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Heat shock proteins (HSPs) are a kind of proteins which mostly found in

bacterial, plant and animal cells, in which they are involved in the monitoring

and regulation of cellular life activities. HSPs protect other proteins under

environmental and cellular stress by regulating protein folding and supporting

the correctly folded structure of proteins as chaperones. During viral infection,

some HSPs can have an antiviral effect by inhibiting viral proliferation through

interaction and activating immune pathways to protect the host cell. However,

although the biological function of HSPs is tomaintain the homeostasis of cells,

some HSPs will also be hijacked by viruses to help their invasion, replication,

and maturation, thereby increasing the chances of viral survival in unfavorable

conditions inside the host cell. In this review, we summarize the roles of the

heat shock protein family in various stages of viral infection and the potential

uses of these proteins in antiviral therapy.
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Introduction

Heat shock proteins (HSPs) were first discovered in the salivary glands of flies, where

they are expressed under heat shock conditions. HSPs have a wide range of molecular

weights from approximately 10 to 100 kDa and can be classified into different groups

according to their molecular weight, including small heat shock proteins (sHSPs), HSP40,

HSP60, HSP70, HSP90 and large heat shock proteins (1).

The sHSPs, most of which are heat-inducible, have a wide range of molecular weights

from 12-43 kDa and are widely distributed in a variety of tissues. The ability to prevent

the aggregation of proteins and polypeptides is the most important function of many

sHSPs (2). Depending on the status of client proteins, sHSPs exert different molecular

chaperone functions (3–5). HSP40, HSP60, HSP70 and HSP90 are well-studied heat

shock proteins that often perform biological functions in cells as complexes. They are

extensively involved in the lifecycle of proteins, including protein folding and refolding,

transport, degradation, assembly, activity regulation, and translocation, as well as the

depolymerization of protein aggregates. The heat shock protein family is also involved in
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many fundamental cellular processes including cell cycle control,

cell survival, hormone signaling and response to cellular stress

through the extensive regulation of intracellular proteins (6–11).

Large HSPs, such as HSP100 and HSP110, contain a loop

structure that gives them a high capacity of binding to

polypeptide substrates or non-protein ligands such as

pathogen-associated molecules (12). Both HSP100 and

HSP110 have chaperone activity with HSP70, and they can

regulate protein aggregation by forming HSP104-HSP70-

HSP40 (13) and HSP110-HSP70-HSP40 (14) ternary

complexes to maintain cellular homeostasis in a variety of

cellular life activities.

The expression of HSPs is not only induced by heat or cold

but is also responsive to a range of stressors including starvation

(15), hypoxia (16), ultraviolet (UV) irradiation (17), exposure to

heavy metals (18) and microbial infection (19). During viral

infection, HSPs protect the host cells mainly by their chaperone

functions. Small heat shock proteins are produced in large

quantities in response to stress (20), partly activating immune

signaling pathways (21), and partly assembling complexes to

modulate apoptosis (22). The bigger members also assemble

HSP complexes to fold host proteins correctly and refold

aggregates of stress-denatured proteins (23). Importantly,

some heat shock proteins are directly involved in the

inhibition of viral replication and transcription (24).

Although the HSP family is a class of protective proteins,

they can be hijacked by viruses to aid host cell invasion. Viruses

lacking molecular chaperones can utilize the native HSPs of the

host cell to help them invade cells and the nucleus (25), stabilize

and regulate their own transcription and translation (26),

assemble viral proteins, or alter the intracellular environment

to promote viral proliferation (27, 28). The aim of this review is
TABLE 1 Functions and distribution of heat shock proteins.

