
consequences if no measures are undertaken to preserve the grid inertia in the energy transition.

In order to cover the increasing human energy demand by renewable energy resources and to ensure that this 
energy will be available wherever and whenever it is needed, more efficient energy transport and storage technol-
ogies need to be developed. The fluctuations in generated power by wind turbines and solar cells - both in time 
and geographically - demand to explore new strategies to store energy on all time scales and to distribute the 
power in the grid smartly. At the same time, the spreading of critical disturbances throughout the grid has to be 
prevented to ensure the stability of the entire grid. Renewable energy resources fluctuate strongly in time on time 
scales as small as seconds. Moreover the inverter-connected wind turbines and solar cells provide no inertia1. 
This is in contrast to conventional generators, whose rotating masses hold inertia and thereby momentary power 
reserve available for the grid, which makes the grid resilient and prevents strong fluctuations of the grid frequency 
on time scales of several seconds2,3. As the inertia in the grid keeps decreasing with higher share of renewables, 
the grid is responding on shorter time scales to disturbances. It is therefore essential to understand the impact of 
this development on the stability of electricity grids. In this article, we aim to find out if and how the relaxation 
and propagation of disturbances in AC grids is modified when the grid inertia from the rotating masses of gener-
ators is decreasing. We focus on the spreading of weak disturbances, which do not cause by themselves a failure 
of transmission lines or generators.

The dynamic interaction and response of generators and consumers is studied modeling the grid as a network 
of nonlinear oscillators2–7. These nonlinear dynamic power balance equations, so called swing equations, describe 
the dynamics of coupled rotating masses by a system of coupled differential equations for local rotor angles φi, 
where i denote the grid nodes. We aim to analyze the propagation of disturbances in AC grids on short time 
scales up to several seconds. Therefore, we do not consider control measures, which typically set in on longer 
time scales3. We expect that a better understanding of this short time transient dynamics will then contribute to 
the optimization of primary and secondary control measures1–3. Furthermore, we expect that the understanding 
of the spreading of small disturbances will be important for the design of improved power system stabilizers 
(PSS). Thereby it can contribute to prevent the occurrence of larger disturbances, whose spreading could result in 
overload and failure of transmission lines, and cause cascading failures. We note that the dynamics of cascading 
failures involves additional mechanisms, such as the overheating of transmission lines. While most studies of 
cascading failures are based on stationary power balance calculations or simplified topological flow models such 
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as the messenger model8–14 and our own work based on nonlinear power flow calculations15, only few model their 
dynamics16,17, introducing for example a time scale for overheating of transmission lines.

In this article, we solve the nonlinear swing equations numerically and explore how a local perturbation 
propagates throughout the grid. The origin of disturbances can be fluctuations in generating power or sudden 
changes of transmission line capacitance. We analyze these results, employing analytical results obtained from a 
linear response theory, mapping the swing equations on discrete linear wave equations for small perturbations18. 
Depending on the geographical distribution of power, power transmission capacity and grid topology we find that 
the disturbance may either decay exponentially in time with the decay rate of a single oscillator Γ0, or exponen-
tially with a smaller decay rate Γ < Γ0, or, even more slowly, decaying with a power law in time. Such a slow power 
law decay is found to arise together with slow, diffusive propagation18.

Model Description
Grid Topologies.  Aiming at a systematic approach, we consider three different grid topologies. The Cayley tree, 
Fig. 1(a), resembles distribution grids which are operated in a tree-like fashion to pinpoint and repair failures more 
easily. Branches grow outward from a central node with branching number b, forming l branching levels. Tree grids 
are characterized by the distance between neighbored nodes a, the total number of nodes N, branching number b 
and level l. The degree di, the number of links connecting node i to any other node is an important network charac-
teristic. For Cayley trees it is d = b + 1 except at outer edge nodes where d = 1. The square grid, Fig. 1(b), is a meshed 
grid, used as basic model for transmission grids with their strict redundancy demand to guarantee continuing oper-
ation when a single line fails (n-1 criterion), characterized by distance a, linear grid size L and number of nodes N = 
(L/a)2. Their degree is d = 4, except at edges (d = 3) and corners (d = 2). Thirdly, we use the open-source SciGRID 
dataset19 of the German transmission grid, Fig. 1(c), as a real-world example of a highly meshed grid. Excluding 
island nodes, the largest connected network of the three highest voltage levels, 400 kV, 380 kV, 220 kV and some 
110 kV lines has N = 502 nodes and 673 links. Its degree di has a wide distribution, Fig. 2, with average degree 〈di〉 = 
2.7 and typical degree = = . .⟨ ⟩d d 4 1typ i

2  Excluding singly connected nodes (which are mostly artifacts since the 
data set does not include the transnational European grid) we get an average degree 〈di〉 = 3.5.

