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Abstract
Humans and animals are capable of estimating and discriminating nonsymbolic numerosities via mental representation of
magnitudes—the approximate number system (ANS). There are two models of the ANS system, which are similar in their
prediction in numerosity discrimination tasks. The log-Gaussian model, which assumes numerosities are represented on a
compressed logarithmic scale, and the scalar variability model, which assumes numerosities are represented on a linear scale.
In the first experiment of this paper, we contrasted these models using averaging of numerosities. We examined whether
participants generate a compressed mean (i.e., geometric mean) or a linear mean when averaging two numerosities. Our results
demonstrated that half of the participants are linear and half are compressed; however, in general, the compression is milder than a
logarithmic compression. In Experiments 2 and 3, we examined averaging of numerosities in sequences larger than two. We
found that averaging precision increases with sequence length. These results are in line with previous findings, suggesting a
mechanism in which the estimate is generated by population averaging of the responses each stimulus generates on the
numerosity representation.

Keywords Decision making . Summary statistics . Population coding . Mental number line . Approximate numerical system
(ANS) . Numerosity representation

Research over the past two decades has converged on the idea
that humans (including infants) and animals have at their dis-
posal a set of analog numerosity (or magnitude) representa-
tions, which allows them to estimate and discriminate the
numerosity of large sets of items (e.g., dots in a visual display
or rapid sequences of sound clicks) without counting (Barth,
Kanwisher, & Spelke, 2003; Dehaene, Dehaene-Lambertz, &
Cohen, 1998; Feigenson, Dehaene, & Spelke, 2004; Gallistel
& Gelman, 2000; Katzin, Salti, & Henik, 2018; Leibovich &
Henik, 2014; Nieder, Freedman, & Miller, 2002; Nieder &
Miller, 2003; Piazza, Pinel, Le Bihan, & Dehaene, 2007;
Whalen, Gallistel, & Gelman, 1999). These numerosity rep-
resentations, also labeled as the approximate number system
(ANS), are akin to a “number line,” which is thought to be

mediated by broadly tuned numerosity detectors in the parietal
cortex (Nieder et al., 2002; Nieder & Miller, 2003). The ANS
representations account for data showing that humans (includ-
ing infants) and animals are characterized by a Weber fraction
in numerosity discrimination and estimation tasks (Barth
et al., 2003; Cordes, Gelman, Gallistel, & Whalen, 2001;
Whalen et al., 1999). Moreover, it has been suggested that
the ANS representations are, at least partially, involved in
the processing of symbolic numbers, as indicated by well-
known distance and magnitude effects (Dehaene, Dupoux,
& Mehler, 1990; Moyer & Landauer, 1967).

There are at present two versions of the ANS systems,
which are roughly equivalent in terms of their prediction in
numerosity discrimination tasks. The first is the log-Gaussian
model, which assumes that the location of the number repre-
sentation on the mental-line continuum is logarithmically
compressed with a fixed variability (Dehaene, 2007;
Feigenson et al., 2004). The second is the scalar variability
model, which assumes that the representation of numerosities
is linear (noncompressed) on the mental line, with regards to
both its mean and its variability (Gallistel & Gelman, 2000),
resulting in similar Weber-type predictions (Dehaene, 2007).
Some extra support for the log-Gaussian model comes from
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the mapping of numbers onto space (or a number line), which
typically indicate compression (10 and 20 are more separated
than 80 and 90 on the number line), especially for young
children (Booth & Siegler, 2006; Siegler & Booth, 2004;
Siegler & Opfer, 2003) or for adults under attentional load
(Anobile, Cicchini, & Burr, 2012). However, the scalar vari-
ability model can also account for this compression under the
assumption that participants rely on the central tendency prin-
ciple (a type of regression to the mean), which affects larger
numbers more than small numbers due to their increased
encoding variability (Anobile et al., 2012).

While most of the numerosity research has relied on estima-
tion, discrimination, or comparison (same–different) tasks, some
research has also targeted arithmetic operations, like addition and
subtraction (Barth et al., 2006; Barth, La Mont, Lipton, &
Spelke, 2005; Cordes, Gallistel, Gelman, & Latham, 2007;
McCrink, Dehaene, & Dehaene-Lambertz, 2007; Pica, Lemer,
Izard, & Dehaene, 2004). One area that was less explored within
the ANS domain, however, is averaging. While, analytically,
averaging can be viewed as being equivalent to addition (follow-
ed by division by the number of terms), there are reasons to
believe that this is not the way that participants estimate the
average of rapid sequences of (symbolic) numbers (Brezis,
Bronfman, & Usher, 2015, 2018; Malmi & Samson, 1983;
Mitrani-Rosenbaum, Glickman, & Usher, 2020), as they can
provide accurate and rapid estimations of the average, evenwhen
they do not know the number of elements, or when elements in a
specific range are to be discarded after the sequence presentation
(Malmi & Samson, 1983). Rather, the evidence indicates that the
estimation mechanism corresponds to a frequency-based estima-
tion (the estimation of the center of mass of a noisy frequency
distribution of the numbers), which is somewhat similar to the
one suggested by the ANS representation system (see Brezis,
Bronfman, Jacoby, Lavidor, & Usher, 2016; Brezis et al.,
2015, 2018). In particular, Brezis et al. (2015, 2018) have pro-
posed an ANS type of population code model, which accounts
for a characteristic signature of the population code: Precision
improves with the length of the sequence (see Fig. 1, blue line).
While this is a straightforward prediction of population averaging
(encoding noise in the representation of each number is averaged
out), it contradicts the predictions of an analytical (and working-
memory capacity limited) model, which computes via a sequen-
tial rule-based algorithm, predicting a decreasing precision with
the number of terms (see Fig. 1, red line; Brezis et al., 2015). The
latter is illustrated by the red line, which shows the prediction of
the analytical model, which symbolically computes the average
based on three random samples from a sequence of n numbers
(the larger the n, the less the samples can approximate the true
average).