HSP Intracellular Distributions

HSP100 Cytoplasm
Nucleus

Diss

HSP90 Cytoplasm
Endoplasmic Reticulum (ER)
Mitochondria
Nucleus

Mod

HSP70 Chloroplasts
Cytoplasm
Endoplasmic Reticulum (ER)
Mitochondria
Nucleus

Unfo
Tran
Diss

HSP60 Chloroplasts
Cytoplasm
Mitochondria

Segr
Prom

HSP40 Cytoplasm
Nucleus

Fold

HSP27 (sHSP) Cytoplasm
Nucleus

Main
Agai
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to collate relevant reports on the role of the HSP family in

various phases of viral infection and pave the way for subsequent

research on related treatments.
Responses of HSPs under different
stress conditions

Based on the function of chaperones, HSPs widely participate

in biomolecular networks by binding to proteins of various

functions in space and time (Table 1). Under normal

conditions, HSPs play a role in the regulation of the cellular life

cycle and functions, while under stress, HSPs are one of the main

systems to be activated and regulate stress resistance, thereby

enhancing viability. The main stressors that organisms face can be

roughly divided into three categories, including physical, chemical

and biological factors (19). Here, we briefly summarize the

responses of HSPs in response to the most common stressors

such as cold, anoxia and pathogenic microorganisms.

In response to stressful environments, HSPs regulate

transcription and translation by acting as accessory proteins. In

a study on the cold adaptation of the Asiatic rice borer moth, Chilo

suppressalis (20), small HSPs (sHSPs) were found to act as the first

line of cellular defense against protein unfolding caused by the

environmental stress, since their protein depolymerization activity

is independent of ATP (29). They are capable of binding a large

range of non-native substrate proteins to form sHSP-substrate

complexes that prevent irreversible aggregation (30). Four sHSP

genes were found in the genome of C. suppressalis, three of which

are highly induced in response to cold stress and associated with

HSP Beta-1 (HSPB1)-related protein (HSPB1AP). HSP70 and

HSP90 are then synergistically upregulated at the transcriptional
Functions

ociation, refolding, and re-solubilization of protein aggregates

ification of kinases, steroid hormone receptors, and transcription factors

lds misfolded polypeptides
slocates unfolded polyproteins through membranes
ociates protein complexes

egates unfolded polypeptide chains
otes unfolding of misfolded polypeptides by both active and passive mechanisms

ing, Degradation and Translocation of Proteins

tain cytoskeletal protein stability
nst apoptosis
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level, which requires the participation of HSP40 (31) and a protein

called HSP90 ATPase homolog activator (HSP90aa) (32).

Afterwards, HSP70 and HSP90 cooperatively refold proteins

(Figure 1A) (33, 34).

At normal levels of oxygen, HSP60 forms a complex with the

pro-apoptotic factor BCL2-associated X (Bax) in the cytosol and

inhibits its translocation into the mitochondria, thereby

preventing apoptosis. However, when cells are faced with

hypoxia, the formation of complexes will be reduced and

release Bax for translocation into the mitochondria, which

results in the release of cytochrome c as an apoptotic signal

(35). The HSP60-10 complex responds to oxidative stress and

induces apoptosis when cells are under the dual stress of hypoxia

and DNA damage (Figure 1B) (36).

HSPs are also induced when the host cell is infected by

pathogenic microorganisms. A study on porcine reproductive

and respiratory syndrome virus (PRRSV) identified HSP60 as a

novel antiviral protein that inhibits viral replication (37). PRRSV

infection activates PP1a/g to dephosphorylate the originally

phosphorylated MDA5 and RIG-1, after which MDA5 and

RIG-1 are activated through ubiquitination. MAVS is

phosphorylated and activated by TBK1, after which it interacts
B

C D

A

FIGURE 1

Molecular mechanisms of heat shock proteins induced under stress (A) Hsp
stress, and then diverts unfolded proteins along the protein folding pathway
HSP60-10 complex helps to localize FHIT protein to the mitochondria, whe
of reactive oxygen species. This in turn triggers cytochrome c release and s
apoptosis. (C) Following viral invasion, the RLR/MDA5 signaling pathway is a
enhance the RLR/MDA5 signaling pathway. In mitochondria, HSP60 interac
and the transcriptional levels of IFN-b. Furthermore, it can upregulate MAVS
Hsp104/ClpB complexes in host cells process disordered aggregates accum
after prion infection with the help of the HSP70-40 partner system, dissocia
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with RIG-I or MDA5, which triggers formation of a signaling

synapse resulting in the formation of the canonical IFN-b
enhanceosome complex that promotes IFN-b transcription. The

