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Neuronal calcium sensor-1 (NCS-1) is a positive modulator of IP3 recep-

tors and was recently associated with poorer survival in breast cancers.

However, the association between NCS-1 and breast cancer molecular sub-

types and the effects of NCS-1 silencing on calcium (Ca2+) signaling in

breast cancer cells remain unexplored. Herein, we report for the first time

an increased expression of NCS-1 in breast cancers of the basal molecular

subtype, a subtype associated with poor prognosis. Using MDA-MB-231

basal breast cancer cells expressing the GCaMP6m Ca2+ indicator, we

showed that NCS-1 silencing did not result in major changes in cytosolic

free Ca2+ increases as a result of endoplasmic reticulum Ca2+ store mobi-

lization. However, NCS-1 silencing suppressed unstimulated basal Ca2+

influx. NCS-1 silencing in MDA-MB-231 cells also promoted necrotic cell

death induced by the chemotherapeutic drug doxorubicin (1 µM). The

effect of NCS-1 silencing on cell death was phenocopied by silencing of

ORAI1, a Ca2+ store-operated Ca2+ channel that maintains Ca2+ levels in

the endoplasmic reticulum Ca2+ store and whose expression was signifi-

cantly positively correlated with NCS-1 in clinical breast cancer samples.

This newly identified association between NCS-1 and basal breast cancers,

together with the identification of the role of NCS-1 in the regulation of

the effects of doxorubicin in MDA-MB-231 breast cancer cells, suggests

that NCS-1 and/or pathways regulated by NCS-1 may be important in the

treatment of basal breast cancers in women.

1. Introduction

Aberrations in calcium (Ca2+) signaling and associated

regulatory proteins such as Ca2+ channels occur in a

variety of cancers (Stewart et al., 2015). Cancer cells

may remodel their intracellular Ca2+ signaling machin-

ery to favor tumorigenic processes that enable contin-

ued survival and proliferation (Prevarskaya et al.,

2014). For example, prostate cancers exhibit increased

expression of Ca2+ channels such as transient receptor

potential vanilloid 6 (TRPV6) (Fixemer et al., 2003)

and ORAI3 channels (Dubois et al., 2014) compared

to normal prostate tissues. The remodeling of ORAI3

channel expression in cancer cells causes a shift in

Ca2+ influx from a store-regulated mechanism

normally used by healthy prostate cells toward a store-
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independent one that confers apoptotic resistance and

proliferative signaling (Dubois et al., 2014). Specific

remodeling of Ca2+ signaling is evident during tumor

progression and is also seen between different cancer

subtypes such as in breast cancer. Expression of the

ORAI1 Ca2+ influx channel is higher in breast cancers

of the basal molecular subtype, which are often triple-

negative (i.e., do not express estrogen, progesterone,

and HER2 receptors) compared to nonbasal breast

cancers (McAndrew et al., 2011). Conversely, luminal

breast cancer cell lines generally have higher ORAI3

expression and exhibit greater ORAI3-mediated Ca2+

entry compared to basal breast cancer cell lines

(Motiani et al., 2010; Motiani et al., 2013).

Studies of Ca2+ signaling in cancer cells have usually

focused on plasma membrane Ca2+ permeable ion

channels and their regulators (Deliot and Constantin,

2015; Vashisht et al., 2015). In contrast, far fewer stud-

ies have assessed the potential remodeling of proteins

regulating endoplasmic reticulum (ER) Ca2+ homeosta-

sis in cancer. The ER is the main intracellular store

for releasable Ca2+ in response to activating stimuli.

The major proteins regulating ER Ca2+ homeostasis in

epithelial cells are the sarco/ER Ca2+ ATPase

(SERCA) pumps, which actively sequester cytosolic

Ca2+ into the ER lumen, and inositol triphosphate

receptors (IP3R), which release ER Ca2+ in response

to IP3-mobilizing agonists such as ATP. The release of

ER Ca2+ through IP3R activates an ER-refilling mech-

anism called store-operated Ca2+ entry (SOCE). Dur-

ing SOCE, an ER-resident Ca2+ sensor protein called

stromal interaction molecule 1 (STIM1) senses the

reduced ER Ca2+ levels and oligomerizes to form a

Ca2+-permeant protein complex with ORAI channels

on the plasma membrane, facilitating Ca2+ influx. Dys-

regulation in ER Ca2+ homeostasis is associated with

some cancerous phenotypes including the ability to

resist apoptosis and the promotion of prosurvival sig-

naling, which can influence response to anticancer

therapies (Pedriali et al., 2017). Abnormal SERCA

expression and/or activity is associated with some can-

cers including colorectal (Fan et al., 2014; Yang et al.,

2015) and blood cancers (Roti et al., 2013). These

alterations could be targeted for cancer treatment.

Indeed, mipsagargin, a prostate-specific membrane

antigen-based prodrug targeting the SERCA pumps, is

currently in clinical trials for the treatment of solid

tumors (Mahalingam et al., 2016). Alterations in ER

Ca2+ signaling can also be mediated through pro-

tooncogenes such as the Bcl-2 family of antiapoptotic

proteins, which lower ER Ca2+ levels by increasing ER

Ca2+ ‘leak’ (Bittremieux et al., 2016; Foyouzi-Youssefi

et al., 2000). Apart from these more well-defined

mechanisms of ER Ca2+ store regulation, there are

also proteins which indirectly modulate ER Ca2+ sig-

nals such as the neuronal calcium sensor-1 (NCS-1).

Neuronal calcium sensor-1 is a 22-kDa high-affinity

EF-hand-containing Ca2+ sensor protein with struc-

tural similarity to calmodulin. NCS-1 contains an N-

terminal myristoyl group that allows Ca2+-dependent

binding to proteins and cellular membranes. NCS-1

interacts with IP3R and increases its opening probabil-

ity (Schlecker et al., 2006), and NCS-1 silencing

reduces IP3-mediated Ca2+ signals mediated by ATP in

neuroblastoma cells (Boehmerle et al., 2007) and

endothelin in cardiomyocytes (Zhang et al., 2010).

