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Identification of significant genes and therapeutic agents for breast cancer by 
integrated genomics
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ABSTRACT
Breast cancer is the most commonly diagnosed malignancy in women; thus, more cancer 
prevention research is urgently needed. The aim of this study was to predict potential therapeutic 
agents for breast cancer and determine their molecular mechanisms using integrated bioinfor-
matics. Summary data from a large genome-wide association study of breast cancer was derived 
from the UK Biobank. The gene expression profile of breast cancer was from the Oncomine 
database. We performed a network-wide association study and gene set enrichment analysis to 
identify the significant genes in breast cancer. Then, we performed Gene Ontology analysis using 
the STRING database and conducted Kyoto Encyclopedia of Genes and Genomes pathway analysis 
using Cytoscape software. We verified our results using the Gene Expression Profile Interactive 
Analysis, PROgeneV2, and Human Protein Atlas databases. Connectivity map analysis was used to 
identify small-molecule compounds that are potential therapeutic agents for breast cancer. We 
identified 10 significant genes in breast cancer based on the gene expression profile and genome- 
wide association study. A total of 65 small-molecule compounds were found to be potential 
therapeutic agents for breast cancer.
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1. Introduction

Breast cancer is a frequently diagnosed cancer in 
women with a family history [1]. Breast cancer is 
a heterogeneous disease with different molecular 
subtypes and biological behaviors. Gene micro-
array technology and immunohistochemical 
techniques have classified breast cancers into 

different types [2]. The estrogen receptor (ER) 
is the most important prognostic and predictive 
immunohistochemical marker in breast cancer. 
ER-negative tumors tend to be of higher histo-
logical grade, are more sensitive to chemother-
apy, and are more likely to metastasize to 
visceral organs [3,4]. Breast cancer does not 
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have a poor prognosis, and there is no lack of 
therapeutic targets. ER positive tumors represent 
about 70% of all breast cancers and there are 
a lot of therapeutic targets, as well as for HER2 
positive breast cancer (about 20% of all BC). The 
only subtype lacking for target therapies is the 
triple negative subtype [5,6]. There is an urgent 
need to find available drugs and clarify their 
molecular mechanisms in breast cancer 
treatment.

Most previous studies have focused on identify-
ing novel prognostic markers and drug targets for 
breast cancer [7–9]. Sulaiman et al. [10] reported 
that a synthetic azaspirane targets the Janus 
kinase/signal transducer and activation of tran-
scription 3 pathway in breast cancer. Huang et al. 
[11] demonstrated that the Gαh-PLCδ1 signaling 
axis drives metastatic progression in breast cancer. 
However, due to toxicity, cost, the chemical effects 
of novel prognostic markers and drug targets for 
breast cancer that need further research [12], not 
all previous findings contribute to breast cancer 
treatment; breast cancer still lacks therapeutic tar-
gets and with poorer prognosis. And there is still 
an urgent need to identify additional therapeutic 
and prognostic targets in breast cancer [13].

Genome-wide association studies (GWAS) are 
widely used to characterize the genetic mechan-
isms that underlie complex diseases. Integrative 
analyses of GWAS data are rapidly becoming 
a standard approach to explore the genetic basis 
of disease susceptibility [14]. Network-wide asso-
ciation studies (NetWAS) can identify relevant 
disease-gene associations by integrating tissue- 
specific networks and GWAS results [15,16]. 
Prior studies have shown that the network- 
associated analysis of GWAS data is highly effi-
cient when used to identify novel causal genes of 
complex diseases [17,18].

In this study, to better understand the molecular 
mechanisms and find therapeutic agents for breast 
cancer, we identified novel candidate therapeutic 
agents for breast cancer treatment by integrating 
genomic data with drug database analysis. In total, 
65 small-molecule compounds were identified, 
including trichostatin A, LY-294,002, econazole, pre-
stwick-1082, and vorinostat. Our study demonstrates 
the usefulness of this approach for evaluating the 
relationship among genes, diseases, and drugs. 

These findings will pave the way for the discovery 
of potential therapeutic targets for breast cancer.