RLR/MDA5 (RIG-I like receptor/melanoma differentiation-

related gene 5) signaling pathway promotes the production of

type I interferon to active the downstream signaling pathways

(38). Upon the activation of mitochondrial antiviral signaling

proteins (MAVS), HSP60 from the mitochondria binds to the

MAVS protein and increases the expression of IFN-b, which can

inhibit viral replication (37, 39). A recent study also found that the

chaperone HSP27 positively regulates the RLR/MDA5 signaling

pathway, which is triggered by encephalomyocarditis virus

(EMCV) by stabilizing the expression of MDA5 to inhibit viral

replication (Figure 1C) (40)

As molecular chaperones, heat shock proteins function by

binding to client proteins in response to cellular or organismal

stress. Small heat shock proteins bind directly to the target

protein to prevent it from unfolding (2) or to transfer it to a

complex transfer it to a complex which is inclined to be formed

by larger heat shock proteins for further folding or refolding (20,

23). In response to stress, heat shock proteins either bind directly

to protect the target protein (20), or affect factors that regulate
27 binds to unfolded proteins that accumulate in the cytosol during
, ultimately reaching HSP90. (B) In response to oxidative stress, the
re it stabilizes ferredoxin reductase, leading to enhanced production
ubsequent activation of the caspase cascade, ultimately causing
ctivated. HSP27 can specifically stabilize MDA5 during expression to
ts with MAVS to increase MAVS-mediated IFN-b promoter activity
-induced mRNA transcription of IFN-stimulated genes (ISGs). (D)
ulated following cellular stress as well as ordered aggregates formed
ting them into component proteins and reactivating them.
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cellular activities such as apoptosis (35) and immune signaling

pathways (38). HSPs are activated by a wide variety of cellular

stresses to maintain cellular homeostasis. However, it is also this

characteristic that makes HSPs an easy target for viruses to break

through host defenses. In this review, we will focus on the main

functions of HSPs in viral infection.
Biological functions of HSPs in host
cells during viral infection

There are a large number of studies reporting that HSPs are

not only involved in antiviral responses, but also could be

utilized by the virus to help cell entry, viral replication and

virion assembly.
Antiviral activity of HSPs

As a class of protective proteins, HSPs can inhibit viral

proliferation by interacting with viral molecules and their related

proteins. For example, HSC70/HSP90 has already been confirmed

to be a driving force of the RNA-induced silencing complex (RISC)

assembly pathway by providing ATP to load small RNA duplexes

into argonaute protein, which can promote complex formation

(24). Subsequently, RISC binds to viral mRNA, leading to the

repression of viral translation. In the study of HPV, it was found

that secreted HSP70 can effectively target dendritic cells with

relevant antigens to enhance the antigen-specific immune

response (41). The ClpB/HSP104 complex can disassemble

disordered aggregates that accumulate due to cellular stress, as

well as ordered aggregates formed by prions with the help of the

HSP70 chaperone system, and reactivate their constituent proteins

(Figure 1D) (23).

HSPcanalso regulate immune signalingpathways to resist viral

infections. As mentioned above, HSP60 regulates the RLR/MDA5

signaling pathway to influence cellular immunity. In addition,

HSP40 was also found to bind to MDA5 in the MDA5-MAVS

pathway to disrupt the formation ofMDA5multimers, resulting in

the suppression of type I IFN induction and protecting host cells

from damage caused by excessive inflammation triggered by viral

infection (42). Many studies have found that the upregulation of

HSP27 inhibits the replication of porcine epidemic diarrhea virus

(PEDV) and red spotted grouper neuro necrosis virus (RGNNV).

HSP27 significantly increases the phosphorylation of NF-kB as an

upstream regulator, which in turn upregulates interferon promoter

activity and activates downstream interferon-stimulated genes.

