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Origin and dynamics of vortex rings in drop
splashing
Ji San Lee1, Su Ji Park1, Jun Ho Lee1, Byung Mook Weon2, Kamel Fezzaa3 & Jung Ho Je1

A vortex is a flow phenomenon that is very commonly observed in nature. More than a

century, a vortex ring that forms during drop splashing has caught the attention of many

scientists due to its importance in understanding fluid mixing and mass transport processes.

However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack

of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we

show that the formation of vortex rings originates from the energy transfer by capillary waves

generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along

the drop wall, as demonstrated by a phase diagram established here, with different power-law

dependencies of the angular velocities on the Reynolds number. These results provide

important insight that allows understanding and modelling any type of vortex rings in nature,

beyond just vortex rings during drop splashing.
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V
ortical flow is a main component of turbulence, and it is
very commonly observed in nature, such as in winds
surrounding a hurricane or a tornado, whirlpools in the

wake of boats and paddles and nebulae in space. Specifically, a
vortex ring (that is, a torus-shaped vortex) is a fascinating flow
phenomenon that is generated when a fluid is rapidly injected
into another fluid1,2, and it is a notable phenomenon in many
fields of science3–6. A vortex ring that forms during drop
splashing has caught the particular attention of a number of
scientists over the past century7–20 ever since the pioneering work
by Thomson and Newall was published in the 19th century7. This
phenomenon is interesting as a result of its fundamental
properties in addition to its importance in fluid mixing and
mass transport processes.

Figure 1a illustrates the conceptual process for vortex ring
formation due to a drop impact. When a liquid drop impinges on
a liquid pool, the pool fluid climbs up the drop wall due to surface
tension. At the same time, the impact velocity causes the drop
fluid not to spread on the pool surface and instead to penetrate
the pool. A strong velocity gradient results across the liquid–
liquid boundary and then generates azimuthal vorticity that
evolves into a vortex ring enveloping the drop10–15. Vortex rings
are generally known to form when the speed of the impact is
sufficiently low or zero9,13. However, the lack of appropriate
visualization has hindered the exact criterion for the vorticity
formation and the dynamics of the vortex rings to still remain to
be determined even though many efforts have been recently
made18–22.

In this study, we elucidate new details of the physical origin for
vortex ring formation and its dynamics, and prove and disprove
our hypotheses and earlier findings, respectively, based on
irrefutable experimental evidence. We also find a row of vortex
rings along the drop wall, as demonstrated by the phase diagram
established here. Moreover, the vorticity behaviour and the spiral
geometry of the vortex rings are characterized in detail.

Results
X-ray imaging for vortex ring formation. To obtain a clear
visualization of the vortical flows during drop splashing, we
utilized ultrafast X-ray imaging coupled with a drop-impact
set-up20,23. Figure 1b provides in-line projection images of the
system with high temporal and spatial resolutions. The
refraction-enhanced phase contrast24 and the addition of a
contrast agent (see the Methods section) enable an unprecedented
visualization of the vortical flows during drop impact, as shown in
Fig. 1c and in the Supplementary Movie 1. The pool fluid is
clearly shown to rapidly climb up the drop wall (166–184 ms) and
sharply penetrate into the drop (184–203 ms), forming a spiral. It
is remarkable that not only the coiling core, but also the
horizontal lines at the crests and troughs that indicate an
azimuthally symmetric vortex ring could be clearly resolved at the
initial stage of the vortex formation. Such highly vivid imagery
enables us to quantitatively analyse the evolution dynamics of the
vortices, which has been unreachable through conventional
methods.

Criterion for vortex ring formation. First, we solve the
long-standing problem of determining when the vortex ring has
formed. Over the past two decades, the formation criterion for a
vortex ring has been characterized by its Weber number9,13

We ¼ rDU2=g
� �

o64 ð1Þ

where r is the liquid density, D is the drop diameter, U is the drop
impact speed and g is the surface tension of the liquid. Our results
show that this criterion is not correct and that a vortex ring can
actually form, even for a large We (464), as is clearly seen in
Fig. 2a–f and in the Supplementary Movies 2–4. In contrast to the
case with a small We (o64) where the drop penetrates the pool,
as shown in Fig. 2g–h, the vortex ring is quickly pulled up with
the liquid jet for We 464. This result implies that the critical
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Figure 1 | Formation of a vortex ring during drop impact. (a) Illustration of the vortex ring formation during drop impact on a pool surface. (b) Schematic

of X-ray imaging coupled with the experimental set-up for the drop impact. (c) Sequential X-ray images (of the red square in a) in ethanol drop impact

(with diameter B1.9 mm) from 80 mm height showing a positive vortical flow (Supplementary Movie 1). The interfacial boundaries between the drop fluid

(dark contrast) and pool fluid are clearly resolved in a high temporal resolution. Scale bar, 100mm long.
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Weber number is only a criterion for ring penetration,
irrespective of the ring formation.

