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Mutational analysis of TSC1 and 
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Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in 
the skin and other organs, including brain, heart, lung, kidney and bones. TSC is caused by mutations 
in TSC1 and TSC2. Here, we present the TSC1 and TSC2 variants identified in 168 Danish individuals out 
of a cohort of 327 individuals suspected of TSC. A total of 137 predicted pathogenic or likely pathogenic 
variants were identified: 33 different TSC1 variants in 42 patients, and 104 different TSC2 variants in 
126 patients. In 40 cases (24%), the identified predicted pathogenic variant had not been described 
previously. In total, 33 novel variants in TSC2 and 7 novel variants in TSC1 were identified. To assist 
in the classification of 11 TSC2 variants, we investigated the effects of these variants in an in vitro 
functional assay. Based on the functional results, as well as population and genetic data, we classified 8 
variants as likely to be pathogenic and 3 as likely to be benign.

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder of high penetrance with an incidence of 
1:6,000–1:10,000 and an estimated prevalence of 1:14,000–1:25,0001,2. TSC is characterized by the presence of 
mainly benign tumors that can affect multiple organ systems e.g. the central nervous system, heart, kidney, lung, 
bone and skin. TSC patients are phenotypically and genetically heterogeneous and there is considerable variation 
in the number, location and size of the different TSC-associated lesions. Mutations in one of two genes, TSC1 
(OMIM#191100) and TSC2 (OMIM#191092), cause TSC3,4.

TSC1 is located on chromosome 9q34 and consists of 23 exons, which encode the 130 kDa TSC1 protein, 
hamartin. TSC2 is located on chromosome 16p13.3 and consists of 42 exons which encode the 200 kDa TSC2 pro-
tein, tuberin. TSC1 and TSC2, together with a third subunit, TBC1D75, form a stable protein complex, the TSC 
complex. The TSC complex is a GTPase-activating protein (GAP) specific for the small GTPase, Ras homologue 
enriched in brain (RHEB)6. Active RHEB is involved in the activation of the mechanistic target of rapamycin 
(mTOR) complex 1 (mTORC1), a critical regulator of anabolic processes such as protein and lipid synthesis7. The 
TSC complex inactivates RHEB to down-regulate mTORC1 signaling and inhibit cell growth. TSC-associated 
tumors are characterized by increased phosphorylation of S6, elongation factor 4E binding protein 1 (4E-BP1), 
p70 S6 kinase (S6K) and other downstream targets of mTORC1 (Fig. 1).

Approximately 2/3 of TSC cases are due to sporadic de novo germline mutations2. TSC2 mutations are iden-
tified in the majority of TSC patients and, in general, cause a more severe phenotype than TSC1 mutations8,9. 
Exceptions to this rule are however observed10,11.

Large genomic deletions that affect both TSC2 and the adjacent PKD1 (OMIM# 601313) locus are associated 
with a subset of patients with TSC and severe, early-onset autosomal dominant polycystic kidney disease.

While a pathogenic TSC1 or TSC2 variant can be identified in most TSC patients, in 10–15% of affected 
individuals conventional molecular testing fails to identify the causative mutation. Recent studies indicate that 
this is most likely because these individuals are either mosaic for a pathogenic TSC1 or TSC2 variant, or have a 
pathogenic variant in a region of TSC1 or TSC2 that is not routinely screened12–14. In addition, it is not always 
clear whether an identified TSC1 or TSC2 variant is disease-causing. In such cases, functional assessment can help 
establish pathogenicity15.
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In this report, we present the molecular test results of a cohort of 327 Danish patients suspected of TSC. 
Furthermore, the effects of eleven variants on the ability of the TSC complex to inhibit mTORC1 activity, were 
investigated using an in vitro functional assay.

Material and methods
Subjects.  The project was performed according to the Declaration of Helsinki. Agreement was obtained from 
all the participants or, if under 18, from a parent, prior to molecular genetic testing. Between 2003 and 2018, 
327 individuals suspected of TSC were identified in pediatric and clinical genetic departments in Denmark and 
referred to Copenhagen University Hospital for molecular diagnosis. Some patients fulfilled the clinical crite-
ria for definite TSC16, whereas others only had one of the major features of TSC. In a large number of patients 
(approximately 80%) only very limited clinical information was provided. A total of 6 prenatal cases in which 
rhabdomyomas were revealed by ultrasound scanning were also included. Genomic DNA was prepared by stand-
ard methods from peripheral blood, or tissue, as described previously17.

