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Scalar on time‑by‑distribution 
regression and its application 
for modelling associations 
between daily‑living physical 
activity and cognitive functions 
in Alzheimer’s Disease
Rahul Ghosal1*, Vijay R. Varma2, Dmitri Volfson3, Jacek Urbanek4, Jeffrey M. Hausdorff5,7,8, 
Amber Watts6 & Vadim Zipunnikov1

Wearable data is a rich source of information that can provide a deeper understanding of links 
between human behaviors and human health. Existing modelling approaches use wearable data 
summarized at subject level via scalar summaries in regression, temporal (time‑of‑day) curves in 
functional data analysis (FDA), and distributions in distributional data analysis (DDA). We propose 
to capture temporally local distributional information in wearable data using subject‑specific time‑
by‑distribution (TD) data objects. Specifically, we develop scalar on time‑by‑distribution regression 
(SOTDR) to model associations between scalar response of interest such as health outcomes or 
disease status and TD predictors. Additionally, we show that TD data objects can be parsimoniously 
represented via a collection of time‑varying L‑moments that capture distributional changes over 
the time‑of‑day. The proposed method is applied to the accelerometry study of mild Alzheimer’s 
disease (AD). We found that mild AD is significantly associated with reduced upper quantile levels of 
physical activity, particularly during morning hours. In‑sample cross validation demonstrated that 
TD predictors attain much stronger associations with clinical cognitive scales of attention, verbal 
memory, and executive function when compared to predictors summarized via scalar total activity 
counts, temporal functional curves, and quantile functions. Taken together, the present results 
suggest that SOTDR analysis provides novel insights into cognitive function and AD.

Wearables are electronic sensors which can be worn as accessories and provide almost real-time continuous 
streams of user-specific physiological data such as minute-level step counts, heart rate (beats per minute via 
PPG) and heart rhythm (via ECG), brainwave (EEG), and many others. This rich source of information can be 
analyzed for a deeper understanding of human behaviours and their influence on human health and disease. 
For example, wearable physical activity (PA) monitors provide continuous and objective measurements of PA of 
individuals in their free-living  environment1,2. The diverse applications of wearable data in biosciences include 
studies of  aging3,4, circadian  rhythms5, estimation of gait parameters and their application in clinical  trials6,7, 
comparing patterns and intensity of physical activity between different clinical  groups8,9 among many others.
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In many epidemiological and clinical studies, wearable data is summarized via scalar summaries such as 
total log activity count (TLAC)3, minutes of moderate-to-vigorous-intensity physical activity (MVPA)3,10, active-
to-sedentary transition probability (ASTP)11,12 and others. Scalar summaries, although useful for a particular 
problem of interest, can often ignore temporal and/or distributional information in continuous streams of data. 
Temporal or time-of-day information in wearable data can be accounted for using functional data analysis (FDA) 
approaches that treat wearable data streams as functional observations recorded over 24  hours5,13–15. Temporal 
effects of scalar predictors on physical activity can be captured via function-on-scalar regression and general-
ized multilevel function-on-scalar  regression16. Scalar outcomes of interest, e.g., health or disease status can 
be modelled via scalar-on-function regression  models17,18 using diurnal physical activity curves as functional 
predictors typically averaged across the days of observation.

Distributional information in wearable data can be accounted for using distributional data analysis (DDA). 
Distributions can be encoded via subject-specific  histograms19, subject-specific quantile  functions20–22 or subject-
specific  densities23–27. The quantile-function based representation of information in wearable data allows us to 
model not just mean, but all other quantile-based distributional aspects of wearable data such as variability, 
skewness, and others. Ghosal et al.21 developed a scalar-on-quantile function regression framework (SOQFR) for 
modelling scalar outcomes of interest based on subject specific quantile functions of wearable data. Matabuena 
and  Petersen22 used quantile-function representation for NHANES (2003-2006) accelerometer data to predict 
health outcomes using survey weighted nonparametric regression models. Talská et al.28 developed a compo-
sitional scalar-on-function regression method using a centred log ratio  transformation29 of subject-specific 
densities. In this article, we propose to use time-by-distribution data objects that capture temporally local distri-
butional information in the user-specific wearable data. In previous work, Horváth et al.30 proposed a statistical 
testing framework for detecting a change in a sequence of distributions, but the distributions were coming from 
the same unit (monthly financial returns of the same stock). Sharma and  Greig31 considered distributions over 
space by time domain and modelled the change over time as linear with respect to the Wasserstein distance. Our 
approach is different in modelling subject-specific time-by-distribution objects that may have non-linear effects 
on the outcome with respect to time. Note that two different subjects could have markedly different diurnal pat-
terns of activity but similar distributions. The proposed time-by-distribution data object captures both temporal 
and distributional aspects of subject-specific PA patterns. Treated as bivariate functional summaries of PA, TD 
objects can be further used in penalized scalar-on-function regression (SOFR)32 for modelling scalar outcomes 
of interest. We use a penalized bivariate SOFR approach, which simultaneously identifies time of the day and 
quantile levels of subject-specific PA distribution associated with outcomes of interest. In addition, we employ 
decompositions of quantile functions via Legendere polynomials and corresponding L-moments33 that connect 
quantile and moment based representations of distributions. This connection enables a decomposition of TD 
objects via novel diurnal time-varying L-moments.

We are motivated by the application of wearable data in the study of Alzheimer’s Disease (AD) and cognitive 
performance among older adults. AD is one of the most rapidly growing neurodegenerative diseases in the world. 
The high prevalence of AD and AD-related death in developed countries can be partially attributed to low levels 
of physical activity (PA) and sedentary  lifestyles34. In the absence of any currently existing cure for AD, there is 
growing interest in identifying cost-effective biomarkers for early identification of risk for AD. Non-invasive, 
cost-efficient biomarkers are essential for improving early diagnosis of  AD35. “Digital” biomarkers from sensor 
and mobile/wearable  devices36 offer an alternative to existing fluid and imaging markers and there is a growing 
body of evidence which suggests PA changes might precede clinical manifestation of the disease itself. Physical 
activities, including activities of everyday living (ADLs), are dependent on mobility and cognitive functioning. 
Several prospective longitudinal studies have identified physical inactivity as a risk factor for  dementia37–40. Older 
adults generally spend most of their waking time in sedentary  activities41 and individuals with Alzheimer’s disease 
(AD) have been found to be even less active in previous  studies42.