We have found that the criterion to determine whether a
vortex ring forms is the Ohnesorge number, which relates the
viscous forces to the inertial and capillary forces as
Oh¼m/(rDg)0.5 (with m as the dynamic viscosity of liquid),
rather than the Weber number. As shown in the phase diagram of
Fig. 3h, an investigation of a wide range of liquids using water,
glycerol and ethanol mixtures shows that the vortex rings formed
only for Oh o0.011. Furthermore, we find that a row of vortex
rings forms along the drop wall, which correspond to single,
double and triple rings, respectively, as shown in Fig. 3a–c (see
red arrows) (Supplementary Movies 5–7). When the Reynolds
number increases (Re¼ rDU/m¼We1/2/Oh), we specifically
observe single rings at Re o2,000, double rings at Re 42,000,
triple rings at Re 43,000 and quadruple rings at Re 45,000
(Fig. 3h).

Here the Oh dependency of the ring formation is explained to
be a result of the capillary waves that are known to develop
azimuthally at the impact moment and subsequently travel along
the drop wall25. When the capillary waves propagate about one
wavelength, the pool fluid penetrates sharply into the drop as a

result of the momentum that is transported by the waves,
followed by the vortices coiling, as clearly shown with yellow
arrows in Fig. 3d. However, for a high Oh (40.011), the onset of
the vortices is suppressed by a strong viscous dissipation of the
momentum transfer, as shown in Fig. 3e.

The Re dependency of multiple vortex rings shown in
Fig. 3a–c,h can be explained to be a result of the capillary waves
as well. The wave velocities measured from the X-ray images are
comparable to the group velocities of the capillary waves,
ug¼ 1.5(2pg/rl)1/2, where l is the wavelength measured over a
wide range of Oh (Fig. 3f) and impact speeds (Fig. 3g). The
dependencies of the wave velocity on the hydrodynamic factors
are roughly estimated as ugpm–1 and ugpU, as fitted in Fig. 3f,g,
respectively. These suggest that the long-range energy transfer
by capillary waves is more favourable in a large Re with
ugpU/m�Re, which explains the increase in the number of the
rings with Re in Fig. 3h. In fact, the formation of a row of
multiple vortex rings is observed in the simulation26 and with
X-ray imaging experiments20. Here, we are the first to find the
criteria in terms of dimensionless numbers to determine
the number of vortex rings and to roughly explain the
hydrodynamics of the phenomenon.
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Figure 2 | Penetration of the vortex rings. (a,b) Early (a) and late (b) stages of vortex ring formation for ethanol drop impact (with diameter B1.9 mm) at

H¼ 35 mm (Supplementary Movie 2). The ring penetrates the pool. (c,d) Early (c) and late (d) stages of vortex ring formation for ethanol drop impact at

H¼ 60 mm (Supplementary Movie 3). The ring is quickly pulled up with a liquid jet. (e,f) Early (e) and late (f) stages of vortex ring formation for ethanol

drop impact at H¼ 100 mm (Supplementary Movie 4). The ring is pulled up much more quickly with a stronger liquid jet. (g) Illustration of the vortex ring

penetration at We o64. (h) Illustration of vortex ring pulled up with a strong liquid jet at We 464. Scale bar, 300mm long.
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Figure 3 | Morphology of vortex rings. (a) A single vortex ring formed during ethanol drop (with diameter B1.9 mm) impact on the surface at a height of

35 mm (Supplementary Movie 5). (b) Double vortex rings formed in ethanol drop impact on the surface at a height of 150 mm (Supplementary Movie 6).