Screening for pathogenic variants.  Screening for mutations in TSC1 and TSC2 was performed either 
by denaturing gradient gel electrophoresis (DGGE) (before 2006) as described previously17, by direct Sanger 
sequencing of PCR products of all coding exons plus 20 bp of flanking intronic sequences (in the period 2006–
2017), or since 2017, by Next Generation Sequencing (NGS) on a MiSeq Benchtop Sequencer (Illumina) follow-
ing HaloPlex Custom Region Enrichment (Agilent). NGS data was analyzed in SureCall software (Agilent) using 
a BWA MEM aligner and SNPPET SNP caller. At least 99% of the target region (exon sequences as well as 20 base 
pairs of flanking intron sequences) had a read depth >20. Variants identified by DGGE or NGS and selected for 
reporting were verified by Sanger sequencing. The primers used for PCR amplification of the individual exons 
are listed in Supplementary Tables 1 and 2. Single and multiple exon deletions and duplications were detected by 
multiplex ligation probe amplification (MLPA) using the SALSA MLPA P124-TSC1 and P046-TSC2 probe-mixes 
(MRC Holland).

Figure 1.  Tuberous Sclerosis Complex signaling. The TSC complex is a central node in mTORC1 signaling and 
receives inputs from multiple cellular pathways that influencing TSC complex activity. mTORC1 also responds 
to amino acids through the RAG GTPases (not shown). However, the amino acid dependent regulation of 
mTORC1 is independent of the TSC complex. Inhibitory and activating phosphorylation events are indicated.
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Nomenclature.  The nomenclature of the identified mutations is given according to HGVS (www.hgvs.org) 
guidelines. Nucleotide numbering for TSC1 is according to reference transcript NM_000368.4, and for TSC2 
according to NM_000548.3. In both cases, c.1 is the A of the ATG translation initiation codon, and p.M1 is the 
initiation codon. Genomic reference sequences were NG_012386.1 for TSC1 and NG_005895.1 for TSC2. TSC1 
contains two non-coding exons (exon 1 and exon 2). TSC2 contains one non-coding exon (exon 1).

Functional investigation.  We derived expression constructs for TSC2 variants by site-directed mutagenesis 
(SDM) of a wild-type TSC2 expression construct18. All constructs were verified by sequencing of the complete 
TSC2 open reading frame. Each variant was tested in at least 3 separate transfection experiments in 3H9-1B1 
(TSC2:/TSC1 double knockout HEK 293 T) cells19. Cells expressing the variants were compared to cells expressing 
wild-type TSC2, the pathogenic TSC2 p.Arg611Gln variant, and cells not expressing TSC2 (TSC1/S6K only). A 
S6K reporter and TSC1 expression constructs (both encoding a myc epitope tag) were included in each transfec-
tion mixture. Transfections were performed in 24-well dishes (1 × 105–2 × 105 cells per well). Cells were lysed 
18 hours after transfection in 50 mM Tris-HCl (pH 7.6), 100 mM NaCl, 50 mM NaF, 1% Triton-X-100, 1 mM 
EDTA and Complete protease inhibitors (Roche, Basel, Switzerland). After centrifugation (10 000 x g for 10 min-
utes at 4 °C), the cleared cell lysates were separated by SDS-PAGE and transferred to nitrocellulose filters. The 
levels of the expressed TSC2, TSC1, total S6K and T389-phosphorylated S6K were estimated by immunoblotting 
using the following antibodies: 1A5 anti-Thr389 phospho- p70 S6 kinase (S6K) mouse monoclonal, 9B11 anti-myc 
tag mouse monoclonal, anti-myc tag rabbit polyclonal (Cell Signaling Technology, Danvers, MA, USA), and 
anti-TSC1 and anti-TSC2 rabbit polyclonal20. Secondary antibodies were from Li-Cor Biosciences (Lincoln, NE) 
and blots were scanned using the Odyssey scanner (Li-Cor Biosciences, Lincoln, NE). Signal intensities were 
measured and normalized to the signals corresponding to wild-type TSC2.