NCS-1 is widely expressed in adult neuronal cells

(Nakamura and Wakabayashi, 2012; Weiss et al.,

2010) and is involved in the regulation of neurotrans-

mission activity important for learning, memory, and

synaptic plasticity (Sippy et al., 2003; Weiss et al.,

2010). NCS-1 also regulates Akt-dependent prosurvival

signaling in neurons (Nakamura et al., 2006) and car-

diomyocytes (Nakamura et al., 2016). NCS-1 is impli-

cated in a variety of disease states such as

schizophrenia and bipolar disorder (Boeckel and Ehr-

lich, 2018; Koh et al., 2003). In the context of cancer,

NCS-1 is a potential target for the prevention of pacli-

taxel-induced peripheral neuropathy (Mo et al., 2012).

Ehrlich et al. showed that paclitaxel treatment

enhances the binding of NCS-1 to IP3R in neuronal

cells (Boehmerle et al., 2006) and prolonged paclitaxel

treatment results in dysregulation of IP3-dependent

Ca2+ signaling due to the degradation of NCS-1 via

Ca2+-mediated calpain activation (Boehmerle et al.,

2007). This dysregulated Ca2+ signaling was proposed

to cause the peripheral neuropathy induced by pacli-

taxel. More recently, NCS-1 was shown to play a role

in breast cancer invasion and migration in vitro, and

higher NCS-1 expression correlates with poorer sur-

vival in breast cancer patients (Moore et al., 2017).

Despite the involvement of NCS-1 in regulating Ca2+

homeostasis and its association with breast cancer, no

studies have assessed the role of NCS-1 in intracellular

Ca2+ signaling in breast cancer cells. The association of

NCS-1 expression with breast cancer molecular sub-

types also remains unexplored. Here, we report for the

first time that NCS-1 expression is increased in the basal

breast cancer molecular subtype. We also demonstrate

that siRNA-mediated silencing of NCS-1 attenuated

unstimulated basal Ca2+ influx in basal breast cancer

cells. Silencing NCS-1 enhanced doxorubicin-induced

breast cancer cell death, which was a phenomenon phe-

nocopied by the silencing of the Ca2+ store refilling

channel ORAI1. These studies highlight a potentially

important role for NCS-1 in the regulation of Ca2+
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influx pathways important in the induction of cell death

by some therapies in basal breast cancer cells.

2. Materials and methods

2.1. Assessment of NCS-1 expression in breast

cancer molecular subtypes

Expression data for NCS-1 in breast tumors were

downloaded as log2-RSEM values from The Cancer

Genome Atlas [TCGA; (Cancer Genome Atlas, 2012)]

patient database and stratified into the molecular sub-

types: Luminal A (n = 409), Luminal B (n = 189),

HER2 (n = 67), Basal (n = 132), and Normal-like

(n = 22) (Cancer Genome Atlas, 2012). The gene

expression of NCS-1 in breast cancer cell lines catego-

rized into Luminal, HER2-amplified and Basal (Neve

et al., 2006) molecular subtypes was assessed using

publicly available microarray data from Array Express

(accession number: E-MTAB-181) (Heiser et al., 2012).

A gene expression heatmap was generated using

gene expression data from the TCGA database. The

TCGA gene expression data were mean-centered and

hierarchically clustered using Multiple Experiment

Viewer (v4.8.1; Saeed et al., 2003) with Manhattan-

based average-linkage clustering. Displayed above the

heatmap are the PAM50 molecular subtypes. Molecu-

lar markers typical of the different molecular subtypes

were used in the clustering.

2.2. Patient survival analysis in basal breast

cancer

Overall patient survival in basal breast cancers based on

NCS-1 expression was assessed using the Kaplan–Meier

Plotter web-based tool (Gyorffy et al., 2010). Affymetrix

probe IDs used in the analyses were the mean of

230146_s_at, 222570_at, and 238753_at, and high or

low NCS-1 expression was stratified using the ‘auto-se-

lect best cutoff’ function. This function assesses median,

tertile, and quartile expression cutoffs and utilizes the

best cutoff for the given gene and dataset. Hazard ratio

and log-rank P values are shown in the figure.

2.3. Gene correlation analysis

Gene correlation analyses were performed on the R2

Genomics Visualization Platform (http://r2.amc.nl)

using TCGA microarray datasets. Correlation coeffi-

cients between NCS-1 and assessed genes are shown as

R-values and significance of correlations is shown as

P-values.

2.4. Cell culture

GCaMP6m-expressing MDA-MB-231 (GCaMP6m-

MDA-MB-231) cells were developed as previously

described (Bassett et al., 2018). Parental MDA-MB-231

basal breast cancer cells were obtained from American

Type Culture Collection. Cells were cultured and passaged

in Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma-

Aldrich, Castle Hill, NSW, Australia) supplemented with

10% FBS (HyClone, GE Life Sciences, Marlborough,

MA, USA), 4 mM L-glutamine, and 400 µg�mL�1 hygro-

mycin (Invitrogen, Carlsbad, CA, USA). Cell line authen-

tication was performed with STR profiling at the QIMR

Berghofer Institute, Brisbane. Mycoplasma testing was

done biannually using the Lonza MycoAlertTM (Basel,

Switzerland) Mycoplasma Detection Kit.

2.5. NCS-1 lentiviral production and transduction

Human NCS-1 was amplified from Applied Biological

Material (LV800666) plasmid by PCR and cloned into the

pCDH-EF1-FHC lentiviral vector (Addgene # 64874).

Lentiviral particles were produced in HEK293T cells with

second-generation packaging plasmids and Lipofectamine

3000 transfection. The medium containing viral particles

was collected after 48 h. GCaMP6m-MDA-MB-231 cells

were subsequently transduced with the empty vector (EV)

or human NCS-1 in the presence of polybrene

(8 µg�mL�1). The viral media were replaced with fresh

media 24 h after infection and cells were selected with pur-

omycin (2 µg�mL�1) 48 h after viral infection.