In our motivating study by Varma and  Watts8, physical activity was monitored continuously for seven days 
using body-worn accelerometers in older adults with mild AD and cognitively normal controls (CNC). Mild AD 
was found to be associated with reduced moderate-intensity physical activity, reduced peak activity but not with 
increased sedentary activity or reduced low-intensity physical activity. Although prior research has focused on 
exploring effects of mild AD on diurnal patterns of  PA8 and on average or IIV (intra-individual variability) of 
PA across  days9, we are interested in whether temporally local distributional information in PA profiles can be 
used to differentiate between CNC and mild AD and explain cognitive performance.

The article is organized as follows. In “Motivating study” section, we present the background of our motivat-
ing study. In  “Modelling framework” section, we present our modelling framework and illustrate some existing 
approaches for modelling scalar outcomes via scalar, temporal and distributional summaries of wearable PA data. 
In “Scalar on time-by-distribution regression” section, we introduce time-by-distribution PA data objects and 
describe the proposed estimation approach using penalized bivariate scalar-on-function regression. In addition, 
an alternative representation of TD objects via diurnal time-varying L-moments is introduced. In “Application 
of SOTDR to modelling cognitive status and function in Alzheimer’s disease” section, we demonstrate applica-
tions of the proposed method in an Alzheimer’s disease (AD) study and provide comparisons with existing 
approaches. “Discussion” section concludes with a discussion of the findings, limitations and some possible 
extensions of the approach.

Motivating study
Study participants. Mild AD and cognitively normal control (CNC) participants were recruited by the 
University of Kansas Alzheimer’s Disease Center Registry (KU-ADC). The study protocol was approved by the 
KU Medical Center Institutional Review Board. All methods were performed following the relevant guidelines 
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and regulations. Informed consent was obtained from all subjects. A detailed description of recruitment and 
evaluation of participants in the KU-ADC have been previously reported in Graves et  al.43 All participants 
received annual cognitive and clinical examinations, and experienced clinicians trained in dementia assessment 
provided consensus diagnoses (see “Cognitive status and psychometric test battery” section below for more 
details). The study sample consisted of individuals with mild AD, defined as a clinical dementia rating (CDR;44) 
scale scores of 0.5 (very mild) or 1 (mild), and control participants, defined as a CDR score of 0. A total of 100 
community-dwelling older adults with and without mild AD were recruited. Out of them, N=92 had valid actig-
raphy data (n = 39 mild AD; n = 53 controls). Descriptive summaries of participant demographics are displayed 
in Table 1. Age, sex, and years of formal education were reported by either the participant or study partner. The 
details about other measures are provided in Graves et al.43.

Physical activity. Activity counts were produced by a GT3x+ tri-axial accelerometer. A detailed description 
of accelerometry measurement can be found  in8. Briefly, the GT3x+ (Pensacola FL; Actigraph, 2012; 30 Hz sam-
pling rate) is a triaxial accelerometer validated across a range of community dwelling older adults. The acceler-
ometer was placed on the dominant hip of the participants via an elastic belt and the participants were instructed 
to wear the device 24 hours a day for seven days. Activity counts, collected every second from medio-lateral (ML; 
front-to-back), antero-posterior (AP; side-to-side), and vertical (VT; rotational) axes were quantified into a sin-
gle tri-axial composite metric known as vector  magnitude45, calculated as VM =

√
ML2 + AP2 + VT2 . Average 

vector magnitude was then computed by aggregating VM (averaging) for each second into minute level activity.

Cognitive status and psychometric test battery. Cognitive status of the participants were deter-
mined through consensus diagnosis by trained clinicians using comprehensive clinical research evaluations and 
a review of medical records following NINCS-ADRDA  criteria46. Cognitive tests were administered by a trained 
psychometrician. The cognitive test battery included tests of verbal memory (Wechsler Memory Scale (WMS)–
Revised Logical Memory I and II, Free and Cued Selective Reminding Task), attention (Digits Forward and 
Backward, Wechsler Adult Intelligence Scale (WAIS) subscale Letter– Number Sequencing) and executive func-
tion (Digit Symbol Substitution Test, and Stroop Color–Word Test (interference score), Trail Making Test Part 
B, and Category Fluency). Composite scores for each domain (verbal memory (VM), attention (ATTN), and 
executive function (EF)) were derived using confirmatory factor analysis (CFA), a flexible approach for summa-
rizing multiple cognitive scores into empirically and theoretically justified components. Scores were standard-
ized to the mean performance of CNC participants. Additional information on the CFA derived factor scores 
can be found in Varma et al.7.

Modelling frameworks
Suppose, we have minute-level wearable observations such as activity counts or the number of steps per minute 
denoted by Xij(t) for subject i = 1, . . . , n , on j-th day, j = 1, . . . , ni , at time t, t = 1, 2, . . . , 1440 . We denote by Yi 
a scalar outcome of interest such as a cognitive status or a score on a psychometric test that can be continuous or 
discrete and we assume it comes from an exponential family. We also denote by Zi a vector of covariates. In this 
section, we review three existing modelling approaches that relates Yi and Xij(t) including a simple Generalized 
Linear Model (GLM) regression using scalar summaries of wearable observations, functional data regression 
of temporal (time-of-day) curves, and distributional data regression using subject-specific quantile functions.

GLM regression using subject‑specific scalar summaries. In this approach, the scalar response vari-
able Yi is modelled via a subject-specific scalar summary of wearable observations aggregated across all times 
and days. Examples include a total mean as a measure of tendency, a standard deviation as a measure of variabil-
ity, minutes spent in activities of certain intensity such as light or moderate-to-vigorous, and others. For exam-
ple, subject-specific average activity count X̄i = 1

1440ni

∑ni
j=1

∑1440
t=1 Xij(t) . The top left panel of Fig. 1 displays the 

distribution of subject-specific averages for CNC (blue) and AD (red) groups in our study.
We observe that participants with AD on average, have a lower mean physical activity level compared to CNC. 