Predicting pathogenicity.  Identified sequence variations were classified into five categories: class 5 (path-
ogenic), class 4 (likely pathogenic), class 3 (variant of unknown significance), class 2 (likely benign), and class 
1 (benign), according to the guidelines of ACMG21. Variants were classified as pathogenic based on allelic fre-
quency, and the predicted effect of the variant on TSC1 or TSC2. Variants that occur relatively often in the general 
population (gnomAD:>1:5000), are unlikely to cause TSC and were classified as benign and only reported if the 
variant had been previously categorized as pathogenic in the HGMD database. Information obtained from the 
Leiden Open Variation Database (LOVD) (http://chromium.lovd.nl/LOVD2/TSC/home.php?select_db=TSC1) 
was used to help variant classification. Rare (gnomAD: <1:5000) variants which led to a frameshift, and/or created 
a stop codon were classified as pathogenic or likely pathogenic. Determining the pathogenicity of rare missense 
variants and in-frame duplications or deletions, is often difficult. In addition to allele frequency, these variants 
were classified according to the results of in vitro functional assessment. To investigate possible effects of the 
identified variants on splicing, we used several web-based tools (MaxEntScan22, NNSPLICE23, and Human Splice 
Finder24) combined in Alamut Visual biosoftware (http://www.interactive-biosoftware.com/alamut-visual/). Rare 
variants resulting in a 99–100% reduction in the prediction score were classified as pathogenic. Otherwise we 
classified the variant as a variant of uncertain clinical significance (VUS).

Ethics statement.  This study is approved by the local institutional review board, Pactius (P-2019-304). No 
other permission was required. Written informed consent was waived. All methods were carried out in accord-
ance with the Copenhagen University Hospital’s, Rigshospitalets, guidelines.

Results
Identification of sequence variants.  Molecular testing of TSC1 and TSC2 in 327 Danish individuals sus-
pected of TSC resulted in the identification of 137 different variants in a total of 168 individuals. The TSC1 and 
TSC2 variants identified in our cohort are summarized in Supplementary Tables 3 and 4.

The majority of the variants had been reported previously in other TSC cohorts but 45 were novel, as defined 
by their absence from the HGMD (http://www.hgmd.cf.ac.uk/ac/index.php), LOVD (Leiden Open Variation 
Database (http://chromium.lovd.nl/LOVD2/TSC/home.php?select_db=TSC1)), and Clin Var (https://www.ncbi.
nlm.nih.gov/clinvar/). The 8 novel TSC1 variants and 37 novel TSC2 variants are listed in Tables 1 and 2.

Most of the new variants lead to formation of a premature stop codon. This was the case for 20 of the novel 
TSC2 variants and for six of the novel TSC1 variants. Five TSC2 variants were predicted to lead to an amino acid 
substitution or an in-frame deletion/insertion.

Classification of variants.  Unlike variants leading to premature termination of translation which can 
mostly be classified as pathogenic or likely pathogenic, classification of missense and in-frame deletion/insertion 
variants can be difficult. Functional investigation of several of the identified TSC1 and TSC2 variants had been 
performed previously. The TSC1 p.(Leu50Pro) variant15, and the TSC2 p.(Arg611Gln)25, p.(Phe897Ser)26, p.(Arg-
905Trp)26, p.(Arg1032Pro)15, p.(Gln1554His)17, p.(Arg1570Trp)17, p.(Gly1642Asp)15, p.(Ser1653Phe)27, p.(Pro-
1675Leu)27, p.(Pro1709Leu)27, p.(Arg1743Gln)27, p.(Arg1743Trp)28 and p.(His1746_Arg1751del)27 variants have 
all been found to disrupt TSC complex function (Supplementary Tables 3 and 4).

For the TSC2 p.(Leu292Pro), p.(Glu1558Lys), p.(His1620Tyr), p.(Lys1638del), p.(Asn1681Lys) and p.(Pro-
1675Leu) variants, de novo occurrence was noted in LOVD, indicating pathogenicity.