2. Methods

2.1 Summary of GWAS datasets in breast cancer

The UK Biobank is a large, population-based pro-
spective UK study, which was established to iden-
tify genetic and nongenetic determinants of 
various diseases. It comprises approximately 
500,000 individuals with extensively detailed phe-
notypes. Their genotypes were determined using 
an array that included 847,441 genetic polymorph-
isms, enabling the identification of novel genetic 
variants in a uniformly genotyped and phenotyped 
cohort of unprecedented size [19]. Using data 
from the UK Biobank, samples from the partici-
pants were genotyped on the UK Biobank Axiom 
array and UK BiLEVE custom array. Genotype 
imputation was conducted with IMPUTE software 
against the UK10K haplotype panel and the 1000 
Genomes Project phase 3 panel. GWAS analysis 
was performed by SNPTEST using a logistic 
regression model. A genome-wide gene- 
association study was performed using the 
MAGMA gene analysis tool, and multiple genes 
and genetic variants were identified. The Icelandic 
GWAS dataset from the deCODE Genetics genea-
logical database was based on whole-genome 
sequencing using Illumina technology. Finally, 
meta-analysis of small nucleotide polymorphisms 
(SNPs) in the UK Biobank and deCODE sample 
was performed using the METAL analysis 
tool [20].

The atlas of genetic associations in the UK 
Biobank (GeneATLAS, http://geneatlas.roslin.ed. 
ac.uk) helps researchers effectively analyze UK 
Biobank results without high computational 
costs. It also allows users to query genome-wide 
association results for 9,113,133 genetic variants 
and download GWAS summary statistics for 
more than 30 million imputed genetic variants 
(>23 billion phenotype–genotype pairs) [21]. We 
downloaded large-scale GWAS breast cancer sum-
mary data from the atlas of genetic associations. 
Detailed descriptions of sample characteristics, 
experimental designs, statistical analyses, and qual-
ity control can be found in previous studies.
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2.2 Gene expression datasets

Oncomine (https://www.oncomine.org) is a cancer 
microarray database and web-based data mining 
platform for facilitating discovery. In this study, 
differentially expressed genes (DEGs) in breast 
cancer were identified by comparing cancer sam-
ples to respective normal samples using the 
Oncomine database. The heatmap of significant 
DEGs in breast cancer was driven from the 
Oncomine.

2.3 Identification of significant genes in breast 
cancer

NetWAS (https://hb.flatironinstitute.org/netwas/) 
integrates tissue-specific networks and significant 
GWAS association results, and identifies relevant 
disease-gene associations based on genomics. 
Briefly, SNP-level association statistics were con-
verted into gene-level statistics (gene-based 
P values), which then were integrated with tissue- 
specific networks to predict the causal genes [18]. 
Greene et al. [13] demonstrated that NetWAS is 
more accurate than GWAS alone. In this study, we 
identified the most relevant genes in breast cancer 
using NetWAS.

2.4 Kyoto Encyclopedia of Genes and Genomes 
pathway and Gene Ontology analyses

Cytoscape is one of the most successful network 
biology analysis and visualization tools. It exposes 
more than 270 core functions and 34 applications 
as REST-callable functions with standardized 
JSON interfaces supported by Swagger documen-
tation [22]. CluePedia, a plug-in in Cytoscape, can 
search for certain Kyoto Encyclopedia of Genes 
and Genomes (KEGG) signaling pathways of cer-
tain genes by calculating linear and nonlinear sta-
tistical dependencies from experimental data [23]. 
KEGG signaling pathways were identified by 
CluePedia. Search Tool for the Retrieval of 
Interacting Genes (STRING) (https://string-db. 
org/cgi/input.pl) is an online tool that for Gene 
ontology (GO) analysis in gene sets [24,25]. GO is 
a commonly used bioinformatics tool that pro-
vides comprehensive information on the gene 
function of individual genomic products based 

on defined features consisting of three domains: 
biological process (BP), cellular component (CC), 
and molecular function (MF) [26]. We conducted 
GO analysis using the STRING database.