There is also significant overlap between the two distributions and they are not clearly separable using this PA 
metric. To formally model this, a generalized linear model (GLM) can be used

Table 1.  Summary statistics for the complete, AD and CNC samples. No statistical difference between the AD 
and CNC groups are observed across age, BMI, or  V02 max. However, AD group had a smaller percentage of 
females (28.2 vs 69.8 for CNC) and lower education (15.5 years vs 17.3 years for CNC).

Characteristic

Complete sample AD CNC

P valueMean/Freq SD Mean/Freq SD Mean/Freq SD

Age 73.36 7.11 73.59 7.92 73.19 6.53 0.797

% Female 52.17 N/A 28.20 N/A 69.81 N/A < 0.001

Years of edu 16.56 3.24 15.53 2.77 17.32 3.38 0.0064

BMI 26.78 4.52 27.28 5.04 26.42 4.11 0.3892

VO2 max 21.99 5.34 21.61 5.24 22.24 5.43 0.592
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where a scalar regression coefficient β represents the effect of average PA on the mean of the response of interest 
Yi adjusted for covariates Zi and g(·) is a known link function (e.g., logit or identity).

Functional data analysis of subject‑specific temporal curves. Functional data analysis (FDA) 
allows us to model temporal aspects in wearable observations Xij(t) . To derive subject-specific diurnal minute-
level curves, one may average wearable observations across all days at each time-point t = 1, 2, . . . , 1440 as 
Xi(t) = 1

ni

∑ni
j=1 Xij(t) . The top right panel of Fig.  1 displays average smoothed diurnal activity profiles for 

CNC (blue) and AD (red) groups. It can be noticed that the curve for mild-AD group have a unimodal diurnal 
shape, compared to a bimodal shape for CNC, and the largest difference between the two groups appears to be 
in the morning and in the afternoon (during the second peak for CNC). Similar observations were also made by 
Varma and  Watts8 during their analysis of this data. To formally model the association with functional predic-
tors, scalar-on-function regression (SOFR)17 can be used as follows

where the functional regression coefficient β(t) captures the time-varying effect of the diurnal curve Xi(t) on 
the response Yi and T = (0, 24) is the daily 24 hour window. Note that, the average subject-specific PA can be 
estimated back from the diurnal profile Xi(t) as X̄i =

∫

T Xi(t)dt , therefore for a constant functional regression 
coefficient β(t) = β , one gets back the generalized linear model (1) for scalar predictors from model (2).

(1)E(Yi|Zi , X̄i) = µi , g(µi) = α + Z
T
i γ + X̄iβ ,

(2)E(Yi|Zi ,Xi(t)) = µi , g(µi) = α + Z
T
i γ +

∫

T
Xi(t)β(t)dt,
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Figure 1.  Top left: violin plot of subject-specific averages for CNC and AD participants. top right: smoothed 
diurnal activity profiles averaged across CNC (blue) and AD (red) participants. Bottom left: average quantile 
functions of physical activity for AD and CNC participants.
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Distributional data analysis using subject‑specific quantile functions. Distributional data analy-
sis can capture and model distributional aspect of wearable observations via subject-specific probability density 
functions (pdf), cumulative distribution functions (CDF), or quantile  functions21. If we ignore the temporal 
information by suppressing the time index t, we can denote by Xik , k = 1, . . . ,mi , all wearable observations for 
subject i. We assume Xik follow the same subject-specific distribution defined by subject-specific cumulative 
distribution function Fi(x) , where Fi(x) = P(Xik ≤ x) . Then, we can define the subject-specific quantile func-
tion Qi(p) = inf {x : Fi(x) ≥ p} . The subject-specific quantile function characterizes the distribution of wear-
able observations for a specific subject. The subject-specific cdf can be estimated via its empirical counterpart 
F̂i(x) = 1

mi

∑mi
k=1

I(Xik ≤ x) and subject-specific quantile function can be estimated as Q̂i(p) = F̂−1
i (p) . In this 

paper, we use the following estimator of quantile functions via a linear interpolation of the order  statistics47:

where X(1) ≤ X(2) ≤ · · · ,X(n) are the corresponding order statistics from a sample (X1,X2, . . . ,Xn) and w is a 
weight satisfying (n+ 1)p = [(n+ 1)p] + w . Note that the subject-specific average of wearable observations 
Xij(t) can be also estimated from the subject-specific quantile function as X̄i =

∫ 1

0
Qi(p)dp.

The bottom left panel of Fig. 1 displays the average quantile functions of physical activity for the CNC and 
AD groups. A reduced capacity of physical activity can be observed for the AD samples compared to CNC across 
upper quantile levels such as p > 0.75 . Following the approach of Ghosal et al.21, the subject-specific quantile 
functions of PA can be used for modelling Yi using scalar-on-function regression (SOFR) (3) adjusted for Zi . 
SOFR model is as follows

where the functional regression coefficient β(p) captures the distributional effect of the PA quantile function 
Qi(p) on the response of interest Yi . In the case β(p) = β , a constant, one again get back the generalized linear 
model (1) from model (3), since X̄i =

∫ 1

0
Qi(p)dp.

Ghosal et al.21 re-represented SOFR model for quantile function predictors via L-moments33. L-moments are 
defined as the expectation of a linear combination of order statistics. In particular, the r-th order L-moment of 
a random variable X is defined as

where X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of a random sample of size n drawn from the 
distribution of X. The first order L-moment, L1 , equals the traditional mean. The second order L-moment, 
L2 = 1/2E(X2:2 − X1:2) , represents a robust measure of scale, and equals exactly a half of Gini-coefficient 
or mean absolute difference. The third and fourth order L-moments, L3 = 1/3E(X3:3 − 2X2:3 + X1:3) and 
L4 = 1/4E(X4:4 − 3X3:4 + 3X2:4 − X1:4) , capture higher-order distributional properties and normalized by L2 
can be interpreted similarly to traditional higher-order moments such as skewness and kurtosis. The main advan-
tages of L-moments is the existence of all moments, if first moment exist, their uniqueness and robustness. For 
SOQFR Ghosal et al.21 adapted an alternative representation of L-moments as projections of quantile functions 
on Legendre polynomial basis, given by