To help classify the remaining missense variants and in-frame deletions/insertions identified in our cohort 
we performed in vitro functional assessment. We derived expression constructs for the following TSC2 vari-
ants: c.815C > A, p.(Ala272Asp), c.1283_1285del, p.(Ser428del), c.1699_1701dup, p.(Leu568dup), c.2326T > G, 
p.(Tyr776Asp), c.1292C > T, p.(Ala431Val) and c.1915C > T, p.(Arg639Trp). The c.1291C > T, p.(Ala431Val) 
and c.1915C > T, p.(Arg639Trp) variants were inherited in cis on the paternal allele. Therefore, we derived an 
expression construct containing both variants, referred to as p.(Ala431Val/Arg639Trp). Furthermore, expression 
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constructs were generated for the previously identified TSC2 c.856A > G, p.(Met286Val), c.1220_1240del, p.(-
Tyr407_Arg413del), c.1853T > C, p.(Leu618Pro), c.4672G > A, p.(Glu1558Lys) and c.5043C > G, p.(Asn1681Lys) 
variants.

Variants were expressed in 3H9-1B1 (TSC2:TSC1 double knockout HEK 293 T) cells together with TSC1 and 
a S6K reporter construct. The levels of the exogenous TSC2, TSC1, total S6K and T389-phosphorylated S6K pro-
teins were estimated by immunoblotting. The stability of the expressed TSC2 and the stability of the TSC complex 
were estimated from the TSC2 (Fig. 2A) and TSC1 (Fig. 2B) signals respectively. The total S6K signal was used to 
estimate the relative transfection efficiency (Fig. 2C) and the ratio of the signals for T389-phosphorylated S6K and 
total S6K (T389/S6K ratio) was used to estimate mTORC1 activity (Fig. 2D).

The TSC2 p.(Ala272Asp), p.(Tyr407_Arg413del), p.(Ser428del), p.(Leu568dup), p.(Leu618Pro), p.(-
Tyr776Asp), p.(Glu1558Lys) and p.(Asn1681Lys) variants disrupted TSC complex function. In each case, 
mTORC1 activity, as estimated from the T389/S6K ratio, was significantly increased, compared to wild-type 
TSC2. In addition, the p.(Ala272Asp), p.(Tyr407_Arg413del), p.(Ser428del), p.(Leu568dup), p. (Leu618Pro) and 
p.(Tyr776Asp) variants were associated with significantly decreased TSC1 signals, most likely due to their inabil-
ity to interact with and stabilize TSC1. The TSC2 p.(Met286Val), p.(Ala431Val), p.(Arg639Trp) and p.(Ala431V-
al;Arg639Trp) variants did not significantly disrupt the TSC complex dependent inhibition of mTORC1 activity 
in our assay, nor did they significantly affect TSC1 or TSC2 signals.

The p.(Met286Val), p.(Ala431Val), and p.(Arg639Trp) variants are all reported in gnomAD with an individ-
ual overall frequency of 0.18%, 0.038% and 0.0040% respectively. In comparison, none of the other missense or 
in-frame variants were present in gnomAD. For the p.(Met286Val) variant, conflicting conclusions regarding 
pathogenicity were registered. The variant was originally classified as pathogenic or most likely pathogenic in 
the HGMD database, but as neutral in the LOVD database. The gnomAD frequency for this variant is as high as 
1.9% in the East Asian population. Based on the observed activity and stability of the p.(Met286Val) variant in our 
assay, combined with the gnomAD frequency, we classified the p.(Met286Val), p.(Ala431Val), p.(Arg639Trp) and 
p.(Ala431Val;Arg639Trp) variants as benign or most likely benign (Table 3).

Variants located in and around canonical splice sites can be difficult to classify. We identified five novel 
variants, including one in TSC1 and four in TSC2, that were absent from gnomAD and were predicted to be 
>99% likely to affect splicing according to web-based tools (MaxEntScan22, NNSPLICE23, and Human Splice 
Finder24) combined in Alamut Visual biosoftware. We classified these variants as pathogenic or likely pathogenic. 
Furthermore, we identified the TSC1 c.2042-5 A > G variant, which was predicted to affect splicing with 34% 
probability. This variant has been identified previously as a de novo change in an individual with TSC (http://
chromium.lovd.nl/LOVD2/TSC/home.php?select_db=TSC1). Therefore, we classified the variant as likely to be 
pathogenic (Supplementary Tables 3 and 4).