Viruses have also developed counteracting strategies to

significantly downregulate HSP27 expression (43, 44). In general,

HSP27 interacts with many different viral proteins to regulate the

activity of IFN-1 and NF-kB signaling pathways (Figure 2A)

(21, 45).
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During the two years of the COVID-19 epidemic, many

studies on inflammation caused by coronavirus infection have

been reported, in which we can also find new roles of HSPs. The

evolutionarily conserved innate immune system is the first

defense line against viral infection (46). The innate immune

system is highly sensitive to stimuli, which rapidly recruit cells

within minutes (neutrophils) to hours (monocytes/

macrophages) to the site of injury. These rapid responses are

orchestrated primarily by the expression of NF-kB, which drives

inflammation during the early phase (47). There is a unique class

of cytoplasmic receptors in the innate immune system called

nucleotide-binding and oligomerization domain (NOD)-like

receptors (NLRs), which constantly patrol for invading

pathogens in the cytoplasm. At the heart of damaging

inflammatory responses in many diseases is a multimolecular

complex called the NOD-like receptor protein 3(NLRP3)

inflammasome (48). In COVID-19, the viral envelope E

protein triggers the activation of the NF-kB inflammatory

signaling cascade and the interaction with inflammatory

factors, such as tumor necrosis factor-alpha (TNF-a) and

interleukin 6 (IL-6). These changes act as strong stimuli

activating the cytosolic innate immune NLRP3 inflammasome.

Once constituted, the NLRP3 inflammasome is secreted from

the cells and can amplify the inflammatory response by

activating the inflammasome and caspase-1 in neighboring

cells. A recent study found that overexpression of HSP70 can

inhibit the activation of the NLRP3 inflammasome, which in

turn regulates the activation of caspase-1 (49)and the maturation

of IL-1b (50) (Figure 2B). In related drug treatment studies,

HSP90 inhibitors were found to block the initiation and

activation of the NLRP3 inflammasome (51, 52).

Once the cells activate the inflammatory response,

cyclooxygenase-2 (COX-2) is induced and starts producing

proinflammatory arachidonic acid-derived prostaglandins

(PGs) to promote the repair of inflammatory cells and tissues.

Furthermore, PGs lead to an increase of the core body

temperature (fever), which also triggers the heat shock

response (HSR) (53). Under the influence of fever, structural

changes in the plasma membrane directly activate heat shock

factor 1 (HSF-1), whcih regulates the transcription of HSPs,

expression of cytokines, and early response genes. The

production of HSP70 in response to HSF-1 activation is

correlated with complex formation between NF-kB and its

inhibitor (I-kB) to prevent the translocation of NF-kB into the

nucleus, which downregulates the acute inflammatory response

(54). This avoids excessive protein damage or a cytokine storm

induced by excessive inflammation (55).
Viral binding and internalization

Attachment is the first crucial step in the initiation of viral

infection. It depends on the interaction between the viral
frontiersin.org
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attachment proteins and cellular receptors, which are key

determinants of viral host specialization and pathogenesis. As

a family of chaperone proteins widely distributed in cells, HSPs

have been found to act as receptors for a variety of viruses in

recent studies (56–58), and they are mainly involved in the viral

contact and cell invasion in two ways.

Firstly, they participate in the process of viral entry into cells

through endocytosis mediated by endocytosin and clathrin. A

large number of helper proteins involved in endocytosis

mediated by clathrin are present in various cells, and the HSP

family is also represented among them. The D isoform of heat

shock cognate protein 70 (HSC70) was found to help Japanese

encephalitis virus (JEV) penetrate C6/36 cells via clathrin-
Frontiers in Immunology 05
mediated endocytosis (58). Another important chaperone,

HSP90, was also recently found to form a complex with red

spotted grouper neuronecrosis virus (RGNNV) on the cell

surface and independently lead to RGNNV internalization

through the clathrin endocytosis pathway (59).