Here Pr(p) is the shifted Legendre polynomial (LP) of degree r defined as

The shifted Legendre polynomials form an orthogonal basis of L2[0, 1] . Using the LP decomposition for subject-
specific quantile functions Qi(p) ≈

∑K
k=1(2k − 1)LikPk−1(p) and β(p) =

∑K
k=1 βkPk−1(p) , SOFR model can 

be reduced to a GLM as g(µi) = α + Z
T
i γ +

∫ 1

0
Qi(p)β(p)dp = α + Z

T
i γ +

∑K
k=1 βkLik . This representation 

of SOFR via L-moments provides both the functional interpretation of significance of Qi(p) via β(p) and the 
distributional interpretation in terms of the significance of specific L-moments via βk.

Scalar on time‑by‑distribution regression
In this section, we propose to capture temporally local distributional information in wearable observations using 
subject-specific time-by-distribution data objects and use bivariate scalar-on-function regression to relate these to 
a scalar response of interest. We refer to this as scalar on time-by-distribution regression (SOTDR) and also show 
how two-way TD data objects can be parsimoniously represented via a collection of time-varying L-moments 
that capture distributional changes over the time-of-day.

SOTDR via time‑by‑distribution data objects. We develop quantile-based time-by-distribution data 
objects that capture the temporally local distributional aspects of wearable observations. The quantile-based 
time-by-distribution data object is then defined as

Q̂(p) = (1− w)X([(n+1)p]) + wX([(n+1)p]+1),

(3)E(Yi|Zi ,Qi(p)) = µi , g(µi) = α + Z
T
i γ +

∫ 1

0

Qi(p)β(p)dp,

Lr = r−1

r−1
∑

k=0

(−1)k
(

r − 1

k

)

E(Xr−k:r) r = 1, 2, . . . ,

Lr =
∫ 1

0

Q(p)Pr−1(p)dp.

Pr(p) =
r

∑

k=0

sr,kp
r , sr,k = (−1)r−k

(

r

k

)(

r + k

k

)

= (−1)r−k(r + k)!
(k!)2(r − k)! .
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Here 2h is the window length around time t. Note that Qi(t, p) is a bivariate functional summary of subject-
specific observational data. For each fixed t (time of the day), it provides distributional encoding as a function 
of quantile-level p, e.g., Qi(t, ·) is a quantile function for each t. For each fixed p, Qi(·, p) captures the diurnal 
pattern of the p-th quantile level of wearable observations as a function of time t. Note that the subject-spe-
cific average PA can be again be estimated back aggregating the bivariate time-by-distribution data objects as 
X̄i =

∫

T

∫ 1

0
Qi(t, p)dpdt . For the analysis presented in this paper, we fix total window length 2h = 10 minutes 

(i.e., h = 5 ), but any other window lengths can be used as well. Since the sample considered in this study is 
highly  sedentary9, a window length of 10 minutes still retains the diurnal patterns of PA without any significant 
loss of information.

Figure 2 displays the heatmaps of average time-by-distribution surfaces Qi(t, p) for CNC (top left) and AD 
(top right), the difference between them (bottom left). One can see that the largest differences between the two 
groups exist during the morning (8 a.m.–11 a.m.) and in afternoon (3 p.m.–5 p.m.) across the upper quantile 
levels ( p > 0.6 ). At the bottom right panel of Fig. 2 we plot the heatmap of difference in time-by-distribution 
surfaces Qi(t, p) between the participants with high (above 75%-percentile) and low (below 25%-percentile) 
cognitive scores of attention (ATTN) in a combined sample including subjects from both AD and CNC groups. 
Overall, TD encoding of physical activity is clearly more informative than just temporal or just distributional 
information from Fig. 1.

To formally model the association of TD data objects with a scalar response, we propose to use them as 
predictors in two-way scalar-on-function regression (SOFR) as follows:

Qi(t, p) = p-th quantile of {Xij(s)}nij=1, s ∈ (t − h, t + h).
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Figure 2.  The average bivariate time-by-distribution PA surface Qi(t, p) for CNC (top left) and AD (top right) 
groups. The difference between CNC and AD (bottom left) and the difference between subjects with high (above 
75% percentile) and low (below 25%-percentile) of cognitive attention (ATTN) scores (bottom right).
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Here β(t, p) represents the bivariate functional regression coefficient that captures both the temporal and dis-
tributional effect of Qi(t, p) on the response of interest Yi . As before, with the constant regression β(t, p) = β , 
the bivariate SOFR model (4) reduces to the generalized linear model (1) for scalar predictors. The estimation 
approach of this model is discussed below.

Estimation of the time‑by‑distribution regression coefficient β(t, p). We follow a two-step esti-
mation approach for the bivariate SOFR model (4) in the paper. In step 1, we model the bivariate regression 
functional coefficient β(t, p) using a tensor product of univariate cubic B-spline basis functions of both temporal 
and quantile level arguments, t and p. Suppose, {BT ,k(t)}K0

k=1
 and {BP,ℓ(p)}L0ℓ=1 are the set of known basis func-

tions over t and p, respectively. Then, β(t, p) is modelled as β(t, p) =
∑K0

k=1

∑L0
ℓ=1 θk,ℓBT ,k(t)BP,ℓ(p) . Using this 

expansion model (4) is reformulated as

where we denote by Wi the K0L0-dimensional stacked vectors of {
∫ 1

0
Qi(t, p)BT ,k(t)BP,ℓ(p)dtdp}K0,L0

k=1,ℓ=1
 and θ is 

the corresponding K0L0-dimensional vector of unknown basis coefficients θk,ℓ’s. Thus, the model (5) can be seen 
as a GLM with subject specific predictors Wk,ℓ

i =
∫ 1

0
Qi(t, p)BT ,k(t)BP,ℓ(p)dtdp . We use a penalized negative 

log-likelihood criterion with  LASSO48 penalty on the coefficients, which selects only those Wk,ℓ
i  which influences 

the response of interest Yi . This effectively helps to reduce the number of parameters in the model (especially 
important because of a relatively small sample size n = 92 ) and allows a sparse representation of the functional 
regression coefficient β(t, p) . The penalized negative log likelihood criterion is given by