Dynamic AC Grid Model.  AC transmission grids are three-phase systems which are typically loaded and 
operated symmetrically, so that the power flow balance equations depend on a single phase, only. Neglecting 
Ohmic losses along the lines, which are small in high voltage transmission grids, we assume purely inductive 
transmission lines with combined inductance Lij between nodes i and j with power capacity Kij = |Vi||Vj|/(ωLij) 
where Vi, Vj are the voltages at nodes i and j. ω = 2πf with grid frequency f = 50 Hz. We assume constant voltage 
amplitude V throughout the grid, Vi = V exp(ıΦi). Since voltage amplitudes change typically on larger time scales 
than phases, we will focus on the dynamics of phases Φi. Fixing the voltage V there are no dynamic terms in the 
reactive power balance equation (they appear in higher order when voltage dynamics in addition to the phase 
dynamics is considered3), so that we need to consider active power balance equations, only. Since our main goal 
is to study the influence of grid topology and inertia on the phase dynamics we assume equal inductance L and 
power capacity K = V2/(ωL), for all links, yielding the power capacity between nodes i and j as Kij = KAij, where 
Aij is the grid adjacency matrix. Thereby, the stationary active power flow balance equations are obtained from 
Kirchhoff ’s laws as20

Figure 1.  Grid topologies: (a) Cayley tree, l = 5 branching levels, branching number b = 3, N = 484 nodes 
and 483 links. (b) L = 22 square grid with N = 484 nodes, 924 links, random arrangement of generators and 
consumers. (c) German transmission grid with N = 502 nodes, 673 links19. The size of the square and tree grid 
is chosen to be comparable to the German grid. Red circles represent generators, blue squares motors. The 
yellow circle marks the node where a perturbation is applied.



www.nature.com/scientificreports/

3SCIEnTIfIC REPOrTS |  (2018) 8:6459  | DOI:10.1038/s41598-018-24685-5

∑ ∑φ φ= − = .P K A Psin( ), 0
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However, as loads and generated power vary in time, that power balance may become violated and the nodal 
phases become dynamic. Denoting the solution of the stationary balance equation, equation (1) by the phase shift 
θ ,i

0  we can write

φ ω θ α= + +t t t( ) ( ), (2)i i i
0

where αi(t) are the dynamic phase shifts. The grid nodes are either connected to synchronous generators with 
inertia Ji or to loads which can be motors with a finite inertia, being modeled as synchronous motors3,21. The 
electric power Pi, is either positive (generator) or negative (motor). In order to be able to study the dependence on 
system parameters and topology we take homogenous parameters Pi = siP, with si ∈ {+, −} and Ji = J. The phase 
dynamics is governed by the balance of changes in kinetic energy, energy dissipation and electric power exchange 
with adjacent grid nodes, yielding the swing equations4–6,21.
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where γ is a damping constant, Fij = Kij sin(Φi − Φj) the power flow in the transmission line between nodes i and j.
If the nodes would not be coupled by the transmission lines, the phase at each node would decay exponentially 

fast with the local relaxation time τ = J/γ, which increases with inertia J and decreases with damping parameter 
γ. Therefore, when studying the temporal and spatial dependence of αi, it is convenient to scale the time with 
relaxation time τ. Inserting equation (2) into equation (3) one finds for small phase velocities, α ω∂  ,t i  the 
swing equations,

∑τ α τ α θ θ α α∂ + ∂ = Π − Π − + −s A2 sin( ),
(4)

t i t i i P K
j

ij i j i j
2 2 0 0

with dimensionless parameters ΠP = JP/(γ2ω) and ΠK = JK/(γ2ω).

Results
Transient Dynamics.  In order to study the transient behavior of AC grids perturbed by local disturbances, 
we solve the nonlinear swing equation (4) on the different grid topologies of Fig. 1 as function of the set of param-
eters (τ,ΠK, ΠP).