2.6. siRNA transfection

Cells were seeded into 96-well plates (4 9 103 cells per

well) in antibiotic-free complete media 24 h before

siRNA transfection. For siRNA transfection, cells

were incubated in 8% FBS transfection media contain-

ing DharmaFECT4 (0.1 µL per well; Dharmacon,

Horizon Discovery, Cambridge, UK) and 100 nM of

either SMARTpool ON-TARGETplus NCS-1 siRNA

(L-013024-01-0005; Dharmacon, Horizon Discovery)

or ON-TARGETplus Nontargeting (NT) Control siR-

NAs (D-001810-10-01; Dharmacon, Horizon Discov-

ery) at a final concentration of 100 nM per well. Cells

were transfected with siRNAs for 96 h prior to Ca2+-

imaging experiments and for 24 h prior to doxorubicin

or paclitaxel treatments.

2.7. RNA isolation and real-time PCR

Total RNA was isolated from cells and purified using the

RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA
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concentrations were determined using a NanoDrop 2000

UV-Vis Spectrophotometer (Thermo Fisher, Waltham,

MA, USA). RNA was reverse transcribed into cDNA

using the Omniscript Reverse Transcription Kit (Qiagen).

cDNA amplification was performed using the TaqMan

Fast Universal PCR Master Mix (Applied Biosystems,

Foster City, CA, USA). Real-time PCR reactions were

performed using the StepOne Plus Real-Time PCR System

(Applied Biosystems) under universal cycling conditions.

TaqMan Gene Expression Assays (Applied Biosystems)

used were: NCS-1 (Hs00179522_m1), ORAI1

(Hs03046013_m1), ITPR1 (Hs00181881_m1), ITPR2

(Hs00181916_m1), ITPR3 (Hs01573555_m1), SERCA1

(Hs01092295_m1), SERCA2 (Hs00544877_m1), and

SERCA3 (Hs00193090_m1). Relative gene expression was

quantitated using the comparative CT method (DDCT),

normalized to 18s rRNA (4310893E; Applied Biosystems).

2.8. Immunoblotting

Cells were lysed using cold protein lysis buffer containing

protease and phosphatase inhibitors (Roche Applied

Science, Penzberg, Germany). Gel electrophoresis was per-

formed using Mini-PROTEAN� TGX Pre-cast Gels and

protein was transferred to a poly(vinylidene difluoride)

membrane (Bio-Rad Laboratories, Hercules, CA, USA).

Blots were blocked for 1 h in 5% skim milk in phosphate-

buffered saline containing 0.1% Tween-20 (PBST) before

incubating with the following primary antibodies: NCS-1

(diluted 1 : 500, 129166; Abcam, Cambridge, UK),

ORAI1 (diluted 1 : 1000, 4281, ProSci Inc., Poway, CA,

USA), PARP-1 (diluted 1 : 1000, 9542; Cell Signaling,

Beverly, MA, USA), and b-actin (diluted 1 : 10 000,

A5441; Sigma). All primary antibodies were diluted using

5% skim milk in PBST and incubated overnight at 4 °C
except b-actin, which was incubated for 1 h at room tem-

perature. Goat anti-mouse (170-6516) and goat anti-rabbit

(170-6515) horseradish peroxidase conjugate secondary

antibodies were diluted 1 : 10 000 and incubated for 1 h

at room temperature. Protein bands were imaged using

the SuperSignal West Dura Extended Duration Chemilu-

minescent Substrate (Thermo Fisher Scientific) on the Bio-

Rad ChemiDoc Imaging System (Bio-Rad Laboratories).

b-Actin was used as the loading control. Quantification of

protein band density was performed using the Bio-Rad IM-

AGELAB software (version 5.2.1) as per user guidelines.

2.9. Calcium imaging using fluorometric imaging

plate reader (FLIPR)

Cells were seeded into black-walled 96-well plates (Corn-

ing Incorporated, Corning, NY, USA) at a density of

4 9 103 cells per well and Ca2+ imaging was performed

96 h post-siRNA transfection using the FLIPRTETRA

(Molecular Devices, San Jose, CA, USA). GCaMP6m-

MDA-MB-231 cells with exogenous overexpression of

NCS-1 or expressing the EV control were seeded at a den-

sity of 1 9 104 cells per well, and Ca2+ imaging was per-

formed 72 h after seeding. Briefly, media was removed

from the wells, washed once, and then replaced with physi-

ological salt solution (PSS, composed of 10 mM HEPES,

5.9 mM KCl, 1.4 mM MgCl2, 1.2 mM NaH2PO4, 5 mM

NaHCO3, 140 mM NaCl, 11.5 mM glucose, pH 7.2) con-

taining nominal Ca2+ (no added CaCl2) and incubated for

15 min at room temperature prior to Ca2+-imaging stud-

ies. For the assessment of ER Ca2+ signaling, IP3-mobiliz-

ing agents (ATP; Sigma-Aldrich) at 1, 3, and 100 µM and

trypsin (Sigma-Aldrich) at 1, 10, and 100 nM concentra-

tions) and cyclopiazonic acid (CPA; Sigma at 10 µM con-

centration) prepared in PSS were added to wells. To assess

unstimulated Ca2+ influx, 1.8 mM CaCl2 was added. A

100 µM concentration of bis(2-aminophenoxy)ethane tet-

raacetic acid (BAPTA; InvitrogenTM) was included during

the addition of reagents. For assessment of SOCE,

BAPTA (100 µM) was first added to cells preincubated for

15 min in PSS nominal, followed by CPA (10 µM) addi-
tion to mediate ER store depletion. CaCl2 (1.8 mM) was

then added after 700 s to facilitate SOCE. An ORAI1

inhibitor Synta66 (10 µM; Sigma) was included in experi-

ments assessing basal Ca2+ influx and SOCE. Changes in

fluorescence intensity relative to baseline fluorescence over

time were expressed as cytosolic Ca2+ changes (DF/Fo)

and were measured at 470–495 nm excitation and 515–
575 nm emission wavelengths and analyzed using the

SCREENWORKS Software (Molecular Devices).

2.10. Assessment of cell proliferation and death

using epifluorescence microscopy

Cell proliferation was assessed using the Click-iTTM EdU

Alexa FluorTM 555 imaging kit (Invitrogen). Briefly, 24

and 48 h after siRNA transfection and doxorubicin (24 h)

treatments, cells were incubated with EdU (10 µM) for 1 h

at 37 °C. Cells were then fixed with 4% paraformaldehyde

for 15 min, washed with PBS containing 3% BSA, and

permeabilized using 0.5% Triton-X for 20 min. Cells were

then incubated in the dark with the Click-iT reaction cock-

tail (containing Alexa Fluor azide) for 1 h, prepared

according to manufacturer’s instructions. Cell nuclei were

stained using Hoecsht 33342 (Invitrogen, Vista, CA, USA;

400 nM).