The aim of this study is to probe the estimation of
sequence-average with numerosity stimuli—sets of dots.
This is important for several reasons. First the estimation of
the average is critical for common life activities, like decision-

making, in which one has to estimate the utility of alternatives
that vary across time or attributes (Betsch, Kaufmann,
Lindow, Plessner, & Hoffmann, 2006; Brusovansky,
Glickman, & Usher, 2018; Brusovansky, Vanunu, & Usher,
2017; Pleskac, Yu, Hopwood, & Liu, 2019; Roe, Busemeyer,
& Townsend, 2001; Spitzer, Waschke, & Summerfield, 2017;
Tsetsos, Chater, & Usher, 2012; Usher & McClelland, 2004;
Vanunu, Pachur, & Usher, 2018; Zeigenfuse, Pleskac, & Liu,
2014). Second, recent research has indicated an impressive
ability of human subjects in estimating summary statistics
(in particular the average) of perceptual properties of sets of
elements, such as size, orientation, and even emotional ex-
pression (Ariely, 2001; Chong & Treisman, 2005; Dakin,
2001; Haberman, Harp & Whitney, 2009; Haberman &
Whitney, 2011; Khayat & Hochstein, 2018; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001; Robitaille & Harris,
2011). To our knowledge, there is less research on the aver-
aging of (nonsymbolic) numerosities. While there is research
on averaging of numerical (symbolic) numbers (Brezis et al.,
2015, 2018; Spitzer et al., 2017; Vandormael, Castañón,
Balaguer, Li, & Summerfield, 2017), testing averaging of
nonsymbolic numbers has the added bonus of excluding sym-
bolic computations, and thus exclusively targeting the ANS
system.

In testing the averaging of numerosities, we wish to focus
on two central questions: (i) Can we find evidence for system-
atic biases, which would confirm/disconfirm the presence of a
compression mechanism in the number-line representation?
(i.e., will some participants show a bias towards a geometric
mean, as possibly suggested by a log-Gaussian model; see
next section). (ii) Does the precision of the estimate increase
(decrease) with the length of the sequence? An increased pre-
cision with sequence length would indicate that the ANS sys-
tem can operate not only for single (or pairs of) stimuli but
also for multiple ones, and that it can contribute to the mech-
anism for the formation of preferences over sequences of nu-
merical values or payoffs (Brusovansky et al., 2018; Vanunu
et al., 2018; Zeigenfuse et al., 2014).

Towards this aim, we carried out three experiments. The first
experiment examined the averaging of pairs of numerosity
stimuli. Here, we wanted to establish whether people can per-
form the task, by indication their estimate on a continuous
mental line, and we examined potential compressive biases
(in all the experiments, we quantified individual differences).
In our second and third experiments, we examined sequences
that vary in length from two to eight stimuli, and we focused on
the estimation precision as a function of sequence length. The
two experiments vary regarding the manipulation of the se-
quence length (randomized in Experiment 2 and blocked in
Experiment 3), and regarding the response mode (on a
continuous scale in Experiment 2, and based on comparison
with a probe in Experiment 3). To anticipate our results, we
find that whereas almost all participants were able tomake good
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estimations, there are compressive biases in about half of them,
but (except in one participant) those were milder than logarith-
mic. Critically, we find that precision improves with the length
of the sequence, as predicted by the population code mecha-
nism operating on ANS representations.

Experiment 1

Computational predictions and design motivation

Whereas the log-Gaussian and the scalar-variability models
make similar predictions in discrimination tasks, they can po-
tentially be distinguished in averaging. Figure 2 illustrates how
this can happen. The left panels illustrate two extreme models
(linear scalar variability vs. logarithmic compression; see also
Feigenson et al., 2004), and the right panels show the responses
following a pair of 10–70 numerosity stimuli. If the average is
estimated by a population averaging over the same numerosity
representation, one may expect, for the logarithmic (but not the
linear model), an underestimation of the average that increases
with the difference between them (see values pointed by the
arrows in the right panel), which is analogous to the way risk
aversion is generated as a result of a compressive utility

function (see Figs. 1–2 in Birnbaum, 2008). This is illustrated
in Fig. 2a–b, with a simple sequence of two numerosities: 10,
70. By computing the center of mass (on the same ANS repre-
sentation), we obtain the arithmetic mean (40) if the numbers
are represented according to the scalar variability model, and
the geometric mean (26.4) if the numbers are encoded based on
the log-Gaussian model (see Fig. 2c, black and red lines, re-
spectively, for an illustration over the range of 10–90).
Interestingly, an intermediate degree of compression is obtained
if the averaging in the scalar variability model is weighted by
the variance of the number representation, as suggested by a
combination of the scalar-variability model with a Bayesian
framework that includes a prior (Anobile et al., 2012; see
Appendix for computational details).

To test the sensitivity of the average estimate to the differ-
ence between the numerosities, we designed the stimuli to
systematically manipulate the difference between the pairs of
stimuli. This is illustrated in Fig. 3a, which illustrates the pre-
dictions for extreme ANS representation models (linear
[black] and a logarithmic [red]; in the latter, we assumed that
the estimation would correspond to the geometric mean) for
pairs of numbers in the range 5–85 (each bin has a width of
10). As one can see, the difference is small close to the diag-
onal (when the numbers are similar), but increases with the

Fig. 1 The population code model of numerical averaging. Upper panels
show the ANS-based averaging that operates on a set of analog broadly
tuned numerosity detectors (a). Each stimulus generates a noise response
on this representation (b), illustrated here for a sequence with three stimuli
(20, 50, and 80). The responses are summed (c). The average is the center
of mass of the distribution (see Brezis et al., 2015, for an explicit

mechanism), resulting in a precision that improves with sequence length
(blue line in lower panel). An alternative symbolic-based computation
results in precision that decreases with sequence length (red line).
Reproduced with permission from Brezis et al. (2015). (Color figure
online)
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difference of the pair (larger difference for bins 1–8; bottom
left corner). In Fig. 3b, we illustrate how the difference

between the linear and the geometric average depends on the
relative difference.

Fig. 2 a–bThe left panels illustrate the representation assumptions of two
ANS models: (a) the scalar varaibility model and (b) the log-gaussian
model. . In both cases, we plot the neural response for a sequence of
numbers 10–90 (in steps of 10); the red–blue continuum corresponds to
the number magnitude. The right panels illustrate the averaging of
numerosities 10 and 70 in each of the models. In bothmodels, the average
is the midpoint on the ANS, in the linear model it is the arithmetic average
(40), and in the log-Gaussian model it is the geometric average (26.4). c

Averaging estimation for pairs of values (x-axis) that are symmetric
around the midrange (50), for the scalar-variability model in which the
average is the center of mass (black line), the log-Gaussian model (red
line). The blue lines correspond to a Bayesian version of the scalar-
variability model, in which each value is weighted in inverse proportion
to its standard deviation, and a prior for the estimate is assumed to be a
Gaussian centered at the middle of the range (50) with standard deviation
labeled by a (see legend). (Color figure online)
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Method

Participants Fifteen undergraduates from Tel-Aviv University
(Mage = 22.4 years, SD = 1.2) participated in the experiment.
Participants had normal or corrected-to-normal vision.
Participants were awarded with course credit for their participa-
tion. All procedures and experimental protocols were approved
by the ethics committee of the Psychology department of Tel
Aviv University (Application 1-0000317). All experiments were
carried out in accordance with the approved guidelines.