Similarly, HSPs can also directly bind to virions as receptors

on the cell surface. In existing reports, HSP70 was found to be

involved in the invasion of various viruses in C6/36 cells. For

example, HSC70 is involved in the process of dengue virus

(DENV) invasion of cells by interacting with the DENV receptor

complex (60, 61), while HSC70 interacts with the VP5 subunit of

rotavirus spike protein to help it enter cells through endocytosis

(24). Similar to HSP70, HSP90 is also an important component
B

A

FIGURE 2

Heat shock proteins and immunological pathways (A) HSP27 regulates the NF-kB pathway. In the NF-kB signaling pathway, nuclear factor kB
mainly exists as a heterodimer of p65 and P50, and I-kBa is a major inhibitor of NF-kB, which combines with them to form a complex in the
resting state. The dimers are held inactive in the cytoplasm by their interaction with I-kBa proteins. I-kBa is phosphorylated when stimulated by
external signals, and after phosphorylation, I-kBa proteins undergo ubiquitin-dependent degradation by the proteasome, after which NF-kB is
translocated to the nucleus, where it acts as a transcription factor. The interaction of HSP27 with the 26S proteasome is necessary for the
degradation of phosphorylated I-kBa, and overexpression of HSP27 enhances the proteasomal degradation of phosphorylated I-kBa. (B) HSP70
negatively regulates NLRP3 inflammatory vesicles. After SARS-CoV infects cells, the virus envelope E protein triggers the activation of the NF-kB
inflammatory signaling cascade, which activates the NLRP3 inflammasome. Activation of NLRP3 induces the maturation of caspase-1, which in
turn activates the secretion of interleukins IL-1b and IL-18. While IL-1b is an important factor in inducing a rise in core body temperature,
HSP70, produced in response to the heat shock factor 1 (HSF-1), reduces the inflammatory response blocking NLRP3 and the articulator ASC to
induce caspase-1 precursor maturation following a rise in body temperature.
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of the dengue virus receptor complex. In the available literature,

HSP90 was found to be utilized directly as a cell surface to

regulate receptor-mediated endocytosis pathways by many

viruses, such as infectious bursal disease virus (62), dengue

virus (63) and Japanese encephalitis virus (64). HSP90AA1 is a

subtype of the HSP90 family and it was found to be involved in

the cell entry of influenza A virus (IAV). IAV was reported to

initiate the entry process via multiple endocytic pathways

mediated by the viral hemagglutinin (HA) glycoprotein (65).

HSP90AA1 is distributed on the cell surface and can regulate the

entry of IAV directly by interacting with viral hemagglutinin

(HA) (64).
Viral entry into the nucleus

Some viruses need to translocate viral molecules into the

nucleus to interfere in the regulation of the cell’s internal

environment or to advance replication of the viral own genome

after invading a cell. HSPs are also involved in nuclear transport or

the regulation of the intracellular environment to favor virion

production, such as inducing tubulin acetylation to arrest the cell

cycle (66) and so on. In IAV infection, HSP90 first exhibits

downregulated acetylation levels along with enhanced nuclear

transport to assist viral polymerase nuclear entry, after which the

virus induces an upregulation of HSP90 acetylation levels, which

indicates that HSPs play different roles at different phases of

infection (67). Early in the IAV infection process, HSP40

(DnaJB1) can bind to the nucleoprotein (NP) of IAV with a

nuclear localization signal and assists IAV viral ribonucleoprotein

(vRNP) with nuclear trafficking through its interaction with

nucleoproteins, which is also very important for viral protein

entry (25). Similarly, HSP90 plays a role in enhancing the

interaction between viral proteins and tubulin by binding to the

acetylated a-tubulin to upregulate nuclear transport, which has

been found in several viral infections, including mouse

polyomavirus and herpes simplex virus 1 (68, 69).
Viral replication, transcription
and translation

HSPs not only assist in the nucleation of viral molecules, but

are also intimately involved in the replication, transcription and

translation of viruses, mainly in two ways. Since the HSP family

is an important class of chaperones, they generally combine with

virus-associated proteins to participate in their replication.

Murine latency-associated nuclear antigen (mLANA) is a

conserved protein of murine gammaherpesvirus 68 (MHV68)

that is of great importance to latency maintenance and acute

viral replication. In MHV68-infected 3T12 fibroblasts, mLANA

directly interacts with HSC70 and recruits it to accumulate in the
Frontiers in Immunology 06
nucleus,whichhelps in the formationof viral replication complexes

that can promote viral DNA replication, expression of late viral

proteins, and ultimately lytic infection (70). Duck hepatitis B virus

(DHBV) has been reported to rely on the recognition of RNA

packaging signals by viral reverse transcriptase (RT), which can be

efficiently activated by HSC70 and HSP40, thereby initiating

downstream replication and nucleocapsid assembly (71).