2.5 Analysis of the correlation between 
significant genes and breast cancer

Gene Expression Profiling Interactive Analysis 
(GEPIA, http://gepia.cancer-pku.cn) is a web ser-
ver for analyzing RNA-sequencing expression data 
of 9,736 tumors and 8,587 normal samples from 
The Cancer Genome Atlas and Genotype-Tissue 
Expression projects, using a standard processing 
pipeline [27]. The Human Protein Atlas (HPA, 
www.proteinatlas.org) is an immunohistochemis-
try-based map of protein expression profiles in 
normal tissues, cancer tissues, and cell lines, and 
provides a resource for pathology-based biomedi-
cal research, including protein biomarker discov-
ery [28–30]. Correlations between significant 
genes and breast cancers were analyzed with 
GEPIA and HPA.

2.6 Analysis of the correlation between 
significant gene expression and overall survival

PROGgeneV2 (http://www.compbio.iupui.edu/ 
proggene), a tool that can be used to predict the 
prognostic implication of genes in cancers, is writ-
ten in PHP5 with a MySQL database backend, 
which stores gene expression data, covariates 
data, and metadata for cataloged studies in the 
form of relational database tables. Survival analysis 
in PROGgeneV2 is done using the backend 
R script; users can input multiple genes and use 
combined analysis to create survival plots for dif-
ferent genes of interest [31]. We used 
PROGgeneV2 to analyze the relationship between 
overall survival and genes that were overexpressed 
and underexpressed in breast cancer.

2.7 Drug prediction analysis

CMap (https://portals.broadinstitute.org/cmap/) is 
a collection of genome-wide transcriptional 
expression data from cultured human cells treated 
with bioactive small molecules and simple pattern- 
matching algorithms that together enable the 
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discovery of functional connections among drugs, 
genes, and diseases through the transitory feature 
of common gene expression changes [32–34]. We 
used CMap to identify small-molecule compounds 
as potential therapeutic agents to target the signif-
icant genes in breast cancer.

3. Results

3.1 Identification of significant DEGs in breast 
cancer

To identify the significant DEGs in breast cancer, 
we retrieved GWAS summary data (C50-C50) of 
breast cancer from the UK Biobank, and micro-
array expression profiles of breast cancer from the 
Oncomine database. C50-C50 contained 10,478 

malignant neoplasm of breast cases and 235,016 
controls for the analyses, and the data were con-
solidated and normalized (Figure 1(a,b)).

From NetWAS of GWAS summary data, we 
converted SNP-level association statistics into 
gene-level statistics (gene-based P values) and 
identified the 127 most relevant genes in breast 
cancer (Table 1). A total of 1019 overexpressed 
genes (Supplementary Figure 1) and 1019 under-
expressed genes (Supplementary Figure 2) were 
identified by Oncomine. The top 20 DEGs in 
breast cancer compared to the normal controls 
are shown in a heatmap (Figure 2).

After overlapping the 127 most relevant genes 
with the 2038 DEGs in breast cancer, we identified 
10 significant genes (CLDN7, MLLT10, RBM33, 
SH3RF1, SSBP4, UBE2Z, BMPER, FGF7, MSRB3, 

Figure 1. A) Q-Q Plot of C50-C50 (β = 1.05, λmean = 1.07, λmedian = 1.06) Containing 9,113,133 imputed variants that passed 
quality control (QC), with a P different than 0; b) Manhattan PLOT (IMPUTED) CONTAINING all (QC and non-QC) 30,798,054 imputed 
variants; c) Venn diagram of significant genes (CLDN7,MLLT10,RBM33,SH3RF1,SSBP4, UBE2Z,BMPER,FGF7,MSRB3,TNRC6B) in breast 
cancer (BC).
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Table 1. Significant genes in breast cancer identified using NetWAS.
Gene symbol Training label NetWAS Score