In addition, we identified the novel TSC1 c.2626-4 T > G and TSC2 c.976-16 C > A, c.3284 + 3 G > A and 
c.5260-34_5260-10del variants, as well as the previously identified TSC2 c.3883 + 5 C > T variant. These vari-
ants are all predicted to affect splicing but at a probability significantly below 100% (between 1% and 68%). We 
classified all these variants as VUS. We classified also the novel TSC2 c.336 + 14 C > T variant, predicted to have 
no effect on splicing, as VUS (Supplementary Tables 3 and 4). Unfortunately it was not possible to investigate the 
effects of the variants on TSC1 and TSC2 pre-mRNA splicing in the corresponding affected individuals because 
no RNA was available from these individuals11.

In summary, seven novel predicted pathogenic variants were identified in TSC1 (Table 1) and 33 in TSC2 
(Table 2). Furthermore, five variants predicted to be of uncertain pathogenicity were identified.

Discussion
We have reviewed the TSC1 and TSC2 variants identified in a cohort of Danish patients, we identified 137 differ-
ent mutations in 168 TSC patients from a cohort of 327 Danish individuals suspected of TSC. In our cohort, 33 of 
the 137 different suspected pathogenic variants were identified in TSC1 (24%) while 104 were identified in TSC2 
(76%) (Table 1). This distribution is in accordance with previous publications8,29,30.

Novel Predicted Pathogenic Variants Identified in this Study in TSC1

Position
Coding 
effect Mutation Annotation Notes

Exon 7 Deletion c.554del p.(Tyr185Serfs*25)

Exon 15 Nonsense c.1677C > A p.(Cys559*)

Exon 17 Deletion c. 2065del p.(Arg689Alafs*35)

Exon 18 Nonsense c.2359G > T p.(Glu787*)

Exon 19 Deletion c.2419del p.(Ile807Leufs*6)

Exon 19 Deletion c.2501del p.(Lys834Serfs*15)

Intron 21 Splicing c.2813 + 2T > C p?
Not present in gnomAD. 
Predicted change at donor 
site 2 bps upstream: 100%

Novel variants of uncertain pathogenicity identified in this study in TSC1

Intron 20 Splicing c.2626-4T > G p?
Not present in gnomAD. 
Predicted change at acceptor 
site 4 bps downstream:−1.4%

Table 1.  Novel predicted pathogenic variants identified in this study in TSC1.
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Novel Predicted Pathogenic Variants Identified in this Study In TSC2

Position Coding effect Mutation Annotation Notes

Exon 2 Duplication c.62dup p. (Thr23Asnfs*12)

Exon 4 Deletion c.313_337del p. (LeuAladelfs*69)

Exon 9 Missense c.815C > A p.(Ala272Asp) Not present in gnomAD

Exon 12 Deletion c.1120_1130del p.(Thr347Profs*9)

Exon 13 Deletion c.1264delT p.(Ser422Profs*3)

Exon 13 Deletion c.1283_1285del p. (Ser428del) Not present in gnomAD. 
8% mosaic

Exon 14 Duplication c.1401_1422dup22bp p.(Ile475Argfs*14)

Exon 16 Duplication c.1699_1701dup p.(Leu598dup) Not present in gnomAD

Exon 18 Duplication c.1875dupA p.(Leu626Thrfs*31)

Exon 20 Deletion c.2176del p.(Ser726Profs*45)

Exon 21 Nonsense c.2285T > A p.(Leu762*)

Exon 21 Missense c.2326T > G p.(Tyr776Asp) Not present in gnomAD

Exon 23 Delins c.2571delins21
(GGCCAGGCTGCCGCACCTCTC) p.(Tyr857*)

Exon 27 Deletion c.3125delC p.(Pro1042Argfs*11)

Exon 28 Missense c.3206T > G p.(Val1069Ala)
Not present in gnomAD
p.(Val1069Glu) Reported 
as de novo (LOVD)

Exon 29 Deletion c.3290del p.(Ser1097Thrfs*6)

Exon 31 Duplication c.3682dup p.(Leu1228Profs*6)

Exon 31 Deletion c.3712_3715del p.(Ala1238Serfs*86)