Enterovirus A71 (EV-71) is a positive-strand RNA virus in which

the initiation of viral protein translation is guided by an internal

ribosomal entry site (IRES), andHSC70 can upregulate the activity

of IRES in cells to assist viral translation by interaction, thereby

promoting the expression of viral proteins in RD cells (26). As

mentioned before, IAV is a negative-sense single-stranded RNA

virus that can utilize autophagy to facilitate its replication (72).

Recent researchhas found that IAV induces autophagy through the

binding of hemagglutinin (HA) to HSP90AA1 distributed on the

cell surface. The interaction of HA1 and HSP90AA1 inhibits the

phosphorylation of mTOR and AKT to induce autophagy through

the AKT-MTOR pathway and thereby promote IAV

replication (64).

In addition to protein-protein interactions, HSPs can also

promote translation by binding to the viral genome. HSC70 can

favor virus replication by binding regulator non-coding RNA

(ncRNA). Studies have reported that many viruses, such as

human immunodeficiency virus (HIV) (73), DENV (74), and

West Nile virus (WNV) (75), encode microRNA-like ncRNA to

regulate virus replication. Similarly, rabies virus (RABV)

transcribes a small ncRNA, called leader RNA (leRNA). It was

also found that HSC70 binds to leRNA to regulate viral

replication during infection. Hepatitis C virus (HCV) is

currently causing a worldwide epidemic. The nonstructural

(NS) proteins are responsible for replication of HCV RNA as

well as viral particle assembly, and are primary antiviral targets

(76). In a recent study, Li et al. found that HSC70 co-precipitates

with HCV NS proteins and RNA, interacting with the HCV

replication complex and participating in HCV replication by

regulating RNA translation from the HCV genome (77).
Viral folding, encapsidation
and assembly

After completion of translation in the cell, the virus usually

recruits several host factors to facilitate assembly and budding.

Immunogold labeling revealed that HSC70 is attached to the

surface of HCV particles by interacting with the HPD (His-Pro-

Arg) motif on the E2 envelope protein of the virus. Then HSC70,

HCV core, and E2 proteins were found to co-localize at the

periphery of lipid droplets, an important site for HCV assembly

and release (78). By using an allosteric HSC70 inhibitor and

RNAi-mediated knockdown, Khachatoorian et al. (79)

demonstrated that inactivation of HSC70 reduces the speed of
frontiersin.org
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HCVparticle assembly, thus concluding thatHSC70 plays a role in

the assembly of viral particles during HCV infection. HSP90 was

also found to play an important role in the maturation of viral

proteins, including helping viral particle assembly, protein folding,

and maintaining protein activity. HSP90 was found to be involved

inmultiple viral activities, including capsid precursor processing in

coxsackieviruses, polioviruses and rhinoviruses (80), viral capsid

assembly in early hepatitis E viral infection (81), maintenance of L

protein stability in lacrosse virus (28), maintenance of reverse

transcriptase activity in hepatitis B virus and NS2/3 protease in

hepatitis C virus, as well as assistance in viral L polymerase folding

in measles and Nipah virus (82).

In the context of the global coronavirus pandemic, research on

HSPs and their roles in coronavirus infection is very popular. Here,

we summarize the findings on the role of HSP90 in coronavirus

(CoV) maturation. After CoVs invade cells, large numbers of

proteins are translated in the endoplasmic reticulum (ER), which

causes ER stress and triggers the unfolded protein response (UPR).