For the assessment of necrotic cell death, at 24 h

post-siRNA transfection, medium was replaced with

10% FBS and HEPES-buffered FluorobriteTM DMEM

(Invitrogen) or Fluorobrite media containing 0.03 or

1 µM doxorubicin (Merck Millipore, MilliporeSigma,
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Burlington, MA, USA) and incubated for 24 h before

replacing with drug-free Fluorobrite DMEM. After

72 h, cells were stained with Hoechst 33342

(10 µg�mL�1; Invitrogen) and propidium iodide (PI;

1 µg�mL�1; Invitrogen). Cells for both proliferation

and death experiments were imaged using the ImageX-

press Micro (Molecular Devices) epifluorescence

microscope, using the DAPI and Cy3 filter sets to

assess EdU-positive cells or PI-positive cells as

described previously (Curry et al., 2012; Peters et al.,

2012). The multiwavelength cell scoring module

(MetaXpress 6.0) was used to assess the percentage of

EdU-positive or PI-positive cells.

2.11. Statistical analysis

Statistical analyses of individual experiments were per-

formed using GRAPHPAD PRISM (version 7; GraphPad

Software, San Diego, CA, USA) as described in the

corresponding figure legends. Data are presented as

mean � SEM (of three independent experiments).

3. Results

3.1. NCS-1 expression is higher and is predictive

of poorer survival in the basal breast cancer

molecular subtype

Given that NCS-1 was recently reported to be associated

with increased breast tumor aggression and poor progno-

sis (Moore et al., 2017), we explored if NCS-1 is associated

with any of the breast cancer intrinsic molecular subtypes

using TCGA breast cancer database (Cancer Genome

Atlas, 2012). Hierarchical clustering of NCS-1 and breast

cancer molecular markers showed a positive correlation

with basal and proliferative markers, such as KRT5, 14

and 17, CDH3, FOXC1, FOXM1, EGFR, and MKI67

(Fig. 1A). Conversely, NCS-1 expression is negatively cor-

related to FOXA1, ESR1, and PGR, which are more com-

monly associated with the breast cancer luminal subtype.

We found that NCS-1 expression is also significantly

higher in the basal molecular subtype (Fig. 1B) compared

to other breast cancer subtypes. NCS-1 levels were also

highest in the basal-like immune-activated (BLIA) and

basal-like immune-suppressed (BLIS) subtypes within the

triple-negative breast cancer (TNBC) subtypes (Burstein

et al., 2015) (Fig. 1C). We also observed a trend toward

increased NCS-1 expression in basal breast cancer cell lines

compared to HER2 and luminal breast cancer cell lines

(Fig. 1D).

Finally, to assess if NCS-1 expression had any asso-

ciation with patient survival in basal breast cancers,

we used the Kaplan–Meier Plotter online tool to strat-

ify the overall survival (OS) of breast cancer patients

with basal tumors based on NCS-1 gene expression

(Gyorffy et al., 2010). As shown in Fig. 1E, higher

NCS-1 expression correlates with a poorer OS in the

basal breast cancer patient subgroup (HR = 3.15,

P = 0.0002), further implicating the significance of

NCS-1 in basal breast cancers.

3.2. NCS-1 silencing has no major effect on ER

Ca2+ signaling but suppresses unstimulated,

basal Ca2+ influx in MDA-MB-231 cells

Due to the role of NCS-1 as a positive regulator of

IP3Rs (Boehmerle et al., 2007; Schlecker et al., 2006)

and the lack of studies defining a role for NCS-1 in

Ca2+ signaling in breast cancer cells, we assessed two

possible consequences of NCS-1 silencing in the

GCaMP6m-MDA-MB-231 breast cancer cell line.

These two potential consequences reduced IP3-medi-

ated Ca2+ store release after G-protein-coupled recep-

tor activation (Berridge, 2016) and reduced

compensatory basal Ca2+ influx as a result of less basal

ER Ca2+ leak from IP3Rs (Mignen et al., 2017). We

inhibited NCS-1 expression using siRNAs (Fig. 2A–C)
and assessed relative intracellular [Ca2+]CYT increases

in response to ATP and trypsin. In the absence of

extracellular Ca2+, ATP and trypsin addition mobilizes

ER Ca2+ stores through an IP3-mediated pathway.

NCS-1 silencing had no significant effect on [Ca2+]CYT

increases mediated by any concentration of ATP

(Fig. 2D,E) and trypsin at 1 and 10 nM (Fig. 2F,G)

concentrations; however, NCS-1 silencing modestly

suppressed Ca2+ signals in response to trypsin at

100 nM (Fig. 2G). [Ca2+]CYT increases induced by

SERCA inhibition using CPA were also not signifi-

cantly affected by NCS-1 silencing (Fig. 2H,I). Collec-

tively, these data suggest that NCS-1 is not a major

regulator of ER Ca2+ release in MDA-MB-231 breast

cancer cells.

In some cancer cells, altered Ca2+ influx in the

absence of external stimuli (unstimulated or basal Ca2+

influx) is associated with key tumorigenic traits, such

as increased proliferation and migration (Chantome

et al., 2013; Feng et al., 2010; Mignen et al., 2017;