DVL2 1 0.235936
SNF8 1 0.174439
ADSL 1 0.16157
OR2AE1 1 0.160822
ACADVL 1 0.160651
OR2A5 1 0.149804
TRIM4 1 0.148613
GJC3 1 0.146056
TMEM161A 1 0.143088
ITGA5 1 0.128071
SPDYE3 1 0.120586
LRRD1 1 0.116357
PHF23 1 0.111639
ATG9B 1 0.106706
DIDO1 1 0.105009
KRIT1 1 0.103645
CCND1 1 0.100449
SAP30BP 1 0.100171
GRID2IP 1 0.099812
MAFK 1 0.096834
SLC25A17 1 0.094211
TMEM184A 1 0.093676
TSC22D4 1 0.093096
SCAMP2 1 0.093005
ZCWPW1 1 0.092518
LRP1 1 0.088344
PEG10 1 0.085924
RBM33 1 0.084988
FNIP2 1 0.082357
TNRC6B 1 0.080609
MUC17 1 0.080398
MUC12 1 0.070727
C7orf61 1 0.069049
CSK 1 0.065686
AVIL 1 0.064848
FGFR2 1 0.062894
OR12D2 1 0.062179
PILRB 1 0.061788
PDLIM4 1 0.060831
AZGP1 1 0.060558
WNT2 1 0.058427
MMD 1 0.057349
CARS 1 0.05583
ATP6V0A4 1 0.055112
BMPER 1 0.054279
MPV17L2 1 0.053732
RBM48 1 0.053696
P4HA2 1 0.050581
PHLDA2 1 0.050163
NAP1L4 1 0.049917
NR2F6 1 0.048975
UBE2Z 1 0.048287
ISYNA1 1 0.048024
CYP51A1 1 0.047283
CYP2S1 1 0.047158
MEPCE 1 0.046038
GIP 1 0.045434
CCS 1 0.043749
GDF15 1 0.041477
KCNN4 1 0.041465
NYAP1 1 0.041088
SLC2A4 1 0.040597
RBM39 1 0.040581

(Continued )

Table 1. (Continued). 

Gene symbol Training label NetWAS Score

SH3RF1 1 0.039898
NPLOC4 1 0.039647
PIDD1 1 0.038797
MIEF1 1 0.038407
TFAP2D 1 0.037515
PARD6B 1 0.034994
POTEJ 1 0.0348
FNDC1 1 0.034535
DLX2 1 0.033885
NEUROG3 1 0.033203
SPEG 1 0.031537
RASSF3 1 0.03124
CBX7 1 0.029876
ELOF1 1 0.028148
WNT3 1 0.027907
IGFBP2 1 0.026449
SPTBN2 1 0.02607
DLL4 1 0.024507
FZD7 1 0.024165
PLCE1 1 0.023692
KLRC4 1 0.023357
PSTK 1 0.023215
ASIC4 1 0.022743
NEUROD4 1 0.021315
ZDHHC24 1 0.018987
RSPO3 1 0.018473
SLC35D3 1 0.016828
ADCY3 1 0.016417
ABCG2 1 0.016354
DNAH9 1 0.016198
SMIM5 1 0.015532
CTDNEP1 1 0.015522
C12orf80 1 0.014825
FAM71E2 1 0.014777
GPRIN2 1 0.014572
SSBP4 1 0.014453
DLG4 1 0.01316
USHBP1 1 0.013133
CLDN7 1 0.012219
ZNF18 1 0.010693
TTLL6 1 0.00984
KCNK17 1 0.009442
PHF20 1 0.009367
TNP1 1 0.009195
ZBTB2 1 0.008477
RBM43 1 0.007998
PNLIP 1 0.007244
CASC10 1 0.007176
ELL 1 0.006518
SKIDA1 1 0.00598
MLLT10 1 0.00583
ODF3L1 1 0.005735
SPAG4 1 0.00503
TAAR8 1 0.003711
UBALD2 1 0.003033
LMAN1L 1 0.002579
LYPD5 1 0.002363
FGF7 1 0.001942
MSRB3 1 0.001837
SLC22A5 1 0.001425
ZNF420 1 0.000842
BAZ2A 1 0.000831
RNF175 1 0.000786
BBS1 1 0.000378
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and TNRC6B) in breast cancer (Figure 1c). Among 
them, CLDN7, MLLT10, RBM33, SH3RF1, SSBP4, 
and UBE2Z were overexpressed; and BMPER, 
FGF7, MSRB3, and TNRC6B were underexpressed.