Apparatus and stimuli Stimuli consisted of dots randomly
scattered on the screen. The dots diameter varied from 25 to
45 pixels. Minimum distance between dots was 25 pixels. The
color of the dots was light grey for the sequence arrays (RGB:
201, 201, 201) and red (RGB: 255, 0, 0) for the scale arrays.
The dots appeared on a black background.

Training procedure and design The experiment was built in
OpenSesame. Before running the experiment, the participants
received trainingwith responding to a single numerosity stimulus
using a continuous response scale. In order to assist them in
doing so, the location of the mouse on the scale dynamically
generated numerosity stimuli (in a different color from the one
they estimated), which the subject could match to their mental
representation of the stimulus (see Fig. 4a). In the training pro-
cedure, participants practiced the nonsymbolic number scale.
Each trial began with a green fixation cross presented at the
center of the screen for 1,000 ms. Next, the target, a cloud of
white dots, was presented for 500 ms at the center of the screen.
The numerosity of the target was between 5 and 90, in jumps of 5
(i.e., 5, 10, 15, 20, 25, . . . 90), 18 target numerosities in all. After
the target, a blank black screen appeared for 500 ms. Next, a
response screen appeared, in which the target was presented at
the top part of the screen, and at the center the nonsymbolic
number scale. When participants pointed to the scale, beneath
it, a red dot cloud appeared, with the numerosity of that location

on the scale. The scale ranged from 5 (left edge) to 90 (right
edge) for 10 participants, and 5 (left edge) to 100 (right edge)
for 5 participants.1 In half of the trials, the starting point of the
mouse was on the left edge, and in the other half, on the right
edge. Participants were instructed to move the mouse until they
find a red dot cloud that had the same (or as similar as possible)
numerosity as the white dot cloud (participants were allowed and
encouraged to move the mouse until they were satisfied of the
match). Once participants clicked with the mouse, the trial ended
and a new trial began. Each target numerosity appeared four
times, 72 trials in all (see Fig. 4a).

Averaging experiment procedure and design As illustrated in
Fig. 4b, each trial began with a white fixation cross presented
at the center of the screen for 1,000 ms. After the fixation, two
white dot clouds appeared, one after the other, each for 500
ms, with a blank interstimulus interval screen for 500 ms be-
tween them. After the stimuli, the response screen appeared.
The response screen included a nonsymbolic number scale,
which was the same as in the training procedure. Participants
were instructed to move the mouse on the response scale until
the red dot cloud matched the average numerosity of the stim-
uli. The numerosities of the stimuli were sampled from eight
bins of 10 between 6 and 85 (i.e., Bin 1 = 6–15; Bin 2 = 16–
25, . . . ,Bin 8 = 76–85; see Fig. 3a). In each trial, two bins with
a distance (Δ) of at least two were sampled, corresponding to
the area that is inside the encircled perimeter in Fig. 3a. For
example, stimuli could include bins (1, 3), (1, 4), (2, 4); 21
combinations of bins in all. The experiment started with a
practice block of 10 trials. Then, there were five experimental
blocks with two repetitions of each bin combination, 210 trials
in all, 42 trials per block.

1 The maximum stimulus was 90. We wanted to ensure in those five partici-
pants that the compression is not due the maximum value on the scale being
too close to the maximum stimulus. This difference can only affect the train-
ing; in the main experiment, the averages varied in the range of [10–75] and
thus are distant from the minimum or maximum scale value (5/90).

Fig. 3 a The linear (black) and geometric (red) average of the various
numerical bin pairs. The bins close to the diagonals were not sampled, as
the difference between the averages is small (making the task too easy). b
The difference between the linear and the geometric average depends on a

single variable, the relative difference, RD = Delta(bins)/Sum(bins). The
Spearman correlation between the RD and the delta of the averages is
high (rs = .96, p < .001). (Color figure online)
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Results

Training data analysis For each participant, we plotted the
response (averaging across trials with the same stimulus) as
a function of the stimulus numerosity. In Fig. 5 we show the

response of each participant (averaged over trials) as a func-
tion of the stimulus numerosity. As one can see, the partici-
pants are able to use the continuous scale to indicate their
impression of the stimulus numerosity (Pearson correlations
for each participant between the presented numerosity and the

Fig. 4 Examples of a trial in the training procedure (a) and in the averaging experiment (b)

Fig. 5 Correlation between presented numerosity and participant’s response for all participants (participants are ordered based on their sensitivity to the
difference between the numerosity; see Fig. 7)
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participant’s response was high. r = .97 SD = .02). The fitted
linear slope was on average b = .71 (SD = .1).

The purpose of the training task was twofold. First, we
wanted participants to become familiar with the nonsymbolic
number scale. Second, it enabled us to calibrate participants’
responses. Accordingly, we performed a regression analysis
with the presented numerosity as the dependent variable, and
participant’s response as the independent variable. We exam-
ined which fit was better: linear (y = b × x + a) or power (y = b
× x^α) fit. Both AIC and BIC parameters were lower for the
power fit: AIC, t(14) = −5.55, p < .001; BIC t(14) = −5.55, p <
.001; see Table S1 in the Supplementary Materials), with a
compression exponent (averageα = .82, SD = .09. The lowest
α was .68, and four participants had an α larger than .9). This
indicates that despite the presence of the red stimulus, there
was a small tendency to underestimate the numerosities.2

Based on this calibration, we can transform each response,
y, into the experienced stimuli (x) by inverting the y(x) func-
tion. The analysis in the main averaging experiment were
carried out both with and without this calibration.

Averaging experiment data analysis Analyses were per-
formed both with participants’ raw responses and with their
responses scaled according to the fit found in the training
procedure. Results were similar for both, so here we report
the results with the raw responses.

To see how the estimates vary along the x1–x2 continuum,
we carried out a regression, in which we predicted the re-
sponse based on three predictors: (i) the arithmetic average
(x1 + x2) / 2, (ii) the difference |x1 –x2| (this corresponds to
10 × the Δ of the bins), and (iii) a subject-dependent intercept.
The second predictor allows us to test the presence of a com-
pression in the representation of the numerosities. As illustrat-
ed in Fig. 3, the linear average is not affected by the Δ of the
bins. For example, in Fig. 3a, the Δ of pairs of bins 8–1, 7–2,
6–3 , are 7, 5, and 3, respectively. While the Δ for these cells
varies, their linear averages are all equal (46). An average
based on compressed representations predicts that the estimate
decreases with the Δ of the bins. For all participants, the linear
average was a significant predictor (average b = .57, ps <
.001), as illustrated in Fig. 6.