Peters et al., 2012). Thus, we next investigated the

effect of NCS-1 silencing on unstimulated, basal Ca2+

influx. As shown in Fig. 3A, when extracellular Ca2+

(1.8 mM) was added to GCaMP6m-MDA-MB-231

cells incubated in nominal Ca2+ conditions, the

increase in [Ca2+]CYT levels induced by the readdition

of extracellular Ca2+ was attenuated when NCS-1 was

silenced. Analysis of the peak (Fig. 3B) and rate of
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Ca2+ influx from 9 to 100 s (Fig. 3C) revealed a signifi-

cant decrease in Ca2+ influx with NCS-1 silencing. To

assess if NCS-1 silencing also reduced Ca2+ influx

through SOCE, we performed a classical SOCE experi-

ment using CPA-mediated ER Ca2+ store depletion,

followed by Ca2+ readdition. We first confirmed that

silencing of the store-operated Ca2+ channel ORAI1

(Fig. 3D–F) eliminated SOCE (Fig. 3G,H). However,

silencing of NCS-1 had no effect on SOCE (Fig. 3G,

H). We have previously shown that unstimulated Ca2+

influx occurs through ORAI1 in HC11 mammary

epithelial cells (Ross et al., 2013). To assess if unstimu-

lated Ca2+ influx occurred through ORAI1 in

GCaMP6m-MDA-MB-231 cells, we assessed the effect

of ORAI1 silencing. As shown in Fig. 3I,J, ORAI1

silencing suppressed unstimulated Ca2+ influx. Collec-

tively, these results identify a critical role for NCS-1 in

modulating unstimulated Ca2+ influx likely through

ORAI1 channels, since ORAI1 silencing phenocopied

the effect of NCS-1 silencing in GCaMP6m-MDA-

MB-231 breast cancer cells.

3.3. NCS-1 overexpression reduces ATP-induced

Ca2+ release but does not affect unstimulated

Ca2+ influx

In light of the observed role of NCS-1 silencing on

unstimulated Ca2+ influx, we further investigated if this

Ca2+ influx pathway could be enhanced with NCS-1

overexpression. We generated stable NCS-1-overex-

pressing GCaMP6m-MDA-MB-231 cells (NCS1-OE)

using lentiviral transduction with a commercially avail-

able human NCS-1 plasmid (Fig. 4A). We first

assessed the functional role of NCS1-OE cells in IP3-

mediated ER Ca2+ release using ATP, and showed that

NCS1-OE cells reduced ER Ca2+ release in response to

100 µM ATP (Fig. 4B,C) compared to GCaMP6m-

MDA-MB-231 cells expressing the EV control. We

then assessed unstimulated Ca2+ influx in NCS1-OE

cells compared to EV cells. As shown in Fig. 4D,E,

NCS-1 overexpression did not enhance unstimulated

Ca2+ influx in GCaMP6m-MDA-MB-231 cells.

Unstimulated Ca2+ influx was inhibited with the addi-

tion of the ORAI1 inhibitor, Synta66 (Fig. 4D,E).

NCS-1 overexpression also did not have any significant

effect on SOCE (Fig. 4F,G). Collectively, these results

demonstrate that NCS-1 is not a major direct regula-

tor of SOCE and that promotion of unstimulated Ca2+

influx may already be maximal in GCaMP6m-MDA-

MB-231 breast cancer cells.

3.4. Correlation between NCS-1 expression and

Ca2+ channels or pumps

Given the ability of NCS-1 silencing to phenocopy the

effects of ORAI1 silencing in MDA-MB-231 breast

cancer cells, we explored the possibility that NCS-1

silencing-mediated suppression of unstimulated Ca2+

influx was due to reduced expression of ORAI1. As

shown in Fig. 5A, ORAI1 mRNA levels were affected

neither by NCS-1 silencing nor by the expression of its

regulators, STIM1 and STIM2. The expression of the

major ER Ca2+ regulators, IP3R and SERCA pumps,

were also unaffected by NCS-1 silencing (Fig. 5B). We

also assessed the correlation between NCS-1 and Ca2+

influx channels using TCGA breast cancer patient

datasets on the R2 Genomics Visualization Platform

as shown in Fig. 5C. Among the assessed genes, the

most positively correlated genes with NCS-1 were

TRPV6 (R = 0.392), TRPM8 (R = 0.340), and ORAI1

(R = 0.23), whereas the most negatively correlated

genes were ORAI3 (R = �0.376) and TRPM7

(R = �0.296).

3.5. NCS-1 and ORAI1 silencing enhances

percentage of cell death with doxorubicin

treatment

Despite reports of NCS-1 being associated with thera-

peutic response to paclitaxel (Moore et al., 2017;

Fig. 1. NCS-1 expression is correlated with the basal breast cancer molecular subtype. (A) Clustered heatmap of normalized RNA-Seq

expression data, where low expression is indicated in blue and high expression in red. Data are log2 mean-centered RSEM values sourced

from TCGA. Displayed on the right are the Pearson’s correlation coefficients of NCS1 expression versus the molecular markers, and

corresponding P-values are indicated. Indicated above the heatmap are the PAM50 molecular subtypes for each breast tumor. (B) Relative

gene expression of NCS-1 in breast tumors from TCGA database (Cancer Genome Atlas, 2012) categorized according to breast cancer

molecular subtypes. Statistical analysis was performed using a one-way ANOVA with Tukey’s test. ****P < 0.0001, ***P < 0.0002. (C)

Relative gene expression levels of NCS-1 in TNBC subtypes as described by Burstein et al. (2015). NCS-1 expression is higher in BLIA and

BLIS compared to MES and LAR subtypes. Data were downloaded from R2 Genomics Analysis Platform and plotted in GRAPHPAD PRISM.

Statistical analysis was performed using a one-way ANOVA with Tukey’s test. ***P < 0.001, * P < 0.05. (D) NCS-1 expression in 40 breast

cancer cell lines grouped to the molecular subtypes and in 4 nontumorigenic, breast epithelial cell lines. Data obtained from Array Express

(accession number E-MTAB-181) (Heiser et al., 2012). (E) OS of patients with basal breast cancer stratified to NCS-1 expression. Data were

sourced from the Kaplan–Meier Plotter online tool (Gyorffy et al., 2010)
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Moore et al., 2018), it remains unknown if this is asso-

ciated with changes in Ca2+ signaling in breast cancer

cells. Chemosensitization through the suppression of

Ca2+ influx via inhibition of SOCE has been reported

in pancreatic and liver cancer models (Kondratska

et al., 2014; Tang et al., 2017). We therefore assessed

if ORAI1 and NCS-1 silencing both augment the

effects of doxorubicin, a commonly used chemother-

apy in the treatment of basal or TNBCs. We first

assessed if silencing of NCS-1 and ORAI1 promoted

the antiproliferative effects of doxorubicin using EdU

staining. As shown in Fig. 6A, NCS-1 and ORAI1

silencing alone did not alter proliferation of MDA-

MB-231 cells under these conditions. NCS-1 and

Fig. 2. Effect of NCS-1 silencing on ER

Ca2+ signaling. (A-C) Confirmation of NCS-1

siRNA-mediated silencing using real-time

RT-PCR and immunoblotting. Bar graphs

show the mean � SEM of three

independent experiments. Traces (D, F, H)