3.2 GO and KEGG enrichment analyses of 
significant DEGs in breast cancer
To explore the roles of the significant DEGs in 
breast cancer, we played GO and KEGG 

Figure 2. Heatmap of significant different expression genes in BC. a)Top 20 Over-expressed genes; b) Top 20 Under-expressed genes.
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enrichment analyses. BP analysis revealed that 
the significant genes in breast cancer were 
mainly enriched in the Wnt signaling pathway, 
calcium-modulating pathway, protein repair, 
gene silencing by microRNA (miRNA), mRNA 
cleavage involved in gene silencing by miRNA, 
and positive regulation of epithelial cell prolif-
eration involved in lung morphogenesis (Table 
2). MF analysis showed that significant genes 
were enriched in functions related to oxidore-
ductase activity, acting on a sulfur group of 
donors and disulfide as acceptor, and phosphoi-
nositide 3-kinase (PI3K) and PIK3CA activities 
(Table 2). CC analysis showed that significant 
genes were enriched in P-bodies. KEGG analysis 
revealed that significant genes in breast cancer 
were mainly involved in pathways in cancer, 
breast cancer, gastric cancer, melanoma, the 
PI3K/Akt signaling pathway, mitogen-activated 
protein kinase (MAPK) signaling pathway, Ras 
signaling pathway, tight junctions, and ubiqui-
tin-mediated proteolysis (Figure 3).

3.3 Correlation between significant DEGs and 
breast cancer

To verify the significant DEGs of breast cancer, we 
further explore the DEGs. Consistent with the 
identification of significant genes, protein profiling 
in breast cancer samples from the HPA using 
immunohistochemistry showed that the gene 
expression of CLDN7, RBM33, SH3RF1, and 
UBE2Z was significantly enriched in breast cancer, 
whereas there was no significant enrichment of 
FGF7 and TNRC6B (Figure 4).

The significant DEGs (CLDN7, BMPER, FGF7, 
MSRB3) in breast cancer samples compared to 
normal samples also showed coincident results of 
significant gene identification (Figure 5).

3.4 Correlation between overall survival and 
significant DEGs in breast cancer

In the analysis of the correlation between overall 
survival and significant DEG expression (CLDN7, 
MLLT10, RBM33, SH3RF1, SSBP4, and UBE2Z) in 
breast cancer, we found a shorter survival time 
based on GSE5881 (Figure 6a) and GSE42568 
(Figure 6b) (P< 0.05). The significantly 

underexpressed genes (BMPER, FGF7, MSRB3, 
and TNRC6B) in breast cancer were correlated 
with a longer survival time based on GSE42568 
(Figure 6c) and GSE37751 (Figure 6d) (P> 0.05), 
this correlation cannot be demonstrated. The 
overall survival analysis combined significantly 
underexpressed genes (BMPER, MSRB3, and 
TNRC6B) in breast cancer based on 
GSE1456_U133B (Figure 6e) and 
GSE3494_U133B (Figure 6f); combined FGF7 
and TNRC6B based on GSE3494_U133A (Figure 
6g); and combined single FGF7 based on GSE9893 
(Figure 6h) were also correlated with longer sur-
vival in breast cancer (P< 0.05).

3.5 Drug prediction analysis

To identify potential small-molecule compounds 
with therapeutic effects on breast cancer, drug 
prediction analysis was performed using CMap. 
A total of 65 drugs were predicted, and the 10 
most significant were trichostatin A, LY-294,002, 
econazole, Prestwick-1082, vorinostat, lomefloxa-
cin, clorsulon, amantadine, thiostrepton, and orci-
prenaline (Table 3).

4. Discussion

Breast cancer is the most commonly diagnosed 
malignancy in women worldwide and is the main 
cause of cancer-related death in women [35–37]. 
Although there are a lot of effective therapeutic 
agents for breast cancer, breast cancer remains 
a major health problem and is a top biomedical 
research priority [38–40], as there is an urgent 
need for effective breast cancer treatments.

In this study, we identified 10 significant genes 
(CLDN7, MLLT10, RBM33, SH3RF1, SSBP4, 
UBE2Z, BMPER, FGF7, MSRB3, and TNRC6B) 
in breast cancer using combined GWAS data and 
profiling of DEGs. Protein profiling in breast can-
cer samples from the HPA using immunohisto-
chemistry and analysis of significant DEGs in 
breast cancer samples compared to normal sam-
ples from GEPIA further verified the results. 
Significantly overexpressed genes (CLDN7, 
MLLT10, RBM33, SH3RF1, SSBP4, and UBE2Z) 
were correlated with shorter survival, whereas 
underexpressed genes (BMPER, FGF7, MSRB3, 
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and TNRC6B) were correlated with longer survival 
in breast cancer.