The delta variable, on the other hand, was only significant
for seven participants (average b = −.14, all ps < .05). For the
other eight participants, the delta coefficient was not signifi-
cant (average b = −.01, all ps = ns; see Fig. 7).

Next, we contrasted the linear and the logarithmic repre-
sentations regarding their expected response biases. If a par-
ticipant relies on linear (noncompressed) numerosity represen-
tations, the deviation between the estimate and the arithmetic
average should not correlate with the relative difference;

however, the deviation between the estimate and the geomet-
ric average should correlate with the relative difference. The
converse should happen if a participant relies on logarithmi-
cally compressed representations. For each participant, we
compared two correlations: (i) The correlation between the
relative difference and the linear average minus the subject’s
estimate, and (ii) the correlation between the relative differ-
ence and subject’s estimate minus the geometric average.

For all participants except one, we found a stronger positive
correlation between RD and their response minus the geomet-
ric average (mean r = .52, SD = .12, all ps < .001), compared
with the correlation between their response minus the linear
average (mean r = −.19, SD = .13), suggesting that their re-
sponses are more linear than geometric. Only one participant
displayed a geometric-average pattern (Subject 2 in Fig. 7, top
row, second panel from the left), a more positive correlation
with the linear average minus the response (r = .22, p < .001,
compared with r = .09), suggesting this participant is more
geometric than linear. This participant also displayed a com-
pressed pattern in the previous analysis. The rest of the partic-
ipants that displayed a compressed pattern in the previous
analysis were more linear than geometric in this analysis, sug-
gesting that their compression is not as strong as a logarithmic
compression.

Discussion

We examined the ability of participants to estimate the aver-
age of two numerosity stimuli by moving a mouse on a con-
tinuous response line. To facilitate the participants with the
use of the scale, they first received training with single stimuli.
In addition, the location of the mouse on the scale dynamically
created a numerosity stimuli (in a different color; see Fig. 4),
which the participant can compare with their mental estimate.
For all the participants, the average estimates increase with the
average of the stimuli pair; however, we also observe a (lower
than 1) slope indicating the presence of regression to the mean
(see Fig. 6). Since the task is not easy, the presence of regres-
sion to the mean is a normative way to deal with uncertainty
(Anobile et al., 2012; Jazayeri & Shadlen, 2010). The results
demonstrate that averaging is an operation that participants are
able to carry out with a pair of numerosity stimuli.

The central question of this study was whether there are
systematic deviations from the linear average, which are in-
duced by the compression of the ANS representation. To ex-
amine this, we examined the dependency of the estimate on
the difference between the two numerosities. For about half of
the participants, such a dependency was found: The estimate
decreased with the differencewhen the average was controlled
for (akin to the phenomenon of risk aversion that would make
a person prefer a lottery of 40with p = .5, 60with p = .5, to one
of 10 with p = .5, 90 with p = .5. For the other half of the
participants, the estimates were quite flat (with the difference)

2 The five participants who had the response scale extended (from 90 to 100)
did not vary in terms of compression from the others, average α = .88.
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supporting noncompressed numerosity representations (those
results were obtained using the raw data, but the results are
similar if we use transformed values based on the training
calibrations). When contrasting between the linear and loga-
rithmic compression, in particular, we found that only one
participant for which the estimates were closer to the

geometric (than linear) average. This indicates that the com-
pression that we have in the other subjects is milder than
logarithmic. While we focused here on a binary contrast be-
tween the log-Gaussian and the linear (scalar variability) rep-
resentation of numerosities, this binary (compression/no-com-
pression) contrast is a simplification. As we have shown in

Fig. 6 Participants’ response as a function of the linear average of the
stimuli presented. The blue line is the regression line, the red lines are the
confidence interval, and the dashed black line is the identity line. Values

in each panel correspond to the regression coefficient of the linear
average. *p < .05. **p < .01. ***p < .001; participants are ordered as in
Figs. 5 and 7. (Color figure online)

Fig. 7 Participants’ response by the delta of bins; vertical lines are within-subject standard error. Participants are ordered by delta coefficient. Values in
each panel correspond to the regression coefficient of delta(x). *p < .05. **p < .01. ***p < .001
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Fig. 2c (blue lines), a milder compression can be obtained if,
as previously suggested by Anobile et al. (2012), for the case
of the number-line estimation of single numerosity stimuli, the
participants (in our case with two stimuli) weight up the values
of the two samples and the prior, based on their relative rep-
resentational uncertainty. As the uncertainty is larger for the
higher numerosity, it results in a milder compression effect
(see Fig. 2c, blue lines) whose magnitude depends on the
prior-variance parameter. Thus, differences in how the repre-
sentational uncertainty increases with numerosity can account
for the compression variability in our task.

Experiment 2

The aim of the next two experiments is twofold. First, we
wanted to expand the task from pairs of stimuli to longer
sequences: two, four, or eight. Second, we aimed to test the
ANS population-coding prediction that the precision should
improve with sequence length. In these experiments, we did
not manipulate the variance of the sequences, so our focus is
not on compression biases, but rather on how the precision of
the estimate varies with the length of the sequence. We do
examine, however, another type of bias: temporal biases (do
people give more weight to recent or earlier stimuli?).

Method

Participants Twenty undergraduates from Tel-Aviv
University (Mage = 23.15, SD = 2.35) participated in the ex-
periment. Participants had normal or corrected-to-normal vi-
sion. Participants were awarded with course credit for their
participation. All procedures and experimental protocols were
approved by the ethics committee of the Psychology depart-
ment of Tel Aviv University (Application 1-0000317). All

experiments were carried out in accordance with the approved
guidelines.

Apparatus and stimuli Stimuli consisted of dots randomly
scattered on the screen. The dots diameter varied from 25 to
45 pixels. Minimum distance between dots was 25 pixels. The
color of the dots was light grey for the sequence arrays (RGB:
201, 201, 201) and red for the scale (RGB: 255, 0, 0) for the
probes. The dots appeared on a black background.

Training procedure and design The experiment was built in
MATLAB R2015. This procedure was similar to the training
procedure in Experiment 1, except that the starting point of the
mouse was the middle of the scale.