showmean relative [Ca2+]CYT change

mediated by ATP (1, 3, and 100 µM), trypsin

(1, 10, and 100 nM), and CPA (10 µM)

addition. (E), (G), and (I) show maximal

increases in relative [Ca2+]CYT levels

induced by ATP, trypsin, and CPA,

respectively. Data points show the mean of

triplicate wells from each biological

replicate matching NT siRNA and NCS-1

siRNA treatment to the same biological

replicate. Statistical analysis was performed

using t-tests. *P < 0.05; ****P < 0.0001;

n.s. is not significant.
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ORAI1 silencing also did not augment antiproliferative

effects of doxorubicin at 24 h (Fig. 6B,D) or 48 h

(Fig. 6C,E). We next assessed the potential of NCS-1

silencing to promote cell death induced by doxorubicin

using PI staining. As shown in Fig. 7A,B, both NCS-1

and ORAI1 silencing alone did not induce cell death.

However, with doxorubicin treatment, NCS-1 silencing

significantly enhanced the percentage of PI-positive

cells induced by doxorubicin (1 µM) treatment

(Fig. 7A). This increase in doxorubicin- (1 µM)-in-

duced cell death was phenocopied by ORAI1 silencing

(Fig. 7B).

We further investigated if the promotion of cell

death with NCS-1 and ORAI1 silencing is a result of

Fig. 3. NCS-1 silencing suppresses

unstimulated, basal Ca2+ influx which

phenocopies ORAI1 silencing. (A) Relative

mean [Ca2+]CYT increases in GCaMP6m-

MDA-MB-231 cells preincubated in PSS

nominal and induced by the addition of

extracellular Ca2+ [CaCl2

(1.8 mM) + BAPTA (100 µM)]. Graphs

show analyses of (B) maximum relative

[Ca2+]CYT increase and (C) rate of

[Ca2+]CYT increase (from 9 to 100 s). (D–F)

Confirmation of ORAI1 silencing using

real-time PCR and immunoblotting. (G, H)

siRNA-mediated inhibition of ORAI1 but

not NCS-1 suppresses SOCE, that is,

Peak 2 during Ca2+ readdition at 750 s.

Statistical analysis was performed using a

one-way ANOVA with Bonferroni’s post-

hoc test. ****P < 0.001 (I) Trace shows

the Ca2+ readdition phase of wells not

pretreated with CPA from the same

experiment shown in (G) from 300 to

1800 s. The trace shows a reduction in

unstimulated Ca2+ influx as a result of

ORAI1 silencing. (J) Bar graph shows the

mean � SEM of the maximal [Ca2+]CYT

increases during Ca2+ readdition from 700

to 1800 s. Statistical analysis was

performed using a paired t-test.

*P < 0.05; **P < 0.002, ****P < 0.0001.
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Fig. 4. NCS-1 overexpression reduces ATP-induced ER Ca2+ signals without significant effects on unstimulated Ca2+ influx and SOCE. (A)

Representative immunoblot showing expression of NCS-1 in GCaMP6m-MDA-MB-231 cells transduced with EV control or an NCS-1

lentiviral plasmid (NCS1-OE), using b-actin as a loading control. (B) Representative Ca2+ trace comparing ATP-induced ER Ca2+ release in EV

(black) and NCS1-overexpressing (red) cells. (C) Graph shows the maximal increase in relative [Ca2+]CYT levels induced by 1, 3, and 100 µM

ATP, respectively. Data points show the mean of triplicate wells of each biological replicate matching EV cells to NCS1-overexpressing cells

from three independent experiments. Statistical analysis was performed using multiple t-tests. *P < 0.05 (D) Trace shows the mean relative

[Ca2+]CYT increases as a result of unstimulated Ca2+ influx of three independent experiments and the effect of Synta66 addition on EV or

NCS1-overexpressing cells. (E) Bar graph shows mean � SEM of maximal [Ca2+]CYT increases as a result of unstimulated Ca2+ influx from

three independent experiments. (F) Representative Ca2+ trace shows the mean relative [Ca2+]CYT increases as a result of SOCE in EV or

NCS1-OE GCaMP6m-MDA-MB-231 cells and the effect of Synta66 addition. (G) Bar graph shows mean � SEM of peak [Ca2+]CYT increases

from three independent experiments. Statistical analysis was performed using a one-way ANOVA with Bonferroni’s post-hoc test.

*P < 0.05.
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increased apoptotic cell death by assessing PARP-1

cleavage. As shown in Fig. 7C–E, although doxoru-

bicin treatment resulted in a concentration-dependent

increase in PARP cleavage, both NCS-1 and ORAI1

silencing did not promote PARP cleavage at any con-

centration. The lack of the effect of NCS-1 silencing

on promoting apoptotic cell death was also observed

with paclitaxel (Fig. 7F,G).

4. Discussion

Neuronal calcium sensor-1 is a recently identified neg-

ative prognostic indicator for breast cancer (Moore

et al., 2017). In this study, we report for the first time

that NCS-1 is more highly expressed in the basal

molecular subtype, a subtype which has a strong over-

lap with TNBC and is associated with poorer survival

rates in breast cancer patients (Prat et al., 2015; Riven-

bark et al., 2013; Sorlie et al., 2003). We also observed

that higher levels of NCS-1 predict poorer survival

within the basal molecular breast cancer subtype. The

association between increased NCS-1 expression and

basal-like subtypes was also supported in our assess-

ment of the more recently identified TNBC molecular

subtypes (Burstein et al., 2015), since higher levels of

NCS-1 was seen in both the BLIA and the BLIS

subtypes compared to the mesenchymal (MES) and

the luminal androgen receptor (LAR) subtypes. More-

over, a positive correlation between NCS-1 gene

expression and genes typically associated with a basal

molecular signature was observed (Prat et al., 2015).