In step 2, the selected predictors Wk,ℓ
i  (with non-zero coefficients) are used in the GLM (5) without any penaliza-

tion (this also overcomes penalization bias of LASSO) for inference. The estimated regression coefficient function 
is then given by β̂(t, p) =

∑K0

k=1

∑L0
ℓ=1 θ̂k,ℓBT ,k(t)BP,ℓ(p) (note that θ̂k,ℓ = 0 if Wk,ℓ

i  is not selected in the first step).

SOTDR‑L: SOTDR via time‑varying L‑moments. Following Ghosal et al.21 who adapted L-moments to 
SOFR with quantile function predictors, we adapt L-moments to SOTDR by introducing subject-specific time-
varying L-moments Lir(t) that depend on the time of the day t. Specifically, we define the diurnal time-varying 
r-th order L-moment for subject i as

Here we again consider a window of total length 2h centered at time t. The diurnal time-varying Lir(t) curves cap-
ture the temporal change of the subject-specific distribution. For example, the first order time-varying L-moment 
Li1(t) simply represents the diurnal mean curve Xi(t) aggregated into 10 minutes epoch (for h = 5 ). The second 
order time-varying L-moment Li2(t) captures a temporal change in variability and is similar to the diurnal 
standard deviation curve of physical activity considered  by8.

Figure 3 displays the first four time-varying L-moments Lr(t) of physical activity, averaged within CNC (blue) 
and AD (red) groups. Note that the first time-varying L-moments L1(t) exactly equal to the temporal diurnal 
curves from the top right panel of Fig. 1. Subject-specific r-th order time-varying L-moment Lir(t) is related to 
the time-by-distribution PA data object Qi(t, p) through its projection on Legendre polynomial basis Pr−1(p) 
as follows

One can notice that mild AD has lower L1(t) , L2(t) , L3(t) , and L4(t) moments compared to the CNC, particularly 
in the morning and somewhat in the afternoon.

We propose to use the time-varying subject-specific L-moments Lir(t) for modelling Yi using an additive 
SOFR model. If the shifted Legendre polynomials Pℓ−1(p) are used as the basis in p for modelling the bivariate 
functional effect β(t, p) , the additive SOFR model (7) in terms of time-varying L-moments of PA provides an 
alternative representation of the bivariate SOFR model (4) that is additionally interpretable from distributional 
point of view. We will refer to this approach as SOTDR-L. In particular, we have,

(4)E(Yi|Zi ,Qi(t, p)) = µi , g(µi) = α + Z
T
i γ +

∫ 1

0

∫

T
Qi(t, p)β(t, p)dtdp.

(5)
g(µi) =α + Z

T
i γ +

K0
∑

k=1

L0
∑

ℓ=1

θk,ℓ

∫

T

∫ 1

0

Qi(t, p)BT ,k(t)BP,ℓ(p)dtdp

=α + Z
T
i γ +W

T
i θ ,

(6)S(ψ) = R(α, γ , θ) = −2logL(α, γ , θ;Yi ,Zi ,Wi)+ �||θ ||1.

Lir(t) = r-th L-moment of {Xij(s)}nij=1, s ∈ (t − h, t + h).

Lir(t) =
∫ 1

0

Qi(t, p)Pr−1(p)dp.
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Here the functional regression coefficient β∗
r (t) capture the diurnal time-varying effect of the r-th order time-

varying L-moment on the response Yi at time t. Thus, we get an additive SOFR with time-varying L-moments. It 
is important to note that if L0 = 1 we get exactly the SOFR model (2) that uses subject-specific temporal curves 
as predictors. Thus, SODTR-L model (7) strictly includes model (2).

Application of SOTDR to modelling cognitive status and function in Alzheimer’s 
disease
In this section, we apply SOTDR to model cognitive status and function in the Alzheimer’s disease (AD) study 
and compare it to the three existing approaches including a GLM regression with scalar total activity count sum-
mary, SOFR with temporal diurnal curves and SOFR with quantile functions.We use penalized spline  regression49 
to estimate the unknown coefficient functions β(t) and β(p) in SOFR. For both diurnal and distribution model-
ling, 12 B-Spline basis functions with a second order difference penalty are used. The refund  package50 in  R51 
is used for implementation of SOFR. First, we will model cognitive status (CNC vs AD) and the three cognitive 
scores of attention (ATTN), visual memory (VM), and executive function (EF) using the bivariate time-by-
distribution data objects as illustrated in the “SOTDR via time-by-distribution data objects” section. Second, 
we alternatively use an additive SOFR with time-varying L-moments.

SOTDR modelling of cognitive status. We model cognitive status (CNC vs AD) using the SODTR model 
(4) with an additive adjustment for age, sex and years of education. For comparison with existing approaches, we 
fit models (1), (2) and (3) using as predictors subject-specific average PA, diurnal PA curves, quantile PA func-
tions, respectively. Ten-minute diurnal PA curves have been calculated by aggregating minute-level data into 10 

(7)

g(µi) = α + Z
T
i γ +

∫ 1

0

∫

T
Qi(t, p)β(t, p)dtdp

= α + Z
T
i γ +

∫

T

K0
∑

k=1

L0
∑

ℓ=1

θk,ℓBT ,k(t)

∫ 1

0

Qi(t, p)Pℓ−1(p)dtdp

= α + Z
T
i γ +

L0
∑

ℓ=1

∫

T
Liℓ(t)