Stationary solution.  Before any perturbation is applied, we calculate the stationary state θi
0 at every node i in the 

grid. This is accomplished by first obtaining a solution of equation (1) for small phase differences linearizing 
θ θ θ θ− → − .sin( )i j i j

0 0 0 0  Thereby equation (1) can be rewritten by introducing the weighted graph Laplacian 
matrix Hij = −Kij + δij∑l Kil, as

∑ θ θ θ= − ⇒ = ⋅P K P H( ) ,
(5)

i
j

ij i j
0 0 0

where P and θ0 are vectors, whose i -th component is the power and stationary phase at node i, respectively. H has 
at least one Eigenvalue zero. Therefore, we need the pseudo inverse H+, yielding θ0 = H+ ⋅ P. We use this solution 
as initial condition for a numerical root solver to find the solution of the nonlinear equation, equation (1). This 
way, the numerical accuracy of the stationary solution is maximized to make sure that we use as initial condition 
for the swing equations the stationary state.

Figure 2.  Distribution of node degree di for German transmission grid.
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Numerical Solution of Swing Equations.  Having found the stationary phases θi
0 as solutions of equation (1), we 

insert them into swing equation (4). Next, we solve these equations when the AC grid is perturbed by a local 
disturbance as outlined in detail in Supplementary I. As disturbance of the stationary state we increase the power 
for a short time interval 0 ≤ t ≤ Δtpert at the grid node marked with ‘x’ Fig. 1. We choose as small perturbing 
power one per mille of the initial generator power P. The resulting transient behavior of phase deviations α(t) is 
shown in Fig. 3 for the Cayley tree grid of Fig. 1(a) as function of rescaled time t* = t/τ for parameters (ΠK = 10, 
σ = ΠP/ΠK = 0.08). We define the distance between any two nodes ⁎rij  as the number of lines in the shortest path 
connecting them22. We see that the phase at the disturbed node, r* = 0 is perturbed first, reaching a maximum 
after a delay time, decaying then in an oscillatory manner. Phases of nodes further away from the origin of the 
disturbance are perturbed later and reach smaller amplitudes. We analyze this temporal and spatial propagation 
of the perturbation quantitatively below. Since we are interested in the propagation of small disturbances which 
do not destabilize the system, we review next the conditions for stability in order to make sure that we choose the 
size of the disturbance accordingly.

Stability.  Without disturbance, the criterion for stable (allowed) and unstable (forbidden) parameters ΠP, 
ΠK is the existence of a non-complex solution to stationary state equation (1). Thus, the ratio σ = ΠP/ΠK deter-
mines whether parameters are allowed. A critical value σc exists which may depend on grid topology and power 
distribution. If there are no clusters of consumers or clusters of generators, the critical value at node i is given by 
σci = di, where di is the node degree. Thus, the critical value, below which the whole grid is stable, is given by σc = 
min(di). For a general distribution of Pi there can be clusters of generators or consumers and the critical value σc 
is determined by the size and form of these clusters. If a cluster of generators has total power PC = ∑cluster Pi, with 
effective degree dC, as obtained by counting the number of consumers which are directly coupled to that cluster, 
the critical value is given by σc = min(P dC/PC). As outlined in the article in Supplementary section II the damp-
ing term and therefore the parameter τ = J/γ determines the size of the basin of attraction, if a stable fixed point 
exists, that is for σ < σc. Outside of the basin of attraction the system is attracted to unstable fixed points, so called 
limit cycles. For large damping there can be a regime where there is no coexistence with limit cycles and the whole 
phase space is stable, see f.e. refs23,24 for a review. Therefore, depending on the magnitude α of the perturbation 
it can destabilize the grid already at σ*(α) < σc. In the Supplementary section II. we derive a typical upper limit 
for the size of the perturbation α before it kicks the system out of the stable region and find that the disturbance 
indeed destabilizes the grid already at values σ*(α) < σc. Only in the limit, when the perturbation amplitude is 
vanishing we recover σ*(α → 0) = σc.

Classification of Transient Dynamics: Parametric Phase Diagrams.  In order to analyze the tran-
sients we calculate absolute values of the power flow change in the transmission line between nodes i and j, 
Δ = | − |F r F r F r( ) ( ) ( ) ,ij ij ij

0  as averaged over all lines at a distance r from the disturbance and divided by its maxi-
mum value,