Our identification that NCS-1 is most associated with

the basal breast cancer further defines the potential

subtype-specific contribution of NCS-1 to breast can-

cer progression.

Despite the recently reported association between

NCS-1 and increased breast cancer invasion and

migration (Apasu et al., 2019; Moore et al., 2017), the

role of NCS-1 in Ca2+ signaling in breast cancer cells

has not been reported. IP3-mediated Ca2+ signaling is

initiated by a variety of proproliferative and promigra-

tory receptors (Mound et al., 2017; Szatkowski et al.,

2010) and could be predicted to be augmented as a

consequence of elevated levels of the IP3R-positive

modulator NCS-1 in basal breast cancers. Given

increased activity of IP3Rs with NCS-1 and the recent

report that cardiac cells isolated from NCS-1 knockout

mice exhibit reduced Ca2+ transients with ATP stimu-

lation (Nakamura et al., 2011), we hypothesized that

NCS-1 silencing in MDA-MB-231 cells would suppress

Ca2+ mobilization induced by ATP via purinergic

receptors and also by trypsin, which activates

Fig. 5. Correlation between expression of

NCS-1 and specific Ca2+ regulators. Bar

graphs show the fold change in mRNA

levels of (A) ORAI1, STIM1, and STIM2

and (B) IP3R and SERCA isoforms 48 h

after NCS-1 silencing in GCaMP6m-MDA-

MB-231 cells. Data shown are the

mean � SEM of three biological

replicates, and statistical analysis was

performed using a paired t-test for graph

A and multiple t-test comparing NT control

to NCS-1 siRNA for graph B. (C) Gene

expression correlation between NCS-1

and specific plasma membrane Ca2+ influx

channels using the TCGA breast cancer

patient database on the R2: Genomics

Analysis and Visualization Platform (http://

r2.amc.nl).
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Fig. 6. NCS-1 and ORAI1 silencing does

not affect proliferation of GCaMP6m-

MDA-MB-231 cells nor promote the

antiproliferative effect of doxorubicin. (A)

Representative images of NT, NCS-1, and

ORAI1 siRNA-transfected cells stained

with EdU and Hoechst 33342 48 h after

doxorubicin treatment (Scale

bar = 50 µm). Graphs show the

percentage of EdU-positive cells in NCS-1

and ORAI1 silenced cells 24 h (B, D) and

48 h (C, E) after doxorubicin treatment.

Data shown represent mean � SEM of

four regions in duplicate wells from three

independent experiments. Statistical

analysis was performed using a repeated-

measures two-way ANOVA with

Bonferroni’s post-hoc test.
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protease-activated receptors (Mari et al., 1996). How-

ever, there was no major change in IP3-mediated Ca2+

signals with NCS-1 silencing in MDA-MB-231 breast

cancer cells. Only a modest but statistically significant

reduction in the [Ca2+]CYT increase induced by 100 nM

trypsin was observed. The lack of a major effect on

ER Ca2+ release after G-protein-coupled receptor acti-

vation could be explained by a compensatory response,

such as an upregulation of components of IP3-medi-

ated Ca2+ store release. Analogous to such a change is

the upregulation of IP3R1 in mouse embryonic fibrob-

lasts deficient in presenilins (Kasri et al., 2006), pro-

teins that have also been proposed to promote the loss

of Ca2+ from the ER (Tu et al., 2006). However, our

studies found no change in IP3R or SERCA mRNA

levels as a consequence of NCS-1 silencing. These

observations suggest that the role and function of

NCS-1 in ER Ca2+ release in MDA-MB-231 cells are

not straightforward. Indeed, studies in neuronal cells

reported that NCS-1 binds to different Ca2+ regula-

tors, which are important for the fine-tuning of Ca2+

signals regulating specific processes such as neurite

elongation and branching (Hui et al., 2007; Hui et al.,

2006; Iketani et al., 2009).There have been no studies

assessing the effect of NCS-1 silencing on Ca2+ signal-

ing in MDA-MB-231 cells despite two consecutive

Fig. 7. NCS-1 and ORAI1 silencing

promotes nonapoptotic cell death

mediated by doxorubicin. Percentage of

cell death assessed using PI staining in

(A) NCS-1 siRNA and (B) ORAI1 siRNA-

transfected cells. Data show the

mean � SEM of three independent

experiments. (C) Representative

immunoblot showing the effect of NCS-1

and ORAI1 silencing on PARP-1 cleavage

induced by doxorubicin treatment. Bar

graphs (D) and (E) show the mean � SEM

of three independent experiments of the

ratio of cleaved PARP-1 to uncleaved

PARP-1 (each band normalized to b-actin).

(F) Representative immunoblot showing

the effect of NCS-1 silencing on

paclitaxel-induced PARP-1 cleavage. (G)

Bar graph shows the mean � SEM of

three independent experiments of the

ratio of cleaved PARP-1 to uncleaved

PARP-1 (normalized to b-actin). Statistical

analysis was performed using a repeated-

measures two-way ANOVA with

Bonferroni’s test. *P < 0.05.
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studies demonstrating a role for NCS-1 in promoting

tumor cell migration and aggressiveness in the same

cell line (Apasu et al., 2019; Moore et al., 2017). Based

on our studies, it therefore appears that NCS-1 silenc-

ing can modulate cell death and perhaps migration

(Apasu et al., 2019; Moore et al., 2017) in MDA-MB-

231 cells with only a modest or even no effects on acti-

vated IP3-mediated Ca2+ release.