Consistent with our findings, previous studies 
have shown that some of these genes play impor-
tant roles in the development of breast cancer. For 
example, Bernardi et al. [41] showed that CLDN7 
is associated with a shorter time to recurrence, 
suggesting its contribution to the aggressiveness 
of breast cancer. In a GWAS, Guo et al. [42] 
identified common genetic loci for breast cancer 
risk including SSBP4. Whole transcriptome 

analysis by Bauer et al. [43] demonstrated that 
BMPER plays a possible therapeutic role in breast 
cancer. Fu et al. [44] demonstrated that acetyla-
tion, expression and recruitment of FGF7 promo-
ters induce cancer growth and progression. Zhu 
et al. [45] found that targeting FGF7 can exert 
oncogenic functions in breast cancer. A previous 
study showed that the ZEB1-MSRB3 axis is related 
to breast cancer genome stability [46]. 
Interestingly, other DEGs in breast cancer identi-
fied in this study, including MLLT10, RBM33, 
SH3RF1, UBE2Z, and TNRC6B, have not been 
proven in previous studies. We believe that these 
are potentially novel key genes in breast cancer.

BP analysis in GO annotation indicated that the 
10 significant genes are mainly enriched in the 
Wnt signaling pathway, which plays an important 
role in the occurrence and development of many 
cancers. Inhibiting this pathway can suppress 
breast cancer growth and metastasis [47–49]. MF 
analysis of GO suggested that the DEGs were most 
significantly enriched in functions related to oxi-
doreductase activity. The redox reaction is accom-
panied by tumor development. CC analysis of GO 
annotation showed that the 10 DEGs were 
enriched in P-bodies. A previous study suggested 
that P-body disassembly correlates with breast 
cancer progression [50].

KEGG analysis of the 10 DEGs showed their 
enrichment in breast cancer, gastric cancer, mel-
anoma, the PI3K/Akt signaling pathway, MAPK 
signaling pathway, Ras signaling pathway, tight 
junctions, and ubiquitin-mediated proteolysis. 
Some of these pathways contribute to the devel-
opment of breast cancer. For example, the PI3K 
pathway is found in many types of cancer and 
plays an important role in breast cancer cell 
proliferation [51]. Ras signaling is a key deter-
minant of poor survival in breast cancer patients 
[52]. Abnormal MAPK signaling plays a core 
role in the regulation of growth and survival, 
and the development of drug resistance in triple- 
negative breast cancer [53].

The aim of this work was to identify signifi-
cant genes and potential therapeutic agents for 
breast cancer based on genomics. We found 65 
potentially small-molecule compounds to reverse 
significant genes in breast cancer. The 10 most 
significant drugs were trichostatin A, LY- 

Table 2. Gene ontology (GO) enrichment result of significant 
genes in breast cancer.

Biological processes

term ID term description

false  
discovery 

rate

GO:0007223 Wnt signaling pathway, calcium 
modulating pathway

0.0024

GO:0030091 protein repair 0.0024
GO:0035195 gene silencing by miRNA 0.0024
GO:0035279 mRNA cleavage involved in gene 

silencing by miRNA
0.0024

GO:0060501 positive regulation of epithelial cell 
proliferation involved in lung 
morphogenesis

0.0024

GO:0035278 miRNA mediated inhibition of translation 0.003
GO:0060213 positive regulation of nuclear-transcribed 

mRNA poly(A) tail shortening
0.003

GO:0010463 mesenchymal cell proliferation 0.0039
GO:0060445 branching involved in salivary gland 

morphogenesis
0.0039

GO:0031069 hair follicle morphogenesis 0.0078
GO:2,000,026 regulation of multicellular organismal 

development
0.0082

GO:0051173 positive regulation of nitrogen compound 
metabolic process

0.0168

GO:0036092 phosphatidylinositol-3-phosphate 
biosynthetic process

0.019

GO:0010604 positive regulation of macromolecule 
metabolic process

0.0194

GO:0031325 positive regulation of cellular metabolic 
process

0.0194

GO:0048522 positive regulation of cellular process 0.0194
GO:0051254 positive regulation of RNA metabolic 

process
0.0194

GO:0060688 regulation of morphogenesis of 
a branching structure

0.0194

GO:0007267 cell-cell signaling 0.0199
GO:1,903,313 positive regulation of mRNA metabolic 

process
0.0242

Molecular functions
GO:0016671 oxidoreductase activity, acting on a sulfur 

group of donors, disulfide as acceptor
0.0083

GO:0016303 1-phosphatidylinositol-3-kinase activity 0.0406
GO:0046934 phosphatidylinositol-4,5-bisphosphate 