Δ = Δ 〈Δ 〉 .⁎ ⁎ ⁎ ⁎ ⁎ ⁎f r t F r t F r t( , ) ( , ) /max( ( , ) ) (6)kl
t

kl

In Fig. 4 we show examples for transient dynamics Δf (r*, t*) in three grid topologies for different values ΠK, 
σ. We next varied parameters ΠK and σ in small steps. Identifying all parameters with unstable solutions, we find 
unstable parameter regions σ σ> ,c  shown in red for the tree grid in Fig. 5(a), in (b) for the square grid with ran-
dom arrangement of consumers and generators (the result for a periodic arrangement is shown in Supplementary 
Fig. 3), and in Fig. 5(c) for the German transmission grid. The critical values of σc are found to depend on grid 
topology: σc = 0.2 for the Cayley tree grid, σc = 2.00 for the square grid with periodic arrangement, σc = 1.25 with 

Figure 3.  Phase perturbation α(r*, t* = t/τ) for b = 3 Caylee tree grid at distances r = r*/a (ΠK = 10, σ = ΠP/ΠK 
= 0.08).
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random arrangement and σc = 0.33 for the German transmission grid. In stable regions we identify three quali-
tatively different transient behaviors: The perturbation may decay exponentially fast (FE) with local relaxation rate 
Γ0 superimposed by oscillations, as seen in Fig. 4(a) in the tree grid. All parameter sets showing FE behavior are 
plotted in Fig. 5(a–c) as green circles. More examples for fast exponential transients are shown in Supplementary 
Fig. 2(d–f). Secondly, we observe exponential decay with a smaller relaxation rate Γ < Γ0 for a large interval of 
time τ− t t0  as seen in Fig. 4(b) for the tree grid, d) for the square grid and f) for the German grid for the 
parameter sets shown in the phase diagrams Fig. 5(a–c) as yellow squares. Green shading denotes areas where fast 
relaxation (FE) is expected to occur, as limited by the dashed lines in Fig. 5(a,b), corresponding to the analytical 
result, equation (16) for the tree grid and to equation (11) for the square grids, respectively. For the German grid, 
we indicate the boundary of that region in Fig. 5(c) by a dotted line, according to numerical results. The yellow 
shaded areas in Fig. 5(a,b) show where slow relaxation (SE) is expected to occur, in good agreement with the 
analytical line. The slight inconsistency is in a region where we observe only small deviations of Γ from Γ0 well 
within the estimated error bars of the numerical results. We plot the parametric dependence of the relaxation rate 
Γ(σ) in Fig. 6 for b = 3 Cayley tree in units of Γ0, as obtained by fitting the transients with an exponential decay 
(error bars denote the range of Γ which provided good fitting to an exponential decay). Thirdly, we observe an 

Figure 4.  Power flow change Δf (blue) as function of time t* = t/τ at r* = 0, disturbance δP = 0.001K for  
(a),(b) Cayley tree, (c), (d) square grid and (e), (f) German transmission grid with random arrangement of 
generators and motors. The transients are fitted to exponential and power law functions (red) as indicated.
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even slower decay with a power law in time in square grids and in the German grid, as seen in Fig. 4(c) for a 
square grid and Fig. 4(e) for the German grid. That power is found to be close to 2, which is in very good agree-
ment with the diffusive behavior of the change in power flow Δf(t) obtained for a square grid by an analytical 
derivation18, as reviewed in the next section, equation (13). The numerical results indicate that such diffusive 
behavior may occur also in other meshed grids, as the example of the German grid at small values of the param-
eter ΠK < 2 shows, Fig. 4(e). Thus, as the inertia J and thereby ΠK is lowered, more nodes become correlated and 
the spreading of a disturbance is slowed down to a collective diffusive spreading for times τ>t .

Spatial Propagation of the Disturbance.  Next, we examine the spatial propagation of disturbances. If it 
propagates ballistically, it moves with velocity v, so that it reaches a node at distance r after time t according to r = 
v(t − t0), where t0 is the time when it occurs first. Diffusion corresponds to areal spreading, so that a node at dis-
tance r is reached according to r2 = 4D(t − t0) with diffusion constant D. Localization occurs when the distur-
bance does not spread beyond a certain localization length ξ, never reaching nodes at distances ξ> .r  Let us start 
by analyzing the propagation in square grids with L = 22 and random arrangement of generators and motors. In 
Fig. 7 we show numerical results for σ = 0.1 for the arrival time t* = t/τ (after initial disturbance δΠP = 0.001ΠK 
occurs at time t0 = 0s), which the power disturbance needs to reach nodes at geometrical distance r* = r/a, where 

= +r r r( )x y
2 2 1/2 (results for distances r, defined as the minimal number of links connecting two nodes, are shown 

in the Supplementary). We define the arrival time as the time, when the phase deviation αi exceeds a threshold αth 
= 10−6δΠP at a node at distance r. In Fig. 7(a) we plot results for ΠK = 105 together with t* = cr*, where c = 0.0034 