(c) Triple vortex rings formed in water drop impact on the surface at a height of 100 mm (Supplementary Movie 7). Red arrows clearly show the formation

of a single, double and triple rings. (d) Ultrafast imaging of vortex formation during the initial stage for water drop (with a diameter of B2.9 mm) impact at

80 mm height (OhB0.002). Yellow arrows clearly show the penetration of pool fluid into drop fluid. (e) Ultrafast imaging of the absence of vortex

formation in the impact of a water–glycerol mixture (60 wt% of glycerol) drop (with a diameter of B2.8 mm) at 80 mm height (OhB0.02). (f)

Comparison of the measured group velocities of the capillary waves with the values calculated for water–glycerol mixtures with a different liquid viscosities

(m) at an 80-mm impact height. The dotted line is the best fit for the values measured with allometric scaling: ugpm–0.98. (g) Comparison of the measured

group velocities of the capillary waves with the values calculated for water at different impact velocities (U). The dotted line is the best fit for the values

measured with allometric scaling: ugpU1.13. (h) Phase diagram for the multiplicity of the vortex rings in terms of Oh and the Weber number (We). Three to

ten experimental repetitions were performed for each data point to verify the repeatability. Scale bar, 100mm long.
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Figure 4 | Time evolution of the vortex ring formation. (a) Tracking the coiling vortex core with time in water drop impact. The x–y coordinates are

set to the real size of the impacting drop. x¼0 is the centre of the drop and y¼0 is the top of the pool surface. (b) Circulation angle of the vortex

core as a function of time for the water–ethanol (3:7 in mass fraction) drop impact with different impact speeds. (c) Circulation angle of the vortex core

as a function of time normalized with the characteristic time U/D with the same data in b.
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Hydrodynamics of the vortex rings. For the first time, we have
measured the circulation dynamics of the vortices, specifically, the
time-dependent circulation angles of the vortex cores, as shown
in Fig. 4a,b. Figure 4c is rescaled in time and shows that the
circulation dynamics are not simply described by D/U, as pre-
viously reported in the literature15,27. As seen for the total
circulation angle Y and average angular velocity O (obtained by
dividing the total angle by the time), which are measured over a
wide range of impact conditions (Fig. 5), Y and O consistently
decrease as Oh increases. Figure 6 is plotted again as a function of
Re, showing that the angular velocity of spiral increases as Re
increases in a different manner with ring order. Specifically,
O1pRe2 for the first ring, O2pRe1 for the second and O3pRe0.5

for the third, which is largely different from the previous simple
prediction OpRe0.5 (refs 17,26).

How does the angular velocity change over time? In general,
the vorticity decreases with time as a result of the viscosity17,26.
Here we have measured the instantaneous angular velocity of the
vortex ring (the angular velocity of the circulating vortex tip at the
centre of the spiral) as Oi¼ 2kq, with k as the interface curvature
and q as the tangential flow velocity11. Interestingly, we find an
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apparent oscillatory decrease in the angular velocity with time, as
shown in Fig. 7a. In particular, the strong oscillation during the
initial stage is conceivably a result of an elliptical deformation of
the vortex (Fig. 3d), due to the high-speed expansion of the vortex
ring on the pool surface from the spreading of the impacting

drop. The eccentricity of the vortex e, shown in Fig. 7b (obtained
from the same image data for Fig. 7a), decreases as the expansion
speed (v) decreases, that is, with an increasing time (inset
of Fig. 7b), which explains the weakening of the oscillation in a
later stage.
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We were able to measure the spiral geometry of the vortex
streamlines, specifically the radius of each spiral layer for the first
and the second rings (Fig. 7c). The vortex rings show logarithmic
spirals similar to those in various vortical systems in nature, such
as a nautilus hemishell, tornados and galaxies28, and these can be
represented in a polar coordinate system (R, f) as RBR0erf,
where R0 is the initial radius and r is the growth-rate coefficient.
The best-fit values of r, which are estimated for the two
subsequent rings (r1 and r2) in various impact conditions
(Fig. 7d), are almost invariant in each ring with r1 almost twice
that of r2 (r1B0.12±0.02 and r2B0.06±0.01) regardless of the
liquid viscosity or the drop impact speed. The r values are notably
much smaller than those of typical logarithmic spirals in nature.
For example, rB0.18 for a nautilus shell,B0.21 for the Milky
Way and B0.31 for typical golden spirals28.