HSP90 regulates the UPR by stabilizing the ER stress sensor

transmembrane kinase IRE1a, which in turn contributes to viral

protein folding and replication (27). In this regard, a recent analysis

of RNA-sequencing data from COVID-19 patients also suggested

that inhibition of HSP90 could reduce the replication rate of the

novel coronavirus (preprint data) (83). This idea has been

confirmed in numerous reports of HSP90 inhibitor experiments,

which found that that HSP90 inhibitors such as 17-AAG and

Luminespib trigger the activities of the unfolded protein response

(UPR) in mice, which protected endothelial cells in the pulmonary

aorta and pulmonary microvasculature (84). According to recent

studies on coronaviruses, HSP90 is considered to be a host-

dependent factor for human coronaviruses MERS-CoV, SARS-

CoVand SARS-CoV-2. Li et al. found that the depletionofHsp90b,
the cytosolic isoformofHSP90, profoundly reduced viral growth as

shownbyboth viral loadquantification and virion titration (85). As

confirmed by co-immunoprecipitation, MERS-CoV nucleocapsid

protein (NP) is a substrate ofHSP90b, whichmaintains the stability

of NP by directly binding it and thereby preventing its degradation

by the proteasome. Similarly, they also conducted experiments on

the proliferation process of SARS-CoV and SARS-CoV-2, which

revealed that the inhibition of HSP90 leads to a significant

reduction of virion production. HSP70 and HSP90 are of great

importance for viral gene expression since they play a key role in

assembling the capsid of some viruses. Viruses utilize HSP70 and

HSP90 to fold their proteins and increase their chances of survival

under unfavorable host conditions (86).
Development of antiviral drugs
targeting heat shock proteins

In many studies on various viruses, the heat shock protein

family has been shown to be extensively involved in the viral life

cycle, and there have been many advances in the development of
Frontiers in Immunology 07
antiviral drugs targeting the heat shock protein family. Antiviral

drugs targeting heat shock proteins work in three general ways,

either by inhibiting the ATPase activity of HSPs, inhibiting the

ability of HSPs to form complexes, or triggering modifications of

HSPs such as phosphorylation and acetylation to reduce their

activity (87). Hsp90 is thought to be the most abundant and

evolutionarily conserved heat shock protein. There is also a

wealth of research on HSP90-targeted drugs such as

geldanamycin (GM) (88), tanespimycin (17-AAG) (89) and

histone deacetylase inhibitors (90). Hsp90 inhibitors were

demonstrated to protect cultured cells against infection by EV-

A71 (91). Similarly, HSP70 is active in various phases of

infection by HCV, Flavivirus and Enterovirus, while HSP70

inhibitors such as quercetin, VER155008 and JC40 also show

great potential in the treatment of these viruses (92–94). In the

treatment of COVID-19, the clinically approved HSP60

inhibitor mizoribine was found to exert an antiviral effect and

is considered to be a potentially beneficial agent for hypertensive

patients infected with the new coronavirus (95, 96). Quercetin is

an inhibitor of HSP70 that also inhibits the activity of HSP40,

and was found to decrease the intracellular accumulation of

infectious particles when applied in the treatment of HCV

infection (97). Among small heat shock proteins, HSP27 has

been studied more frequently, and 1,3,5-trihydroxy-13,13-

dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound

isolated from a traditional Chinese herb, was found to inhibit

HSP27 with significant anti-cytopathic effects, leading to the

inhibition of EV-A71 infection (98, 99).
Summary

HSP family members participate in the promotion or

inhibition of viral infection in many different ways. HSPs

inhibit viral infection by acting on different client proteins, not

only by activating immune pathways and regulating the cell

cycle, but also by directly binding to proliferation-related factors

of viruses to silence their replication. However, viruses also often

hijack these molecular chaperones, the HSP family members are

also extensively involved in all phases of viral proliferation

(Table 2). The powerful regulatory ability of HSPs originates

from numerous client proteins and more researches are required

to explore the detailed mechanisms by which HSPs fight against

viruses and help viral infections. In the process of viral infection,

HSPs play different roles according to the different clients they

serve, which makes them target proteins for the treatment of

viral infections. Nowadays there are effective inhibitors, but few

of them have become clinically approved drugs for complex

reasons such as cell toxicity, side effects and drug stability.

In the background of the current global challenge of

COVID-19, the development of drugs targeting heat shock

proteins will be a new challenge and focus in this field.

Therefore, a summary of the mechanisms of heat shock
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proteins in viral infection and the development of related inhibitor

drugs offers a theoretical basis for future scientific exploration.
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