3-kinase activity
0.0406

Cellular components
GO:0000932 P-body 0.0029
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294,002, econazole, Prestwick-1082, vorinostat, 
lomefloxacin, clorsulon, amantadine, thiostrep-
ton, and orciprenaline. Consistent, with our 
study, it has been reported that trichostatin A, 
a histone deacetylase inhibitor, has therapeutic 
potential in breast cancer [54]. Jiang et al. [55] 
showed that trichostatin A sensitizes ER-negative 
breast cancer cells to tamoxifen. LY294002, 
a specific inhibitor of the PI3K pathway, can 
decrease the rate of cell growth and increase 
the therapeutic sensitivity in MCF7 cells expres-
sing wild-type p53, which may be useful for the 
treatment of breast cancer [56]. Econazole is 
a novel PI3K/AKT signaling pathway inhibitor, 
which can be used to overcome adriamycin 
resistance and improve chemotherapy sensitivity 
in breast cancer [57]. A preclinical study showed 
that vorinostat can prevent the formation of 
brain metastases in breast cancer [58]. Yang 
et al. [59] suggested that thiostrepton is 
a promising agent for triple-negative breast can-
cer. Kwok et al. [60] showed that thiostrepton 
selectively targets breast cancer cells through 
inhibition of Forkhead box M1 expression. 

However, some of the predicted drugs, such as 
Prestwick-1082, lomefloxacin, clorsulon, amanta-
dine, and orciprenaline, have not been shown to 
directly play a role in breast cancer. Thus, future 
studies are needed to confirm our findings.

Compared to previous studies [61–63], we 
conducted an analysis combining genomic data 
with drug database analysis to identify novel 
candidate therapeutic agents for breast cancer 
treatment. Our study demonstrates the useful-
ness of this approach for evaluating the rela-
tionship among genes, diseases, and drugs. 
These findings will pave the way for the dis-
covery of potential therapeutic targets for breast 
cancer.

5. Conclusion:

Combined analyses of network-wide association 
studies, gene expression profiles, and drug data-
bases are helpful for identifying potential thera-
peutic agents for diseases. This method is a new 
paradigm that can guide future research 
directions.

Figure 3 KEGG pathway analysis of significant genes (CLDN7, MLLT10, RBM33, SH3RF1, SSBP4, UBE2Z, BMPER, FGF7, MSRB3 and 
TNRC6B) in BC.
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Figure 4. The immunohistochemistry of significant genes(CLDN7, RBM33, SH3RF1, UBE2Z, FGF7 and TNRC6B) in BC.

Figure 5. The different expression of significant genes genes(CLDN7, BMPER, FGF7 and MSRB3) in breast cancer samples to normal 
samples, the red box mean in breast cancer samples and the black box mean in normal samples. *:p < 0.05.
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Figure 6. Overall survival analysis combined multiple genes expression. a)Combined significant Over-expressed genes(CLDN7, 
MLLT10, RBM33, SH3RF1, SSBP4 and UBE2Z) in BC based on GSE58812; b)Combined significant Over-expressed genes(CLDN7, 
MLLT10, RBM33, SH3RF1, SSBP4 and UBE2Z) in BC based on GSE42568; c)Combined significant under-expressed genes(BMPER, FGF7, 
MSRB3 and TNRC6B) in BC based on GSE42568; d)Combined BMPER,FGF7,MSRB3 and TNRC6B in BC based on GSE37751; e)Combined 
BMPER,MSRB3 and TNRC6B in BC based on GSE1456_U133B; f)Combined BMPER,MSRB3 and TNRC6B in BC based on 
GSE3494_U133B; g)Combined FGF7 and TNRC6B in BC based on GSE3494_U133A; h)Combined FGF7 in BC based on GSE9893.
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Table 3. The most significant drugs provided by cmap to reverse core genes of breast cancers.
cmap name mean enrichment p specificity