Figure 5.  Phase diagrams as function of ΠK and σ/σc. Numerically verified parameters that make the grid 
unstable (Red triangles), with fast exponential (FE) (Green circles), with slow exponential (SE) (Yellow squares) 
and power law (PL) decay (Blue diamonds). Red, green and yellow shaded regions are unstable (red), have FE 
(green), SE (yellow), PL (blue) decay. Dashed black line in figure (a) phase boundary between FE and SE decay, 
equation (16). Dashed black line in figure (b) equation (11). Dotted black lines in figures (b) and (c): numerical 
results.
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Figure 6.  Decay rate Γ(σ) in units of Γ0 in the b = 3 Cayley tree, obtained by fitting transients with exponential 
decay.
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is fitted (red line). According to the analytical result it propagates for Π > ΠK K
s  ballistically with the velocity given 

by equation (12), as derived in the next section. We plot t* = r*/(vτ/a), as the dotted red line. Thus, we can confirm 
quantitative agreement with ballistic motion. Here, ΠK

s  is given for the square grid by equation (11), as plotted in 
the phase diagram Fig. 5, the dashed line. b) for smaller inertia, ΠK = 10, we observe a crossover behavior where 
the data in Fig. 7(b) fits neither ballistic nor diffusive propagation well. For ΠK = 0.1, we find in Fig. 7(c), that the 
arrival time agrees with diffusive motion, t* = cr*2 where we fitted c = 1.1083 (pink line), while the ballistic for-
mula (straight lines) do not fit the data. Using the analytical result for the arrival time t* = r*2/(4D)fth(r), where 
fth(r) is a logarithmic correction, which depends on threshold value αth, as derived in Supplementary III, we find 
that it provides a good lower bound to the data (pink dashed line).

In Fig. 8 we show for the german transmission grid the time t* = t/τ which a power disturbance, initially at 
the node marked by a cross in Fig. 1, needs to reach a node at distance r* = r/a. For σ = 0.1 and ΠK = 105 we fit 
the numerical results with the ballistic formula t* = cr* with slope c = 0.0062 (red line), and compare it with the 
analytical value for velocity v, equation (12) (dashed red line). We see that the analytical formula provides a lower 
bound to the data, yielding evidence for ballistic motion for some nodes, until the node distance r = 9, which 
corresponds to the shortest path length from the source of the disturbance to the boundary of the german grid. 
The disturbance is seen to reach other nodes later, indicating anisotropy in the german grid. For (b) ΠK = 10 we 
show the fitted curves for ballistic (red line) and diffusive motion (pink line) and analytical curves (red and pink 
dashed lines). While diffusive spreading is fitting some nodes, the disturbance needs more time to reach other 
nodes, which is another consequence of anisotropy. For (c) ΠK = 0.1, corresponding to low inertia in the grid, 
we show the analytical curves for ballistic (red dashed line) and diffusive motion (pink dashed line). The scatter 
of the results for different nodes at distance r is too large for a meaningful fit. The analytical formula for diffusive 
spreading is seen to provide a good lower bound for the data. Thus, we find strong indications in the german 

Figure 7.  Time t* = t/τ after initial disturbance δΠ = 0.001ΠK, occurring at t0 = 0s, which perturbation needs 
to reach nodes at geometrical distance r* = r/a in square grid (L = 22a) with random arrangement of generators 
and motors, σ = 0.1, (a) for ΠK = 105, fitted to ballistic equation t* = r*/(vτ/a) (red line), and analytical with 
equation (12) (dashed red line). (b) for ΠK = 10. (c) for low inertia ΠK = 0.1 fitted with ballistic (red line) and 
with diffusive formula t* = r*2/(4D) (pink line). We show analytical curves for ballistic (red dashed line) and 
diffusive spreading (pink dashed line).