Exon 34 Insertion c.4145_4146insC p.(Ser1383Glufs*31)

Exon 34 Delins c.4315_4326delinsCT p.(Gly1439Leufs*67)

Exon 35 Deletion c.4535_4539del p.(Asp1512Valfs*10)

Exon 39 Insertion c.5059_5060insT p.(Cys1687Leufs*19)

Exon 39 Deletion c.5065_5068 + 1del p.(Lys1689Thrfs*136)

Exon 40 Duplication c. 5116_5119dup p.(Asn1707Thrfs*23)

Exon 41 Deletion c.5212del p.(Ser1738Profs*88)

Intron 11 Splicing c.1120-2A > G p?
Not present in gnomAD. 
Predicted effect on 
splicing: 100%

Intron 12 Splicing c.1258-2delA p?
Not present in gnomAD. 
Predicted effect on 
splicing: 100%

Intron 13/
Exon 14 Delins c.1362-63_1382delinsCAG p? Not present in gnomAD

Intron 15 Splicing c.1600-1G > T p?
Not present in gnomAD.
Predicted effect on 
splicing:100%

Intron 36 Splicing/
deletion c.4663-27_4668del p?

Not present in gnomAD. 
Predicted effect on 
splicing 100%

Exon 2-10 Deletion Ex2_10del c.1-?_975 + ?

Exon 14 Deletion Ex14del c.(1361 + 1_1362-1)_
(1443 + 1_1444-1)del

Exon 17–29 Deletion Ex17_29del c.(1716 + 1_1717-1)_
(3397 + 1_3398-1)del

Novel variants of uncertain pathogenicity identified in this study in TSC2

Intron 5 Splicing c.336 + 14C > T p?
gnomAD frequency All: 
0.0040%.
Predicted effect on 
splicing: 0%

Intron 11 Splicing c.976-16C > A p?
Not present in glomAD. 
Predicted effect on 
splicing: 38.6%

Intron 28 Splicing c.3284 + 3G > A p?
Not present in gnomAD. 
Predicted change at 
donor site 3 bps upstream: 
+68.4%

Intron 42 Splicing/deletion. c.5260-34_5260-10del p?
Not present in gnomAD. 
Predicted effect on 
splicing: 8.9%

Table 2.  Novel predicted pathogenic variants identified in this study in TSC2.
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In total, 33 different predicted pathogenic TSC1 variants were identified in 42 individuals and 106 different 
predicted pathogenic TSC2 variants were identified in 126 individuals. In addition to the predicted pathogenic 
variants, 8 variants with uncertain pathogenicity were identified (Supplementary Tables 3 and 4). Twenty var-
iants, 7 in TSC1 and 13 in TSC2, were identified more than once in our cohort. The most common variants in 
TSC1 were the nonsense mutations c.1525C > T, p.(Arg509*) in exon 15 and c.2074C > T, p.(Arg692*) in exon 
17, both identified in three unrelated patients. In TSC2, c.1832G > A, p.(Arg611Gln) located in exon 17 and 
c.5238_5255del, p.(His1746_Arg1751del) in exon 41 were the most common variants, identified in 5 unrelated 
patients each. In six cases molecular testing was performed on individuals in whom cardiac rhabdomyomas 
had been revealed by prenatal ultrasound scanning. Pathogenic variants were identified in five of these cases: 
TSC2 c.1832G > A, p.(Arg611Gln), c.4537G > T, p.(Glu1513*), c.4993C > T, p.(Gln1665*), c.5024C > T, p.(Pro-
1675Leu), and c.(1-?)_(975 + ?)del (del Ex2-10).

All the predicted pathogenic variants identified in TSC1 were small changes, involving a single base pair (30 
cases), two base pairs (2 cases) or 23 base pairs (1 case). In 25 cases, the identified change created a premature stop 
codon, and in seven cases, the variant was in a region important for splicing. Only a single variant predicted to 
lead to an amino acid substitution was identified. In TSC2, 73 variants affected a single base-pair and 22 variants 
affected between two and 33 base-pairs. In 54 of these cases a premature stop codon was created, in 15 cases the 
variant was in a region important for splicing and in 24 cases the variant was predicted to change the amino acid 
sequence. Furthermore, 9 variants leading to large deletions of one or more exons of TSC2 were identified.