trichostatin A −0.447 −0.422 0 0.3069
LY-294,002 −0.389 −0.402 0 0.1534
econazole 0.716 0.91 0.00006 0.0154
Prestwick-1082 0.749 0.949 0.00012 0
vorinostat −0.508 −0.568 0.00038 0.2832
lomefloxacin −0.607 −0.735 0.0007 0
clorsulon 0.714 0.85 0.00072 0
amantadine 0.659 0.838 0.00107 0.0063
thiostrepton −0.738 −0.831 0.00147 0.037
orciprenaline 0.589 0.801 0.00298 0.0058
thiamphenicol 0.428 0.725 0.00352 0.1173
khellin 0.444 0.713 0.00459 0.0181
thiethylperazine 0.576 0.767 0.00567 0.011
felbinac 0.476 0.763 0.00599 0.0468
Chicago Sky Blue 6B 0.472 0.762 0.00605 0.0061
vinburnine 0.41 0.756 0.0068 0.0351
scriptaid −0.688 −0.849 0.00683 0.0833
Prestwick-1103 0.338 0.747 0.00786 0.0435
naringenin 0.444 0.745 0.00796 0.0585
adiphenine 0.385 0.683 0.00811 0.2819
terazosin 0.561 0.74 0.00875 0.0112
oxolamine 0.339 0.739 0.00897 0.0385
monobenzone −0.557 −0.736 0.00961 0.0203
chenodeoxycholic acid 0.326 0.731 0.01034 0.0495
rifabutin −0.623 −0.823 0.01104 0.125
levonorgestrel −0.38 −0.61 0.01158 0.0874
cinnarizine 0.413 0.72 0.01233 0.0146
oxybuprocaine −0.563 −0.715 0.01339 0.0225
metformin 0.335 0.475 0.01352 0.0311
memantine 0.374 0.7 0.01677 0
acetohexamide 0.292 0.698 0.01719 0.0059
proxyphylline −0.515 −0.694 0.01846 0.0792
R-atenolol 0.273 0.688 0.01969 0
quinostatin −0.756 −0.9 0.02 0.1832
vinblastine 0.41 0.781 0.02129 0.0774
colecalciferol −0.407 −0.684 0.02158 0.0217
dexibuprofen −0.501 −0.681 0.02248 0.0173
BCB000040 0.616 0.679 0.02308 0.0057
levopropoxyphene 0.28 0.676 0.02401 0.0063
sulconazole −0.396 −0.676 0.02455 0.0855
nadolol 0.518 0.673 0.02514 0.2857
hycanthone 0.514 0.67 0.02612 0.1814
CP-863,187 0.618 0.668 0.02707 0.0704
karakoline 0.317 0.557 0.02854 0.0267
etamivan 0.523 0.663 0.0292 0.0268
methylergometrine −0.407 −0.662 0.02952 0.0357
homochlorcyclizine 0.321 0.66 0.03069 0.1087
fluorometholone −0.401 −0.656 0.03223 0.057
probucol −0.382 −0.549 0.03266 0.0061
phthalylsulfathiazole −0.406 −0.591 0.03308 0.2864
flecainide 0.35 0.547 0.03329 0.0058
tetraethylenepentamine −0.384 −0.542 0.03655 0.0229
josamycin 0.469 0.588 0.03679 0.1235
torasemide −0.418 −0.645 0.03796 0.0545
nadide 0.511 0.637 0.04225 0.0643
fosfosal 0.459 0.637 0.04265 0.0142
rescinnamine −0.592 −0.723 0.04363 0.0248
diethylcarbamazine 0.396 0.634 0.04416 0.0252
cyclopentolate −0.499 −0.632 0.0444 0.05
harmol 0.275 0.634 0.04444 0.0853
metixene 0.288 0.632 0.04534 0.1593
idoxuridine 0.474 0.572 0.0458 0.0838
LM-1685 −0.571 −0.714 0.04795 0.0238
iohexol 0.253 0.628 0.04808 0.1657
fenbendazole 0.497 0.626 0.0489 0.11
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(2) A useful approach for evaluating the rela-
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