Figure 8.  Time t* = t/τ a disturbance needs to propagate distance r* = r/a for german transmission grid  
(σ = 0.1), (a) for ΠK = 105 fitted with t* = cr*, c = 0.0062 (red line), and compared with c = 1//(vτ/a) with 
velocity v, equation (12) (dashed red line). For (b) ΠK = 10 we fit the data with the ballistic (red line) and with 
the diffusive formula t* = cr*2, c = 0.0424 (pink line). For comparison, we show analytical results for ballistic 
(red dashed line) and diffusive spreading (pink dashed line). (c) for low inertia ΠK = 0.1 we show analytical 
curves for ballistic (red dashed line) and diffusive motion (pink dashed line).



www.nature.com/scientificreports/

8SCIEnTIfIC REPOrTS |  (2018) 8:6459  | DOI:10.1038/s41598-018-24685-5

grid that for low inertia the collective dynamics of nodes results in diffusive spreading of the disturbance. The 
spreading is more strongly delayed for some nodes, and there are indications of localization of disturbances in 
certain directions since some nodes do not become excited above the threshold within the observation time. We 
also note that for some nodes the relaxation to a stationary state did not take place before the signal started, see 
the Supplementary material for more details.

On the Cayley tree grid the time t* = t/τ the power disturbance needs to reach a node at distance r* = r/a for 
power ratio σ = 0.1 is shown in Fig. 9. For a) ΠK = 105 we fitted the numerical results with the ballistic formula t* 
= r*/(vτ/a) (pink line), and the quadratic formula (dashed pink line). As shown in the next section, the quadratic 
dependence t* = cr*2, where c is a constant, is due to the quadratic dispersion of the Eigen modes of the general-
ized Laplacian on the tree grid. It fits for b) ΠK = 10 the numerical data even better. Note that this diffusion like 
dependence occurs at values of ΠK, where we observed fast exponential decay. This is explained in the next sec-
tion. Note also that for both ΠK = 105 and ΠK = 10 the spreading is isotropic in all directions, as the comparison 
between node resolved (full symbols) and same distance r node averaged (white symbols) shows. As the inertia 
is lowered, there appears a strong anisotropy at large distance, however, as the results for ΠK = 0.1 show. Thus, 
we find for small inertia anisotropic spreading, while the disturbance still decays exponentially in time. This is 
explained in the next section by a topologically protected spectral gap in treelike grids.

Linear Response theory and Spectral Analysis of Disturbances: Analytical results.  For small 
perturbations, corresponding to the condition σ < σ*(α), we analyze the swing equation (4) by expanding it in 
the perturbation αi − αj. This yields the linear wave equations on the grid18,

∑τ α τ α α α δ∂ + ∂ + − = Πt t2 ( ) ( ),
(7)

t i t i
j

ij i j i
2 2

with coupling amplitudes θ θ= Π −t cos( ),ij Kij i j
0 0  depending both on grid topology and on initial distribution of 

power Pi through stationary phases θ .i
0  These coupling amplitudes define the generalized Laplace operator Λ with 

Λij = −tij and Λii = ∑itii, which is related to the stability matrix in linear stability analysis21,25 as used in small 
signal stability analysis26,27. We expand the phase deviation αi(t) and the disturbance δΠi(t) = JδPi(t)/(γ2ω) in a 
generalized Fourier series in terms of the Eigenvectors φn of Laplacian matrix Λ, as defined by Λφn = Λnφn, where 
Λn is its Eigenvalue18,21,25,28, see Supplementary III. For a local perturbation at a site j, lasting a short time interval 

τΔ t  around time t0, δΠi(t) = δΠδijτδ(t − t0), we find

∑α δ φ φ> = −
Π

− Λ
−−Ω − −Ω −+ −⁎t t e e( )

2
1

1
( ),

(8)
i

n
ni ni

n

t t t t
0

( ) ( )n n0 0

where τΩ = − ± − Λ .± (1 1 )1/n n  This formula relates the transient dynamics to the Eigenvalues ε τΛ =n n
2 2 

and Eigenvectors φn of the Laplacian, which can be obtained numerically by exact diagonalization for arbitrary 
grids. For particular grids we obtained analytical solutions as summarized in the following.

Periodic Square Lattice.  For square lattices where Pi = ±P are arranged periodically, an analytical solution of the 
stationary power balance equation is obtained with plain wave Ansatz φ = c eqi q

iqri with wave vector q. The 
Eigenfrequencies εqn

 are18,

ε σ σ= Π − − Γf(1 / ) 4 , (9)q K c q
2 2 1/4

0n n

where σ/σc = P/(4K) and = + .f q a q a2( cos cos )q nx nyn
 For finite size L, the wave vectors are quantized, qx,yn = 

nx,yπ/L, with nx,y = 0, ±1, ... . The resulting dispersion of the Eigenfrequency εq is plotted in Fig. 10 as function of 
discrete wave numbers qn (blue dots). We observe a spectral gap to the first excitation energy ε = Δq L1