Relation of the vortex ring and the liquid jet formation. We
finally discuss a relation between the vortex ring formation and
the jetting phenomena. Two kinds of jets were ejected after a drop
impact on a liquid pool17,29–31. The ejecta is an inertia-induced
thin liquid sheet that emerges rapidly from the neck between the
drop and the pool surface, and the lamella is a thicker capillarity-
induced liquid sheet that propagates outwards from the impact
site. As shown in the phase diagram in Fig. 8a31, three regimes
exist for the jetting phenomena, including the (i) lamella
emerging at a low We (Fig. 9a), (ii) the ejecta merging with the
lamella into one jet at a high We and a low Re (Fig. 9b) and
(iii) the ejecta and lamella developing separately at a high We and
high Re (Fig. 9c). These three regimes are shown in different
colours, and we plotted the number of the vortex rings in terms of
the Re and the We in Fig. 8b. For regimes i and iii, the vortex
rings form robustly as long as Oh o0.011. In regime iii, we note
that the vortex ring forms within the lamella that has developed
separately from the ejecta (Fig. 9c). In regime ii, however, the
vortex ring never forms despite having a small Oh (o0.011),
indicating that the ejecta, once merged with the lamella,

suppresses the ring formation. This suggests that the lamella
should not be merged with the ejecta as an additional condition
for vortex ring formation.

Discussion
In this study, we have experimentally revealed the dynamics of
vortex rings in a drop impact that is unresolvable with optical
imaging, and we have therefore mostly relied on theoretical
studies. In contrast with recent studies on the vortex rings18,20,26,
we have made a great advance in addressing issues that had been
unsolved for a long time. The criterion for vortex ring formation,
the ring morphology dependence on the hydrodynamic
conditions, the vorticity or energy of the vortex rings and the
relation with an external splashing shape were investigated using
a novel ultrafast X-ray imaging technique. This study therefore
offers substantial insight for further analytical, numerical and
experimental work on vortex ring dynamics in fluid mechanics.

Methods
X-ray imaging. Ultrafast X-ray imaging experiments were carried out using the
XSD 32-ID beamline of the Advanced Photon Source, Argonne National
Laboratory. An intense white (full energy spectrum) X-ray beam with a peak
irradiance of B1014 ph s� 1 mm� 2 per 0.1% bandwidth (bw) was used to conduct
the high imaging speed. The detector system (Fig. 1b) is composed of a fast
scintillator (LuAG:Ce, decay time B50 ns) and a right-angle mirror coupled
to a high-speed camera (Photron Fastcam SA 1.1) via a long-working distance
microscope objective. The detector system is synchronized to the X-ray pulses to
enable the direct visualization of the ultrafast dynamics of the liquid–air and
liquid–liquid interfaces at up to B270,000 frames per a second, with a 472-ns
exposure time for each frame.

Experimental set-up. Liquid drops were dispensed from a 26-G syringe needle
(outer diameter B0.46 mm and inner diameter B0.26 mm) at heights from 30 to
300 mm. A laser triggering system was installed to sense the falling drop and to
trigger the camera and the fast shutter to take the images. The liquid pool was
prepared in a cylinder made of Kapton with a diameter of 20 mm and a depth of
50 mm.

t = 95.7 µs

t = 0 µs

t = 0 µs

239 527 814 1,149 1,628 2,154

95.7 239 383 527 670 1,005

95.7 191 287 383 479 670

a

b

c

Drop

Pool

H = 35 mm

H = 150 mm

H = 250 mm

Lamella

Ejecta +
lamella

Ejecta

Lamella
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(U¼0.83 m s� 1) with We¼ 50 and Re¼ 724. Only a lamella is formed, and the vortex ring is generated within the lamella. (b) Impact at H¼ 150 mm

(U¼ 1.71 m s� 1) with We¼ 214 and Re¼ 1,498. An ejecta is merged with the lamella, suppressing the formation of a vortex ring. (c) Impact at

H¼ 250 mm (U¼ 2.21 m s� 1) with We¼ 356 and Re¼ 1,934. The drop diameter is 2.3 mm. An ejecta and a lamella separately emerge, and the vortex ring

is formed within the lamella. Scale bar, 300mm long.
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Materials. The liquids were prepared by mixing water, ethanol and glycerol with
various compositions. For all experiments, the liquids for the falling drop and the
pool were prepared with identical compositions, except for the addition of zinc
iodide (10 wt%) in the drop as a contrast agent. The addition of the small fraction
of zinc iodide can increase the X-ray absorption and can therefore improve the
image contrast between the drop and the pool fluids. This small concentration of
zinc iodide (B0.006 M for water and B0.014 M for ethanol) can slightly increase
the viscosity of the fluid (B1% for water and B3% for ethanol)32, but we assume
that this change does not have a significant influence on the general trend of the
hydrodynamics.
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