Averaging experiment procedure and design Each trial began
with a white fixation cross presented at the center of the screen
for 250 ms. After the fixation, a sequence of two, four, or eight
dot clouds appeared one after the other, each for 500 ms. Once
the sequence terminated, the participants were instructed to
estimate the sequence’s mean value by choosing a red dot
cloud on the nonsymbolic number scale that represents the
mean (see Fig. 8). Sequence length was randomized. The se-
quences were randomly drawn from three uniform distribu-
tions with a range of 30 and means 35, 50, and 65. Participants
underwent 306 experimental trials divided into six blocks.
Accordingly, there were 102 trials for each sequence length
(two, four, eight), and within each sequence length 34 trials
for each average (35, 50, 65).

Results

Training procedure To verify that participants were correctly
performing the task, we calculated Pearson correlations for
each participant between the presented numerosity and the

Fig. 8 An example of a trial in Experiment 2
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participant’s response. The average correlation was very high
(r = .97, SD = .03). Like Experiment 1, we performed a
regression analysis, with the presented numerosity as the de-
pendent variable and participant’s response as the independent
variable. We examined which fit was better: linear (y = b × x +
a) or power (y = b × x^ α). Both AIC and BIC parameters
were lower for the power fit: AIC, t(19) = −3.37, p < .01; BIC,
t(19) = −3.37, p < .01; see Table S3 in the Supplementary
Materials). The average α was 0.96 (SD = .11).

Averaging experimentAll analyses were performed both with
participants’ raw responses, and with their responses scaled
according to the fit found in the training procedure. Results
were similar for both, so here we report the results with the
raw responses.

Averaging precisionWe quantified participants averaging pre-
cision using two measures. First, we calculated the Pearson
correlation between the real and estimated averages of the
sequences. The average Pearson correlation was high (r =
.66, SD = 0.12) and was significantly higher than zero (all
ps < .001; see Fig. 9a for an individual participant). Second,
we computed the root mean square deviation (RMSD) be-
tween the real averages and the participants’ responses (note
that higher values of RMSD imply lower accuracy). The
RMSD was significantly lower than the simulated RMSD
generated by randomly shuffling participant’s responses
across trials (RMSD = 11.92; shuffled RMSD = 22.18),
t(19) = −21.78, p < .001.

A repeated-measures ANOVA, with RMSD as the depen-
dent variable and sequence length as the independent variable,
was carried out. As illustrated in Fig. 9b, the main effect of
sequence length was significant, F(2, 38) = 48.28, p < .001,
ηp

2=.71. Further analysis revealed a significant linear trend,
t(38) = −9.83, p < .001. A repeated-measures ANOVA, with

RTs as the dependent variable and sequence length as the
independent variable, was also carried out. The main effect
of sequence length was not significant, F(2, 38) < 1, p = ns),
indicating that this improvement is not the result of a speed–
accuracy trade-off.

Regression to the mean and temporal biases To estimate
these biases, we predicted the estimates based on two models.
We compared a model without a temporal bias and a model
with a temporal bias. In both models, we included the possi-
bility of regression to the mean (corresponding to a slope
parameter, b) and a subject dependent intercept, a. In the non-
temporal bias model, we carried out a linear regression, with
participant’s response as the dependent variable and the real
average of the sequence as the independent variable:

by ¼ aþ b sequence averageð Þ: ð1Þ

For the temporal bias model, we regressed the participant’s
response on the leaky integrated value with a leak parameter
(λ > 1 indicates a primacy effect, λ < 1 indicates a recency
effect, and λ = 1 means no temporal bias):

by ¼ aþ b ∑n
i¼1xi*λ

n−i: ð2Þ

As shown in Table 1, the participants varied in their
temporal bias. For five participants, a model without a
temporal bias is better in both AIC and BIC measures.
Indeed, the average lambda of these participants in the
temporal bias model is 1.03. For six participants, a tem-
poral bias model is better in both AIC and BIC measures,
and their average lambda is 0.73. The rest of the partici-
pants (10 out of 15) have an average lambda of 0.83. In
all these participants, the leak improves the log-likelihood
of the fit. In nine of them, the complexity costs given by

Fig. 9 aA typical individual participant’s scatter plot of evaluated mean versus sequence average, r = .67; see SupplementaryMaterials for the data of all
participants. b RMSD as a function of sequence length. The grey lines mark individual participants; the black line is the average
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the AIC and BIC are inconsistent regarding the model
selection, while in the last six, both the AIC and the
BIC select the leaky integration as the best model.

Discussion

We have shown that the ability to estimate the average of
numerosity sequences extends to longer sequences in the range
of two to eight. While this estimation is not perfect (and subject
to a regression to the mean bias), one needs to keep in mind that
the estimation of numerosity stimuli is noisy even with single
stimuli. The important result is that the precision of the esti-
mates improves with the length of the sequence. This could not
happen if the participants form the estimates on the basis of few
samples, say subject to WM capacity limitations (2-4). Instead,
the results are consistent with a population code model, in
which the responses to each stimuli is aggregated on the
numerosity representation, and the estimate is obtained via a
population code that estimates the center of mass (Brezis et al.,
2018). In some of the participants, we also found small tempo-
ral biases. These subjects gave slightly more weight to more
recent stimuli in the sequence.

Experiment 3

The aim of our final experiment is to replicate the results of
Experiment 2, under two important modifications. First the
most relevant variable, sequence length, is now blocked rather
than randomized. This allows the participants to select the
most optimal strategy for each sequence length and reduces
task uncertainty. Second, we set out to use here a more con-
ventional method of estimation. Instead of indicating the esti-
mate on a continuous scale, here, the sequence is followed by
a probe (in a different color), and the task is to decide whether
this probe has a higher (lower) numerosity than the average of
the sequence. Another difference (which was not planned)
was imposed on us by the COVID-19 restrictions. Due to
these restrictions, this experiment was conducted online and
not in a laboratory setting.

Method

Participants Twenty three undergraduates from Tel-Aviv
University (Mage = 23.65, SD = 1.85) participated in the ex-
periment. The experiment was carried out online. Importantly,
the participants were from the same pool as the participants in
the two previous experiments—psychology students from Tel
Aviv University. Participants had normal or corrected-to-
normal vision. Participants were awarded course credit for
their participation. All procedures and experimental protocols
were approved by the ethics committee of the Psychology
department of Tel Aviv University (Application 1-0000317).
All experiments were carried out in accordance with the ap-
proved guidelines.

Apparatus and stimuli The stimuli consisted of dots randomly
scattered on the screen. The dots diameter varied from 25 to
45 pixels. Minimum distance between dots was 25 pixels. The
color of the dots was either light grey for the sequence array
(RGB: 201, 201, 201) and yellow for target arrays (RGB: 255,
255, 0). The dots appeared on a black background.