K0
∑

k=1

θk,ℓBT ,k(t)dt

= α + Z
T
i γ +

L0
∑

ℓ=1

∫

T
Liℓ(t)β

∗
ℓ (t)dt.
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Figure 3.  The first four time-varying L-moments of daily physical activity averaged within CNC (blue) and AD 
(red) groups.
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minutes epochs, resulting in subject-specific diurnal PA curves Xi(t) of length 144. As mentioned earlier, since 
the participants of the study were highly  sedentary9 such 10-minute aggregation serves as pre-smoothing and 
retains the key temporal patterns of PA. When we report predictive performance summaries such as the area 
under the curve (AUC) of the receiver operating characteristic, we perform repeated five-fold cross-validation 
and report the average cross-validated AUC (cvAUC). In Model (4), cross-validated AUC involves only cross-
validation of part 2 of the estimation process, that is the same components of W selected in Step 1 are used in 
each iteration of the cross validation. It is important to note that for a large dataset this step will not be necessary 
as Qi(t, p) could directly be used as a bivariate functional predictor. The results of the analyses are presented in 
Table 2.

The p values for β(t) and β(p) in SOFR correspond to the p values from global test of these coefficients and are 
as reported by the pfr function for scalar-on-function regression within the refund  package50 in  R51. These are 
based on a test statistic motivated by an extension of Nychka’s  analysis52 of the frequentist properties of Bayesian 
confidence intervals for  smooths53. The p values for β(t, p) are based on a likelihood ratio test (LRT) (of inclusion) 
in the second stage of the estimation process with the selected components of W coming from the first stage.

Model (1) shows that higher subject-specific average PA is significantly associated ( α = 0.05 ) with a lower 
odds of AD. The cvAUC value of 0.781 illustrates a satisfactory discriminatory power of the model and is set as a 
benchmark for comparison with the other three models. The estimated functional regression coefficient β(t) for 
Model (2) illustrating a diurnal effect of PA profile on log-odds of AD is displayed in the top left panel of Fig. 4. 
Model (2) finds that higher PA during morning hours ( ∼ 10 a.m.–3 p.m.) is significantly associated ( α = 0.05 ) 
with a lower odds of  AD49. The average cvAUC of 0.773 suggests that, although, the diurnal patterns of average 
PA offer additional temporal insights, they do not necessarily offer more discrimination between CNC and AD 
groups compared to the use of simple average PA (Model 1, cvAUC = 0.781). Model (3) finds the significance of 
subject-specific quantile functions of PA.

The estimated functional regression coefficient β(p) for Model (3) illustrating a distributional effect of PA 
on log-odds of AD is displayed ( β(p) not significant for p < 0.7 ) in the top right panel of Fig. 4 and shows that 
higher upper quantile levels ( p ∈ (0.90, 1) ) of PA are significantly associated with lower odds of  AD49. Increased 
cvAUC of 0.792 indicates higher discriminatory power of distributional encoding of PA (in particular, maximal 
PA) between CNC and AD compared to the average PA.

The estimated bivariate functional effect β(t, p) for Model (4) is shown in the bottom left panel of Fig. 4. We 
used K0 = L0 = 12 cubic B-spline basis functions for modelling β(t, p) . Increased maximal capacity of PA dur-
ing the morning ( ∼ 7 a.m.–10 a.m.) and in the afternoon ( ∼ 3 p.m.–5 p.m.) is found to be associated with lower 
odds of AD. An increased cvAUC of 0.811 (around 3.8% gain) illustrates additional discriminatory power of 
the time-by-distribution PA data objects, while simultaneously capturing temporally local distributional effects 
of the PA on log-odds of AD.

SOTDR‑L modelling of cognitive status. Next, we illustrate an application of SOTDR-L that uses diur-
nal time-varying L-moments for modelling cognitive status (CNC vs AD) outcome. For interpretability, we use 
the first four diurnal L-moments profile Lik(t) ( L0 = 4 ) as functional predictors and adjust for age, sex and years 

Table 2.  The results of modelling cognitive status (CNC vs AD) and physical activity using Model 1–4 with 
an adjustment for age, sex, and education. The standard deviation of the estimated coefficients for the scalar 
predictors are indicated in the parenthesis. Predictors: model 1-scalar average PA, model 2–diurnal PA curves, 
model 3-quantile functions, model 4-SOTDR with time-by-distribution data objects. *p < 0.1 ; **p < 0.05 ; 
***p < 0.01.

Dependent variable: cognitive status (CNC 
vs AD)

Model 1 Model 2 Model 3 Model 4

Intercept
7.608** 6.549* 10.588** 12.368***

(3.567) (3.615) (4.139) (4.591)

Age
−0.051 −0.040 − 0.072* − 0.089*

(0.038) (0.039) (0.043) (0.047)

Sex
2.134*** 2.111*** 2.527*** 2.637***

(0.554) (0.553) (0.624) (0.676)

Education
− 0.224** − 0.213** − 0.167* − 0.174*

(0.091) (0.091) (0.092) (0.095)

X̄i

− 0.005*** NA NA NA

(0.002)

Xi(t) NA β̂(t)∗∗ NA NA

Qi(p) NA NA β̂(p)∗∗ NA

Qi(t, p) NA NA NA β̂(t, p)∗∗∗

Observations 92 92 92 92

cvAUC 0.781 0.773 0.792 0.811
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of education. Since we have a relatively small sample size ( n = 92 ), we follow a penalized SOFR approach to 
select the L-moments Lik(t)-s, which are most informative.