Most of the identified variants had been identified previously in other TSC patients, but a total of 33 novel 
predicted pathogenic variants were identified in TSC2 and 7 novel predicted pathogenic variants were identified 
in TSC1.

The observed distributions of pathogenic TSC1 and TSC2 variants, shown in Fig. 3, are similar to previous 
studies8,29,30. TSC2 variants were scattered all over the gene and TSC1 variants were most often identified in exons 

Figure 2.  Functional assessment of missense variants, Functional assessment of the TSC2 (NM_000548.3) 
variants; c.815C > A, p.(Ala272Asp), c.856A > G, p.(Met286Val), c.1220_1240del, p.(Tyr407_Arg413del), 
c.1283_1285del, p.(Ser428del), c.1292C > T, p.(Ala431Val), c.1699_1701dup, p.(Leu598dup), c.1853T > C, 
p.(Leu618Pro), c.1915C > T, p.(Arg639Trp), c.1292C > T/c.1915C > T, p.(Ala431Val/Arg639Trp), c.2326T > G, 
p.(Tyr776Asp), c.4672G > A, p.(Glu1558Lys) and c.5043C > G, p.(Asn1681Lys). 3H9-1B1 (TSC2/TSC1 double 
knockout HEK 293 T) cells were transfected with the indicated combinations of expression constructs. Twenty-
four hours after transfection the cells were harvested, and the cleared cell lysates analysed by immunoblotting. 
The signals for TSC2, TSC1, total S6K (S6K) and T389-phosphorylated S6K (T389) were determined per 
variant, relative to the wild-type control (TSC2) in 2 independent experiments. The mean TSC2 (A), TSC1 
(B) and S6K (C) signals and mean T389/S6K ratio (D) are shown for each variant. In each case the dotted 
line indicates the signal/ratio for wild-type TSC2 (=1.0). Error bars represent the standard error of the mean; 
variants that were significantly different from wild-type TSC2 are indicated with an asterisk (P < 0.025; 
Student’s paired t-test). Amino acid changes are given according to TSC2 cDNA reference transcript sequence 
NM_000548.3.
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Functional Investigations Of TSC2 Variants

Variants leading to disrupted TSC-complex function

Position Coding effect Mutation Annotation Reference Notes

Exon 9 Missense c.815C > A p.(Ala272Asp) This study Not present in 
gnomAD

Exon 12 Deletion c.1220_1240del21 p.(Tyr407_Arg413del) 17 Not present in 
gnomAD

Exon 13 Deletion c.1283_1285del p.(Ser428del) This study
Not present in 
gnomAD
7% mosaic

Exon 16 Duplication c.1699_1701dup p.(Leu568dup) This study Not present in 
gnomAD

Exon 18 Missense c.1853T > C p.(Leu618Pro) LOVD Not present in 
gnomAD

Exon 21 Missense c.2326T > G p.(Tyr776Asp) This study Not present in 
gnomAD

Exon 37 Missense c.4672G > A p.(Glu1558Lys) 17
Not present in 
gnomAD.
Reported as de novo 
(LOVD).

Exon 39 Missense c.5043C > G p.(Asn1681Lys) 36
Not present in 
gnomAD.
Reported as de novo 
(LOVD).

Variants with no effect on the TSC-complex function

Exon 10 Missense
Benign c.856A > G p.Met286Val 30

gnomAD frequency:
All: 0.18%. East Asian: 
1.9%

Exon 18
Missense
Both Likely 
benign

c.1915C > T/c.1292C > T p.Arg639Trp/p.Ala432Val LOVD
gnomAD frequency. 
All:0.0041% and 
0.038% respectively

Table 3.  Functional investigations of TSC2 variants.

Figure 3.  Structural and functional domains of TSC1 and TSC2 and the distribution of the TSC1 and TSC2 
variants identified in this study. TSC1 consists of a conserved N-terminal domain (NTD) and a large domain 
that is critical for the interaction with the N-terminal of TSC2, and a domain at the C-terminus important for 
interacting with the TBC1D7. TSC2 is the catalytic subunit of the TSC complex and acts as a GTPase activating 
protein towards RHEB. The active site is indicated. The types and frequencies of the TSC1 and TSC2 variants 
identified in in our cohort are illustrated. In total, 33 different pathogenic variants in TSC1 and 104 different 
pathogenic variants in TSC2 were identified in 168 patients. The variants were categorized as either missense, 
nonsense, splicing, small deletions, small insertions, or small delins. Gross deletions (9 in TSC2) are not shown. 
The figure is modified from previous publications34–36.
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15 and 18. Although most of the variants were either nonsense changes or deletions, missense mutations were 
often found in TSC2. In contrast, only a single missense variant was identified in TSC1.