Procedure and design Due to COVID-19 limitations, the ex-
periment was conducted online and not in a laboratory setting.
The experiment was built on PsychoPy Builder v3 and ran via
Pavlovia. Each trial began with a white fixation cross present-
ed on a black screen for 1,000 ms. The fixation was followed
by a sequence of dot clouds. Each presented in the middle of
the screen for 500 ms. At the end of the sequence, there was a
black screen for 500 ms, followed by the target stimulus.
Participants were instructed to decide whether the target stim-
ulus, a yellow dot cloud, was bigger or smaller than the aver-
age of the sequence using the keyboard (f key for smaller, j
key for bigger). After each response, participants received
feedback, a green v for correct answers and red x for wrong
answers (see Fig. 10). As in Experiment 2, sequences were

Table 1 Parameters for linear and temporal bias fit

Subject Linear Leak ΔAIC ΔBIC

b b λ Linear - leak Linear - leak

1 0.58 0.58 0.99 −1.9 −5.7
2 0.28 0.28 1.02 −1.8 −5.7
3 0.35 0.35 1.16 −1.4 −5.1
4 0.65 0.66 0.96 −1.6 −5.3
5 0.54 0.54 1 −2 −5.7
6 0.66 0.66 0.82 1.8 −1.9
7 0.39 0.4 0.77 3.5 −0.2
8 0.47 0.48 0.79 3.6 0.6

9 0.48 0.47 0.81 0.2 −3.5
10 0.68 0.68 0.9 0.1 −3.6
11 0.7 0.69 0.89 0.8 −2.9
12 0.66 0.66 0.87 2.8 −0.9
13 0.46 0.46 0.82 −0.3 −4
14 0.73 0.72 0.83 3.1 −0.6
15 0.54 0.53 0.82 7.4 3.7

16 0.34 0.34 0.68 10.5 6.7

17 0.69 0.69 0.62 16.6 12.9

18 0.46 0.45 0.79 5.2 1.4

19 0.51 0.51 0.72 13.5 9.7

20 0.6 0.59 0.74 7.2 3.4

Average 0.54 0.54 0.85 3.36 −0.3

Note. Negative ΔAIC and ΔBIC values suggest the linear fit is better;
positive values suggest the temporal bias fit is better
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randomly drawn from three uniform distributions with a range
of 30 and means of 35, 50, and 65. Unlike Experiment 2,
sequence length was blocked, resulting in six blocks, two for
each sequence length. The order of the blocks was fixed: 2, 4,
8, 2, 4, 8. Participants were informed about the sequence
length before each block. The proportions of the target stimuli
to the average of the sequence were 0.71, 0.77, 0.83, 0.91, 1.1,
1.2, 1.3, 1.4 (first four values are the reciprocal of the last
four). Each proportion appeared seven times for each average
and sequence length, 504 trials in all. The experiment began
with a short practice block with 12 trials with a sequence
length of two.

Results

Participants’ overall accuracy was 74%, SD = .06 (one par-
ticipant’s performance, while higher than chance, appeared

as a low performance outlier, accuracy = .58. Removing this
participant from the analysis does not affect any of the re-
sults). We computed a psychometric curve for each partic-
ipant. The slope of the psychometric curve is another indi-
cation of accuracy; a steeper slope represents more accurate
responses (see Fig. 11a, for example). We compared the
slope of the three sequence lengths: n = 2 (mean = 5.12,
SD = 2.14), n = 4 (mean = 5.6, SD = 1.5), and n = 8 (mean
= 6.16, SD = 1.54) with a repeated-measures ANOVA. We
found a significant main effect, F(2, 44) = 6.21, p < .005,
ηp

2 = .22. Further analysis revealed a significant linear
trend. t(44) = 3.52, p < .005 (see Fig. 11b). In a similar
analysis of RT’s of sequence lengths, we did not find a
significant effect (F(2,44)<1).

Temporal biasWe compared between a model without a tem-
poral bias and a model with a temporal bias of averaging. For

Fig. 10 Example of a trial in Experiment 3

Fig. 11 a Psychometric curve of an individual participant, for each sequence length. b Slope of psychometric curve per sequence length. The grey lines
mark individual participants. The black line is the average
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the non-temporal bias model we computed a logistic regres-
sion with accuracy as the dependent variable and the delta
between the target and the average of the sequence as the
independent (predicting) variable.

logit
�c
y
�
¼ aþ b target−x

� �
: ð3Þ

For the temporal bias model we computed a logistic
regression based on Eq. 4 where: λ > 1 indicates a primacy
effect, λ < 1 indicates a recency effect, and λ = 1 means no
temporal bias, and n is the sequence length.
logit

�c
y
�
¼ aþ b target−x1ð Þ*λn−1 þ target−x2ð Þ*λn−2 þ… target−xnð Þ*λn−n� �

:

ð4Þ

For 10 participants the model without a temporal bias was
better (based on both AIC/BIC measures). The average λ in

the temporal bias for these participants was 0.89 (SD=.13).
For 10 participants the model with temporal bias was better
(based on both AIC/BIC measures), their average λ was 0.75
(SD=.04). For 3 participants, the model selection is AIC/BIC
ambiguous their average λ was 0.84 (SD=.04; see Table 2).

General discussion

In three experiments we examined the ability of human partici-
pants in a task of averaging of numerosity stimuli (sets of dots).
This extends the range of operations on which numerosity rep-
resentations were used from comparisons, addition or subtrac-
tions on pairs of stimuli, to the averaging of multiple stimuli – an
operation that is of key importance to decision-making
(Brusovansky et al., 2017; Vanunu et al., 2018; Weber, 2010).
This task also extends the domain of stimuli on which the ex-
traction of summary statistics was established, from domains
such as size, orientation, emotional expression or object category
(Ariely, 2001; Chong&Treisman, 2005; Dakin, 2001; Habrman
et al., 2009; Haberman & Whitney, 2011; Khayat & Hochstein,
2018, 2019; Parkes et al., 2001; Robitaille &Harris, 2011) to the
domain of nonsymbolic numerosities across temporal sequences.