In particular, we re-express the SOFR model (7) in terms of functional principal component scores of Lik(t) 
following a functional principal component regression  approach54,55,

Here ξirs =
∫

T Lir(t)ψs(t) is the projection of the diurnal L-moment Lir(t) on the eigenbasis ψs(t) and βr(t) is 
modelled as βr(t) =

∑nr
s=1 βr,sψs(t) . We use the group exponential Lasso (GEL)  penalty56 on the basis coef-

ficients {βr,s}nrs=1 to perform variable selection in order to identify informative time-varying L-moments Lik(t) . 
GEL is a bi-level selection penalty and enjoys the added flexibility of forcing some of the coefficients within a 
particular group to be zero, thus effectively reducing the number of parameters, which is especially useful in our 
scenario due to the very low sample size. The proposed variable selection approach selects the 3rd order time-
varying L-moments Li3(t) to be most informative i.e, most discriminating between the two groups (CNC and 
AD) while adjusting for age, sex and years of education. The grpreg  package57 in R is used for implementing 

(8)E(Yi|Zi , {Lir(t)}4r=1) = µi , g(µi) = α + Z
T
i γ +

4
∑

r=1

nr
∑

s=1
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the variable selection method using GEL. The estimated diurnal effect of Li3(t) is shown in Fig. 5. We observe 
that an increase in the value of third order L-moment of physical activity, during the window (8 a.m.–6 p.m.) is 
associated with a lower odds of AD. The third order L-moment Li3(t) is related to L-skewness of the PA and its 
significance is therefore very interesting from a clinical perspective. We also perform repeated cross-validation 
using Li3(t) as predictor in a SOFR model while adjusting for age, sex, and years of education. An increased 
cvAUC of 0.802 (around 2.7% gain) illustrates satisfactory discriminatory power of the proposed metric offer-
ing both distributional and temporal encoding of physical activity. Likely, because of restricting the number of 
L-moments and the use of GEL, the temporal findings of SOTDR-L differ from temporal findings of SOTDR. 
While SOTDR highlights activity in the upper quantile levels during 6–10 a.m. and 2–6 p.m. time periods, 
SOTDR-L highlights the third order L-moment of activity during mid-day hours that are similar to those from 
SOFR on temporal diurnal curves. Chosen third order time-varying L-moments in SOTDR-L also seems to 
result in an increase in cvAUC compared to SOFR that uses temporal diurnal curves (that are equivalent to the 
first order time-varying L-moments).

Modelling attention. In this section, we apply SOTDR to model the cognitive score of attention (ATTN) 
of all the subjects and the results are compared with those from regression with subject-specific average PA, 
FDA using diurnal PA curves, DDA using quantile functions. Adjusted R-squared, defined as the adjusted pro-
portion of variance explained, where original variance and residual variance are both estimated using unbiased 
 estimators58, is used in Models 2-4 for the evaluation of in-sample predictive performance. Cross-Validated 
R-squared (from repeated 5 fold cross-validation) is reported to compare out-of-sample prediction performance 
of the different models.

Table 3 presents the result of the analyses from these four modelling approaches. The association between 
average PA and attention is not found to be significant at α = 0.05 level. Adjusted R-squared of the model is 
reported to be 0.161 and is set as the benchmark for comparison with the other approaches. Although the 
diurnal curves of PA were not found to be significant ( α = 0.05 level), the estimated quantile-function effect 
is significant. The estimated regression coefficient β(p) is shown in Fig. 6 (top right panel). It shows that β(p) 
creates a contrast between a higher quantile levels ( p > 0.8 ) and lower quantile levels ( p < 0.8 ). Specifically, 
an increase in higher quantile of PA is found to be associated with higher performance on attention. Although 
one needs to be cautious in interpreting the results as subject- specific quantiles of PA are mostly zero below the 
quantile level p < 0.5 as illustrated in Fig. 1. A 35% increase in the adjusted R-squared is observed using DDA 
with subject-specific quantile functions of PA compared to the benchmark model.

The estimated bivariate coefficient β(t, p) , capturing the TD effect on attention is displayed in Fig. 6 (bot-
tom left panel). Increased maximal capacity of PA during the morning ( ∼ 7 a.m.–10 a.m.) and in the evening 
( ∼ 8 p.m.–10 p.m.) is found to be associated with higher attention score after adjusting for age, sex and years 
of education. Importantly, when quantile levels are constrained to be above 0.5 (re-estimated β(t, p) is shown 
in the bottom right), there are two contrasts between upper quantile levels ( p > 0.9 ) and lower quantile levels 
( 0.5 < p < 0.7 ) which are not time-aligned and actually capture quantile contrast between adjacent time periods. 
The morning TD effect can be interpreted as lower level quantile activity centered around 4–6 a.m. are negatively 
associated and higher level quantile activity centered around 7–9 a.m. are positively associated with attention.

The evening TD effect can be interpreted higher level quantile activity centered around 8–10 p.m. are posi-
tively associated and lower level quantile activity centered around 10 p.m.–12 a.m. are negatively associated with 
with attention. Adjusted R-squared of SOTDR model using the time-by-distribution PA surface is reported to 
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be 0.378, giving a 135% gain from the benchmark model using average physical activity, demonstrating very 
strong time-by-distribution effect, compared to the non-significant average and diurnal effect and significant 
distributional effect. In terms of cross-validated R-squared also, we see a 99% increase using the SOTDR approach 
compared to the benchmark model.

The results from the similar SOTDR analysis of verbal memory (VM) and executive function (EF) are pre-
sented in the Supplementary Tables 1, 2 and Supplementary Figures 1, 2 of the Supplementary Material. For both 
outcomes, we observed significant improvements in adjusted R-squared and CV R-squared.

SOTDR‑based scalar biomarkers. Estimates from SOTDR can be used to create simpler to use and 
interpretable scalar biomarkers. For example, based on the previously fitted models for an outcome of inter-
est, one can calculate SOTDR biomarkers defined as bmTD,i =

∫ 1

0

∫

T Qi(t, p)β̂(t, p)dtdp and compare them 
with the biomarkers based on the average PA, diurnal curves of PA, and quantile functions of PA: bma,i = X̄iβ̂ , 
bmT ,i =

∫

T Xi(t)β̂(t)dt , bmD,i =
∫ 1

0
Qi(p)β̂(p)dp . Figure 7 displays the scatterplot matrix for all four types of 

biomarkers to discriminate either cognitive status (left) or attention score (right). Although, they are mostly pos-
itively correlated, the large amount of spread indicates that they likely capture somewhat different aspects of PA.