Missense and small in-frame indel variants encode proteins that only differ from the wild-type proteins by 
a few amino acids. If a single amino acid substitution is pathogenic, then it is likely that that amino acid and/or 
the surrounding peptide sequence is functionally important. The only missense variant in TSC1 identified in this 
study, p.(Leu50Pro), affects the N-terminal domain (NTD) of TSC1, resulting in destabilization of the TSC com-
plex31. A high proportion, (11/19; ~60%) of the TSC2 missense variants identified map to exons 36–41, encoding 
amino acids 1555–1704, that contain the GAP domain (amino acids 1533–1722), even though this region only 
accounts for ~11% of the total coding region. Furthermore, two pathogenic missense variants affecting this region 
were identified in multiple cases. These results indicate that the NTD region of TSC1 and the GAP domain of 
TSC2 are critical for TSC complex function. Our functional analysis of the p.(Glu1558Lys) and p.(Asn1681Lys) 
variants is in line with this hypothesis.

Previous studies report a mutation detection rate of 74–83% in TSC8,29,30,32. In the present study we identified 
a mutation in only 52% of the patients. This is in contrast to a previous publication from our laboratory17, where 
65 Danish patients who had been clinically diagnosed with TSC, were investigated and pathogenic mutations were 
identified in 51 patients (78%). In the present study only limited clinical information was available, whereas all the 
patients included in our previous study fulfilled the diagnostic criteria for TSC. At that time NGS was still not availa-
ble and TSC1 and TSC2 molecular screening was difficult and time consuming. This might have forced the clinician 
to carefully evaluate their patient for signs of TSC prior to referral for molecular genetic investigation. Today, with 
NGS, the laboratory work is reduced, and the turn-around time faster. This might lead to increased numbers of 
patients being referred who do not fulfill the clinical diagnostic criteria for TSC. The large number of cases without 
identification of a pathogenic TSC1 or TSC2 variant does not exclude the possibility that these individuals have TSC. 
The variant could be located in a region not tested in any of our set ups, like deep within an intron, or the variants 
might be present in mosaic form, in a limited number of patient cells. Indeed, recent studies indicate that at least 50% 
of TSC cases who fulfill the clinical diagnostic criteria and do not have a mutation identified by standard molecular 
testing will have a pathogenic TSC1 or TSC2 variant in mosaic form12,13. Only a minor fraction of the cases pre-
sented here were screened using NGS. So far, we have identified mosaicism in one case. The TSC2 c.1283_1285del 
variant was identified in 84 out of 1082 reads (8%) and was verified by PCR using deletion specific primers. The 
further application of NGS should lead to an increase in the number of clarified cases. Also, re-investigation of 
mutation-negative cases might reveal additional pathogenic variants in mosaic form.

Careful re-assessment of all the previously published mutations identified in our cohort revealed conflicting 
interpretations of pathogenicity. The release of the genome aggregation database (gnomAD) which is comprised 
of data from 123,136 individuals and whole genome sequencing from 15,496 individuals33 has increased our 
knowledge about the frequencies of many single nucleotide variants (SNPs), and led us to re-classify some vari-
ants as unlikely to be disease causing. Furthermore, assessment of pathogenicity using functional studies helped 
support the genetic and clinical data. For example, re-classification of the TSC2, p.(Met286Val) variant as benign 
was supported by both the frequency data and the functional assessment.

Reliable classification of identified variants is critically important. Functional in vitro investigation is an 
important contribution to classification of variants leading to missense changes and in frame deletions and inser-
tions. Routine investigation of potential splice-site mutations by reverse-transcription (RT)-PCR performed on 
RNA isolated from the affected individuals might also help improve the classification of variants, particularly 
those located in splice site regions.
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