Before discussing our results, we wish to mention a meth-
odological dilemma that we have faced. There is an extensive
debate in the numerical cognition literature, on distinguishing
between the processing of number information (in dot stimuli
sets) from other visual features, such as dot density, dot-size,
dots-area (e.g., Gevers, Kadosh, & Gebuis, 2016; Leibovich
& Henik, 2013; Leibovich, Katzin, Harel, & Henik, 2016). As
this is a geometrically unsolvable problem, it is not possible to
vary numerosity alone without co-varying some of the other
variables.While we randomized the magnitude of the dots and
their locations, in average, in our design the number was
(negatively) correlated with dot-density. The problem of cor-
related features is thought to be more serious for comparison
tasks (which of two arrays has more dots) than for estimation
tasks (mapping onto a number line), as in the latter, the subject
responds to numbers. While we did use a number-line type of
response, we also set this up so that the participants could see,
for each position of the mouse along the response line, a
numerosity display corresponding to this specific location on
the scale3. It may thus be possible to suggest that what the
participants were doing is to move the mouse and, at each
location on the scale, compare the display from memory with

Table 2 Parameters for a model with and without a temporal bias

Subject Linear Leak ΔAIC ΔBIC

b b λ linear-
leak

linear-
leak

1 0.08 0.08 1.08 −1.8 −5.1
2 0.11 0.11 1.01 −2.1 −5.9
3 0.11 0.11 0.87 0.4 −4.2
4 0.11 0.11 0.9 −1.3 −4.7
5 0.1 0.1 0.9 −1.1 −5.3
6 0.12 0.12 1.04 −2.1 −5.9
7 0.08 0.08 0.9 −0.7 −6.4
8 0.11 0.11 0.87 0.1 −3.9
9 0.04 0.04 0.82 −1.2 −5.4
10* 0.02 0.02 0.59 0.3 −5.2
11 0.1 0.1 0.79 4.5 −0.9
12 0.17 0.17 0.88 1.1 −3.3
13 0.14 0.14 0.84 3.4 −1.5
14 0.11 0.12 0.76 7.6 3.9

15 0.11 0.11 0.76 6.2 2.3

16 0.12 0.12 0.75 9.3 5.1

17 0.1 0.1 0.69 9.7 6.3

18 0.12 0.12 0.78 4.6 1.4

19 0.1 0.1 0.66 10.2 5.6

20 0.11 0.12 0.78 6.9 3.5

21 0.12 0.12 0.76 6.3 1.6

22 0.11 0.11 0.78 4.2 0.8

23 0.11 0.11 0.76 4.3 0.2

Average −0.1 0.11 0.82 2.9 −1.1

Note. NegativeΔAIC andΔBIC values suggest the fit without a temporal
bias is better; positive values suggest the temporal bias fit is better. *The
outlier subject with an insignificant slope

3 We used this method, instead of presenting an empty scale with min/max
displays at the two ends (Anobile et al., 2012), in order to prevent a ratio
strategy. We did not want the subjects to compare the numerosity display
formed at the end of the sequence with the displays at the ends of the scale,
as such a ratio operation, on its own, leads to distortions (Hollands & Dyre,
2000). Rather, we wanted them to select the location on the scale where the
stimulus looks as similar (with regard to numerosity) to the “average” estimate
formed at the end of the sequence.
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the one on the scale, based not on the number of dots, but
rather on their density.

We believe this is unlikely for two reasons. First, unlike in
the typical number line tasks, here the participants’main chal-
lenge was to average across multiple numerosity displays and
our main focus was the averaging process (rather than its
mapping to the response scale). As each display varies on
multiple visual features, the task of generating an average
based on visual features is not any easier than that of generat-
ing an average numerosity (especially, as this is what the par-
ticipants were instructed to pay attention to). Based on the idea
that numerosity displays automatically activate ANS repre-
sentations (Nieder et al., 2002; Nieder & Miller, 2003;
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004), we rea-
soned that following the presentation of multiple displays,
the ANS representation will contain the composite of each
numerosity presented, from which a population code should
generate an estimate of the average (as a center of mass; Brezis
et al., 2018; see Fig. 1a–c).We believe it is less likely, that one
could automatically generate a similar averaging response for
a visual feature such as dot-density (unless it is derived from
numerosity). If for example, the dot-density (say, the average
distance between the dots) was the direct visual feature that a
subject monitored, the compression curves should have been
inversed. Since there is more precision at small compared to
long distances, one may expect (based on a Bayesian model;
Anobile et al., 2012), contrary to our results, that large num-
bers (small distances) will be less affected by the prior (and
thus more linear) compared with the small numbers (large
distances). Furthermore, the results we obtained here, mimic
those obtained in tasks of numerical averaging of symbolic
numbers (Brezis et al., 2018). Nevertheless, future studies
should exclude the possibilities that subjects could track dot-
densities (instead of numerosity in our tasks) by including
trials in which the density is kept constant when the
numerosity changes.

We started (Experiment 1) with short sequences of two
stimuli and we used responses on a continuous scale (after
participants received training with the use of the scale). We
find that all the participants show responses that are highly
correlated with the sequence-mean (Fig. 6), but we also see
some biases. First, all subjects show a regression to the mean
effect, which is normative for the case in which the subject
faces uncertainty (due to, for example, encoding or attentional
variability) and the stimuli are distributed on a specified range
(Anobile et al., 2012; Hollingworth, 1910; Jazayeri &
Shadlen, 2010). Second, we find that about half of the partic-
ipants show a compressive bias, which makes them underes-
timate the averages of pairs as a function of their distance (i.e.,
they estimate the pair (10, 80) less than the pair (30, 60)),
although the instruction was to estimate the "average number
of dots". This compressive bias was subject to clear individual
differences, with some of the subjects showing no

compressive tendency whatsoever, while others showing a
mild compression.

From a binary perspective, this variability (logarithmic vs.
linear) in the architecture of the mental number line may seem
surprising. The mental number line is considered to be a deep-
ly rooted cognitive construct shared across species (Cantlon&
Brannon, 2006). Accordingly, one might expect little individ-
ual differences. However, a close look at the literature might
suggest otherwise. First, there are conflicting results, some
found that the mental number line is linear (e.g., Ebersbach,
Luwel, Frick, Onghena, & Verschaffel, 2008), while others
reported a geometric mental number line (e.g., Dehaene,
2003) and the amount of compression appears to vary with
age (Booth & Siegler, 2006; Siegler & Booth, 2004; Siegler &
Opfer, 2003) or with attentional load (Anobile et al., 2012).
One promising idea that can account for this variability is that
it is based on the extension of the Bayesian central tendency
model (Anobile et al., 2012) that is combined with the scalar-
variability model with multiple samples. As we have shown in
Fig. 2c, such a model can produce a range of compression
effects. One attractive idea, which will require future research
is that these individual differences would correlate with the
risk-aversion tendencies (see Patalano et al., 2020; Peters,
Slovic, Västfjäll, & Mertz, 2008; Peters et al., 2006, for
similar ideas), since the task of averaging 10 and 90 dots
shares much with the one of evaluating the attractiveness of
a lottery that offers $10 or $90, each with probability .5.