An alternative explanation is that basal breast can-

cer cells with elevated NCS-1 have an upregulation of

unstimulated basal Ca2+ influx, perhaps to maintain

ER Ca2+ store levels or via another mechanism. ER

Ca2+ leak via IP3Rs occurs in a variety of cell types

(Bittremieux et al., 2016; Boutin et al., 2015). Consis-

tent with this hypothesis, we found that NCS-1 silenc-

ing suppressed basal Ca2+ influx in MDA-MB-231

cells. One obvious mechanism for such a compen-

satory pathway is the store-operated Ca2+ channel

ORAI1 which is activated by lowered ER Ca2+ levels

(Brandman et al., 2007; Subedi et al., 2018). ORAI1 is

implicated in basal Ca2+ influx important for maintain-

ing ER Ca2+ homeostasis (Brandman et al., 2007; Zuc-

colo et al., 2018) in a variety of cell types, although

other channels including TRPV6 are also implicated in

basal Ca2+ influx (Lehen’kyi et al., 2007; Peng et al.,

1999; Peters et al., 2012). However, MDA-MB-231

cells have negligible (Peters et al., 2012) or unde-

tectable levels of TRPV6 (G.R. Monteith & D. McAn-

drew, unpublished data), so this compensation is likely

to be via the ORAI1 channel in this model. Indeed,

the silencing of ORAI1 phenocopied the suppression

of unstimulated Ca2+ influx by NCS-1 silencing in our

studies. The lack of change in ORAI1, STIM1, and

STIM2 mRNA levels with NCS-1 silencing suggests

that nontranscriptional mechanisms such as altered

trafficking or activity are involved. It could simply be

the case that the reduced loss of Ca2+ from the ER

with NCS-1 silencing is detected immediately by

STIM1 or STIM2 resulting in less ORAI1 activation

in the resting cells and, in turn, reducing the compen-

satory basal Ca2+ influx. Such a mechanism is sup-

ported by the lack of effect of NCS-1 silencing on

maximally activated SOCE. Alternatively, ORAI1 can

be regulated by phosphoinositides (Calloway et al.,

2011; Walsh et al., 2009). NCS-1 silencing could thus

suppress ORAI1-mediated basal Ca2+ influx via this

mechanism, as NCS-1 was shown to regulate phospho-

inositide remodeling in PC12 rat adrenal cells (Koi-

zumi et al., 2002). Our studies also do not completely

discount the possibility that NCS-1 regulates other

Ca2+ influx channels, such as voltage-gated Ca2+ chan-

nels or TRP channels as observed in presynaptic neu-

ronal cells (Yan et al., 2014) and PC12 cells (Hui

et al., 2006). These mechanisms should be explored in

future studies assessing the link between NCS-1 and

Ca2+ signaling in cancer cells.

Although exogenous NCS-1 overexpression could be

predicted to promote unstimulated Ca2+ influx, since

silencing of NCS-1 inhibited this Ca2+ influx pathway,

our studies using NCS-1 overexpressing cells did not

show this result. This suggests that NCS-1 levels in

MDA-MB-231 may already maximally activate

unstimulated Ca2+ influx. In this context, Moore et al.

reported that silencing of NCS-1 in MDA-MB-231

suppressed wound closure but NCS-1 overexpression

in MDA-MB-231 cells did not promote wound closure

(Moore et al., 2017). Hence, NCS-1 may already have

a maximal contribution to a variety of processes in

MDA-MB-231 cells at endogenous expression levels.

Given the established promigratory role of ORAI1 in

MDA-MB-231 breast cancer cells (Yang et al., 2009),

and our identified potential link between ORAI1-medi-

ated unstimulated Ca2+ influx and NCS-1, the role of

ORAI1 on the effects of NCS-1 silencing on MDA-

MB-231 breast cancer cell migration should be

assessed in future studies.

Further association between NCS-1 and ORAI1 was

seen in breast cancer samples where a positive correla-

tion was observed between these two genes. NCS-1 was

also significantly positively correlated with the afore-

mentioned channel TRPV6 that is associated with

unstimulated Ca2+ influx in many cells of epithelial origin

(Lehen’kyi et al., 2007; Peters et al., 2012). These data

suggest that NCS-1-overexpressing breast cancer cells

may compensate for enhanced ER Ca2+ loss through an

upregulation of Ca2+ channels involved in unstimulated

Ca2+ influx. Assessment of the role of TRPM8, which

was also positively correlated with NCS-1, may be chal-

lenging given the absence of TRPM8 in many commonly

used breast cancer cell lines (Yapa et al., 2018). Alterna-

tively, the positive association between ORAI1 and

NCS-1 may be due to their association with breast can-

cers of the basal molecular subtype (Azimi et al., 2019).

Likewise, lower levels of ORAI3 would indeed be pre-

dicted in the breast cancer cells with high levels of NCS-1

since ORAI3 levels are found to be lower in basal breast

cancers (Azimi et al., 2019), which we have shown to

have higher levels of NCS-1.

We also assessed the consequences of silencing NCS-1

on the effect of doxorubicin, a chemotherapeutic agent

used in the treatment of TNBC (Gadi and Davidson,

2017), and whether ORAI1 silencing could phenocopy

any effects of NCS-1 silencing. We identified that both

NCS-1 and ORAI1 silencing enhanced the cell death

induced by doxorubicin (1 µM) as determined using PI

staining. We further showed that NCS-1 and ORAI1
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silencing did not promote doxorubicin-induced PARP

cleavage. These combined observations suggest that the

mode of increased cell death is likely to be necrosis and

not apoptosis. We hypothesize that the enhanced dox-

orubicin-induced cell death with NCS-1 silencing is

mediated through its regulation of unstimulated basal

Ca2+ influx. This is supported by our observation that

silencing of ORAI1, which mediates basal Ca2+ influx in

a variety of cells (Brandman et al., 2007; Ross et al.,

2013; Subedi et al., 2018), also phenocopied the effects

of NCS-1 silencing on doxorubicin-induced cell death.

Indeed, suppression of basal Ca2+ influx increases the

effect of other cancer agents, as seen with the promotion

of tamoxifen-induced cell death with TRPV6 silencing

in T47D breast cancer cells (Bolanz et al., 2008; Peters

et al., 2012).

5. Conclusion

This work defines a clear association between NCS-1

and the basal breast cancer molecular subtype, a sub-

type with poor prognosis. Our study is the first to

identify an association between NCS-1 and unstimu-

lated basal Ca2+ influx in breast cancer cells and com-

prehensively characterize the role of NCS-1 in Ca2+

homeostasis in breast cancer cells. NCS-1 silencing

also enhanced cell death induced by doxorubicin treat-

ment in MDA-MB-231 breast cancer cells. Further

studies characterizing the role of NCS-1 in specific

intracellular Ca2+ and survival signaling pathways and

in other basal breast cancer cell lines are now war-

ranted. These findings will provide new insights into

the potential role of NCS-1 as a modulator of thera-

peutic responses in basal breast cancers.
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