Discussion
In this paper, we have proposed to use subject-specific time-by-distribution data objects to capture and model 
temporally local distributional information in wearable data. We then developed a scalar on time-by-distribution 
regression that handles TD objects as predictors. We have also provided an alternative and parsimonious repre-
sentation of the time-by-distribution objects in terms of time-varying L-moments, robust rank-based analogs 
of traditional moments. This representation allowed us to illustrate that SOTDR generalizes SOFR.

Our approach revealed novel insights into the associations between distributional and diurnal aspects of 
physical activity and various domains of cognitive function and Alzheimer’s disease status. The time-by-distribu-
tion representation provided better discrimination between the CNC and AD participants. Our results revealed 
strong associations between temporally local distributional aspects of PA across the day and clinical cognitive 
scales impacted in early AD, especially, attention. These results highlight the potential value of designing and 
testing physical activity interventions targeting a specific time of the day, in the early stages of AD. As there may 
be times of the day when cognitively impaired individuals are most  alert59,60, it might be specifically suited for 
individual specific PA interventions. Note that, although, we have not established a causal direction here, it could 
also be that people with AD have poorer sleep, so are less active in the morning compared to cognitively normal 
controls. The maximal capacity of physical activity represents the reserve of an individual and our study has 
revealed strong and significant associations between cognitive performance and maximal PA levels, indicating 
changes in the reserve of a person might be sensitive to specific disease pathology and cognitive decline.

In this paper, we have proposed a two stage estimation approach of 1) using a LASSO penalty to identify the 
components of the stacked vectors W that are associated with the outcome 2) re-estimating the GLM model 
using components selected in Step 1. Step 2 does depend on components selected in Step 1, and our approach 

Table 3.  The results of modelling attention score and physical activity using Model 1–4 with an adjustment 
for age, sex, and education. The standard deviation of the estimated coefficients for the scalar predictors 
are indicated in the parenthesis. Predictors: model 1-scalar average PA, model 2-diurnal PA curves, model 
3-quantile functions, model 4-SOTDR with time-by-distribution data objects. All models are adjusted for age, 
sex, years of education. *p < 0.1 ; **p < 0.05 ; ***p < 0.01.

Dependent variable : ATTN score

Model 1 Model 2 Model 3 Model 4

Intercept
− 1.423 − 1.157 − 2.045** − 3.696***

(0.929) (0.960) (0.927) (0.988)

Age
0.002 − 0.001 0.006 0.021*

(0.011) (0.011) (0.010) (0.011)

Sex
− 0.354** − 0.349** − 0.443*** − 0.476***

(0.150) (0.150) (0.150) (0.134)

Education
0.083*** 0.080*** 0.072*** 0.069***

(0.023) (0.023) (0.023) (0.021)

X̄i

0.0005 NA NA NA

(0.0005)

Xi(t) NA β̂(t) NA NA

Qi(p) NA NA β̂(p)∗∗ NA

Qi(t, p) NA NA NA β̂(t, p)∗∗∗

Observations 92 92 92 92

Adjusted R2 0.161 0.163 0.218 0.378

cv R2 0.167 0.189 0.240 0.333
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does not account for variability involved in selecting the components. This is not a limitation of the SOTDR 
model but of the current estimation approach that needs to address the smaller size of the application dataset. 
Note that for a larger dataset, this regularization in the estimation step will not be necessary. Also, methods for 
doing post-selection inference for LASSO (Lee et al. 2016; Taylor and Tibshirani 2018) may be extended to our 
framework in future work. A related concern is the penalization bias of LASSO which is known to shrink smaller 
coefficients to zero. An alternative would be to use adaptive  LASSO61 or non-convex penalties such as  SCAD62 or 
 MCP63 which are known to overcome the penalization bias by adaptively relaxing the rate of penalization when 
the magnitude of the coefficient gets larger.

This paper opens interesting research questions on how to efficiently capture information with TD data 
objects. In our approach, we encoded distributional information via quantile functions, the use of other distri-
butional representation such as CDF or hazard function could be explored in future work. In our application, the 
window length h for calculating Qi(t, p) and Li(t) was chosen to be consistent with the window size for diurnal 
curves. However, in other applications, an adaptive procedure of the choice of optimal window size h may be 
developed. Time registration or time-warping is often a desirable pre-processing step to make sure the amplitude 
and phase variations in functional data are properly  separated64–66. This is especially important for wearable data 
which is often driven by subject-specific schedules and time preferences. Thus, pre-registration of TD objects is 
another exciting area of future research. We have focused on a linear effect of the TD data objects in this paper 
due to its simplicity, interpretability and connection with summary level modelling approaches. Accounting 
for the circular nature of the data may be another interesting direction. Future applications might benefit from 
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Figure 6.  The estimated effects of the different PA metrics (Model 2-4) on ATTN score. Estimated temporal 
effect (solid line) β(t) (top left). Estimated distributional effect β(p) (top right). Estimated bivariate effect 
β(t, p) of time-by-distribution PA surface (bottom left). The same plot (zoomed-in) with p restricted to the 
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considering nonlinear effects of the TD objects and this could be done via nonlinear extensions scalar-on-
function regression  models17. Another interesting area of research would be to extend and apply the proposed 
method for modelling longitudinal or multilevel data that at each visit generate distribution. To address day-to-
day specific variation and account for weekly social structures, a possible approach could be to extend multilevel 
 methods16,67 to TD objects or to employ a three dimensional day-by-time-by-distribution object Qi(d, t, p) , with 
d = Mon,Tue,Wed,Thu, Fri, Sat, Sun . This approach, of course, would require more wearable data at subject 
level. Shared parameter  model68 can also be useful for accommodating possible systematic differences across 
days of the week or times of the wday due to exogenous factors. The bivariate time-by-distribution object in the 
SOTDR framework could be modelled using a semi-parametric model and then linked to the scalar outcome via 
one or more shared latent parameters. These modifications that can be done in future work could help us to better 
understand associations between human health and temporal and distributional aspects of daily physical activity.

Data availability
Illustration of the proposed framework via  R51, along with the dataset analyzed, is available online with this 
article and on Github at https:// github. com/ rahul frodo/ SOTDR.
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