 as indi-
cated by the dotted line in Fig. 10,

Figure 9.  The time t* = t/τ the power disturbance needs to reach a node at distance r* = r/a for exemplary sets 
of parameters in a Cayley tree grid. The initial disturbance δΠ = 0.001ΠK occurs at t0 = 0s.
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σ σ π
Δ = Π − Γ

a
L

(1 / ) , (10)L K c
1/2 2 2 1/4

0

decreasing with size L. Applying linear response theory for small disturbances, inserting τ εΛ =n q
2 2

n
 into the 

Fourier expansion, equation (8), we get the phase deviation α(t) for all times t. The condition that slow modes 
with small relaxation rate Γ < Γ0. Appear is, that the spectral gap ΔL is smaller than the local relaxation rate, Γ0. 
This yields the parametric condition Π < Π L( ),K K

S  where Π L( )K
S  depends on grid size L and power ratio σ as

σ σ
π

Π = −






 .−L L

a
( ) (1 / )

(11)K
S

c
2 2 1/2

2

This result is plotted in phase diagram Fig. 5(b) (dashed line) together with numerical results. If condition 
Π > Π L( )K K

S  is fulfilled, the disturbance moves ballistically with velocity

σ σ τ= Π − .v a(1 / ) / (12)K c
2 2 1/2

On the other hand, when the condition Π < Π L( )K K
S  is fulfilled, Eigen modes with small wave number q have 

purely imaginary complex Eigenfrequency Ωq which results in slow decay of the phase deviations without any 
oscillations. Summing over all slow modes in the spectral representation of αi(t), equation (8) we find that a per-
turbation at node j propagates for times τ>t  and distances exceeding the mean free path l = vτ diffusively with 
diffusion constant D = v2τ, see Supplementary III for the derivation. Diffusion causes slow power law relaxation 
of the disturbance at the initial site and an initial increase, followed by a power law decay at other sites. The result-
ing power law relaxation of the change in transmitted power between nodes k and l is18

δ δ π
ω

= ±





−

− 




.F t PA a

Dt Dt
( ) exp

(r r )
4 (13)

kl kl

2 2

0
2

j l
2

Thus, we find that the change in transmitted electric power at the site of perturbation rj decays with a power 
law in time with power 2 in excellent agreement with the numerical results for the periodic square grid, Fig. 4(c). 
The position of the maximum of the disturbance spreads according to =r Dt4max

2  with time. Note that r is here 
defined as the geometrical distance = +r r r( )x y

2 2 1/2. After Thouless time tL = L2/D29 the disturbance reaches the 
grid boundary and is reflected. Then, for times exceeding tL the disturbance decays exponentially with rate 

τΓ = − − Δ Γ .(1 (1 ) )min L
2 2 1/2

0  For square grids with inhomogenous distribution of power Pi slowly decaying 
modes appear when Π < Π L( ),K K

s  with Π L( )K
s  given by equation (11), where σc is the critical value for that distri-

bution of power Pi. Diffusion occurs with an accordingly modified diffusion constant D. We plot Π L( ),K
s  dashed 

line in Fig. 5(c), together with numerical results where we use the numerically obtained value for σc.

Cayley Tree Grid.  On a Cayley tree grid every inner node is connected to d = b + 1 other nodes, as shown in 
Fig. 1(a) for b = 3. For the Cayley tree with branching >b 1 symmetric eigenvectors were found in ref.30. With 
these Eigenvectors we obtain the Eigenfrequencies of the discrete wave equation 7 as

Figure 10.  Dispersion of Eigenvalue εq of discrete wave equation (7) as function of wave number qn for finite 
Cayley tree grid (red dots) and square lattice (blue dots). Δ is the spectral gap to the first excitation frequency in 
the Cayley tree grid (dashed line). For the square lattice the gap εΔ =L q1

 (dotted line) decreases with system 
size L.
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ε σ
σ

= Π





−





+ − Γ .b b qa1 1 2 cos
(14)

q K
c

2

2

1/4

0

For >b 1, q can not be identified with a wave number since the phase of the Eigenvectors depends nonlinearly 
on qa. We plot εq in Fig. 10 for a finite sized tree as function of discrete number qn. It is remarkable that 
Eigenfrequencies equation (14) have for >b 1 a finite gap Δ, independent on the number of nodes N,

σ σΔ = Π − + − Γb b(1 / ) 1 2 , (15)K c
1/2 2 2 1/4

0

indicated by the dashed line in Fig. 10. The condition that slow modes with Γ < Γ0, appear is Δ < Γ0, which yields 
the parametric condition Π < Π ,K K

s  with

σ σΠ = − + − .− −b b(1 / ) ( 1 2 ) (16)K
s

c
2 2 1/2 1

If that condition is fulfilled, the perturbation decays for large times exponentially with a reduced relaxation 
rate Γmin = (1 − (1 − τ2Δ(z, ΠK)2)1/2)Γ0 which can be much smaller than the local relaxation rate Γ0. The spatial 
spreading is diffusive, r2 = 4Dbt with diffusion constant τ= Δ + −D b b b/ 1 2b

2 . For Π > Π ,K K
s  the pertur-

bation decays fast exponentially with local rate Γ0 = 1/τ. Due to the quadratic dispersion of εq for a Cayley tree, at 
small values of q, see Fig. (10), the spatial spreading scales with r2/(ct) where = Δ + −c b b b/ 1 2 . We plot 

σ σΠ ( / )K
s

c  in Fig. 5(a) as the dashed line. For a tree grid with inhomogenous distribution of power Pi, typically, the 
slowly decaying modes are expected to appear when Π < Π ,K K

s  with ΠK
s  given by equation (16), where σc is the 

critical value for that distribution of power Pi.

Discussion
In conclusion, we studied how the relaxation and propagation of disturbances in AC grids is modified when sys-
tem parameters like the inertia in the grid are changed. To this end we solved the nonlinear dynamic power bal-
ance equations on three different grid topologies numerically and analyzed the results comparing them 
quantitatively with analytical insights obtained by linear response theory and spectral analysis. By a generalized 
Fourier expansion for the square grid and the Cayley tree grid we show that the long time transient behavior is 
governed by the spectral gap between the stationary state and the lowest Eigenmode of its grid. The Cayley tree 
grid has a finite spectral gap, which is protected by its topology and independent on grid size. Meshed grids, how-
ever are found to have a small spectral gap which is reduced strongly with increasing grid size, leading to slowed 
relaxation and collective diffusive propagation of disturbances. Analyzing the numerical results we confirm that, 
depending on inertia, geographical distribution of power, grid power capacity and topology, the disturbance may 
either decay exponentially in time with the decay rate of a single node, or exponentially with a smaller decay rate 
or, even more slowly, decaying with a power law in time, resulting in collective diffusive propagation. Let us dis-
cuss the relevance of our results for real grids like the german high voltage transmission grid, where the lines have 
a typical capacity of Kij = 10 GW19. Assuming that half of the nodes act as generators and the other half as con-
sumers to meet Germany’s peak power production of 83 GW31, we have |Pi| = 300 MW. Typical conventional 
power plants of that rated power have inertia J = 104 kg m2 and damping γω2 = 0.10P. This yields Jω3 = 310 GW, 
ΠP = 1.03 ⋅ 105 and ΠK = 3.44 ⋅ 106. Taking the condition Π < Π L( ),K K

S  with equation (16) as an estimate that 
meshed grids show diffusive behaviour, that condition becomes for currently existing transmission grids, 

> .L a1856  Thus, diffusive propagation is unlikely to occur in present transmission grids even on the European 
scale. However, as conventional power plants become substituted by renewable energy resources the inertia in the 
grid is reduced substantially1. Thus, the dynamics of transmission grids will change. For very small inertia of J = 
0.1 kg m2 and otherwise same parameters, we find ΠP = 1.03 and ΠK = 34.45 so that the condition to observe 
diffusion is > .L a5 87  and becomes relevant for transmission grids on the national scale. If no measures are 
undertaken to substitute the inertia of conventional power plants32, we conclude that the energy transition will 
change the transient dynamics drastically, disturbances will relax more slowly and spread by collective diffusive 
propagation, reducing the grid stability in meshed grids. Our results on tree grids suggest that a reduction of 
meshedness, may help to localize disturbances in the grid and yield faster relaxation, improving thereby the grid 
stability.

The linear response theory presented and applied here can be extended to larger perturbations by including 
nonlinear terms which introduce couplings between Eigenmodes of the Laplacian. This can be taken into account 
in various approximations, which will be considered in future research. Our results may also have important 
consequences for other systems modeled by a network of nonlinear oscillators, ranging from metabolic systems, 
to neuroscience and to supply chain networks. After submission of this manuscript, we learnt of a related work, 
which employs a linear response theory to calculate stability measures in 1st order Kuramoto models, corre-
sponding to the swing model without inertia33.
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