In Experiment 2 and 3 we extended the length of the se-
quences from two to eight. Here we focused on how the pre-
cision of the estimate changes with the sequence-length. In
Experiment 2 (using estimates on a continuous scale) we
found that the estimates were highly correlated with the pre-
sented sequence average (average Pearson-r = .66; see Fig 9a,
and Supplement) and in Experiment 3 (using a more tradition-
al choice procedure), we found that accuracy increases as a
sigmoidal function of the difference between the sequence-
average and the target (Fig. 11a). Importantly, however, in
both experiments we found that the precision increases with
the length of the sequence. This is remarkable, for two rea-
sons. First, one would naively expect that computing an aver-
age is easier for two compared with eight items. Second, this
improvement indicates a pooling operation across multiple
stimuli in the sequence, which exceeds the capacity of the
VWM. If for example, the participants can only average over
3-4 stimuli, the precision for n=8 would be lower than that for
n=4 (see red line in Fig. 1), which is opposite to what the
data shows (Fig. 9b, 11b). Future, research, however, will be
needed to obtain an estimate of the bounds (or inefficiency;
Solomon, May & Tyler, 2016) that operate in the averaging of
such numerosity sequences.

The results are consistent, however, with a mechanism in
which the estimate is generated by population averaging of the
response each stimuli generates on the numerosity representation.
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Similar results were previously obtained for the presentation of
rapid sequences (rate of 2Hz) of two digit numbers (Brezis et al.,
2015). In that study, however, the precision was not monotonic
with sequence length (it decreased from 4 to 8, and then
increased again from 8 to 16; Brezis et al., 2015, Experiment
1). Interestingly, however, the precision became monotonically
decreasing (like in our present study) when the items were pre-
sented at a faster rate (10 instead of 2 Hz), or when a response
deadline was introduced (for the 2Hz rate). Together with our
present results this leads to a simple explanation. Themechanism
of numerical-averagingwith rapid sequences relies on population
pooling over an ANS numerosity representation, for both
numerosity and symbolic sequences, unless we present a se-
quence of 4 symbolic numbers and we do not impose a response
deadline, which allows participants the opportunity to symboli-
cally compute the average. The difference between numerosity
and symbolic sequences, seems to be that with the former an
analytic computation strategy is not available even for n=2 stim-
uli and thus precision improves monotonically with sequence-
length.

Much research in the domain of numerosity research has
looked into the brain mechanisms, indicating a parietal net-
work of numerosity detectors (CohenKadosh, Cohen Kadosh,
Kaas, Henik, & Goebel, 2007; Eger et al., 2009; Fias,
Lammertyn, Reynvoet, Dupont, & Orban, 2003; Harvey,
Klein, Petridou, & Dumoulin, 2013; Nieder & Miller, 2003;
Piazza et al., 2004; Piazza et al., 2007). Most of this research
has focused on comparison tasks. In one study, the brain
mechanism of numerical averaging was examined via tDCS
(Brezis et al., 2016), showing that anodal stimulation in the
parietal brain area enhances averaging precision compared
with frontal or sham-stimulation. In two more recent studies,
it was shown the while processing symbolic numbers, the
neural (dis)similarity in patterns of electroencephalogram ac-
tivity reflected numerical distance (Luyckx, Nili, Spitzer, &
Summerfield, 2019; Spitzer et al., 2017). Future research with
numerosity stimuli, which de-correlate between numerosity
and density is needed to further examine the brain mechanism
of numerical averaging. Such research could also examine
whether one can decode the response to a sequence-average
from the brain response when the subject carries out an aver-
aging task and explore the role of the ANS network in
decision-making under risk.
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Appendix

Bayesian version of the scalar-variability model
simulation

We simulated the Bayesian version of the scalar-variability
model (see Fig. 2c) using the following equation:

EstimatedAverage ¼ w1*x1 þ w2*x2 þ wp*50
w1 þ w2 þ wp

; ð5Þ

where x1 and x2 are the two samples. w1, w2 are their decision
weights, which are inversely proportional to their standard
deviation in the scalar variability model (here, we assumed
SD(x) = .8 × x), and wp is weight given to the prior, chosen
here as the middle of the range value (50). For Fig. 2c, we
assumed that x1 = 50 − x, x2 = 50 + x, and we varied wp, via
the a parameter (see Fig. 2c legend).

References

Anobile, G., Cicchini, G. M., & Burr, D. C. (2012). Linear mapping of
numbers onto space requires attention. Cognition, 122(3), 454–459.
https://doi.org/10.1016/j.cognition.2011.11.006

Ariely, D. (2001). Seeing sets: Representation by statistical properties.
Psychological Science, 12(2). https://doi.org/10.1111/1467-9280.
00327

Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large
number representations in adults. Cognition, 86(3), 201–221.
https://doi.org/10.1016/S0010-0277(02)00178-6

Barth, H., LaMont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke,
E. (2006). Nonsymbolic arithmetic in adults and young children.
Cognition, 98(3), 199–222. https://doi.org/10.1016/j.cognition.
2004.09.011

Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract
number and arithmetic in preschool children. Proceedings of the
National Academy of Sciences of the United States of America,
102(39), 14116–14121. https://doi.org/10.1073/pnas.0505512102

Betsch, T., Kaufmann, M., Lindow, F., Plessner, H., & Hoffmann, K.
(2006). Different principles of information integration in implicit
and explicit attitude formation. European Journal of Social
Psychology, 36(6), 887–905. https://doi.org/10.1002/ejsp.328

Birnbaum, M. H. (2008). New paradoxes of risky decision making.
Psychological Review, 115(2), 463–501. https://doi.org/10.1037/
0033-295X.115.2.463

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual
differences in pure numerical estimation. Developmental
Psychology, 42(1), 189–201. https://doi.org/10.1037/0012-1649.
41.6.189

Brezis, N., Bronfman, Z. Z., Jacoby, N., Lavidor, M., & Usher, M.
(2016). Transcranial direct current stimulation over the parietal cor-
tex improves approximate numerical averaging. Journal of

1166 Atten Percept Psychophys  (2021) 83:1152–1168

https://osf.io/m7qjy/
https://doi.org/10.1016/j.cognition.2011.11.006
https://doi.org/10.1111/1467-9280.00327
https://doi.org/10.1111/1467-9280.00327
https://doi.org/10.1016/S0010-0277(02)00178-6
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1073/pnas.0505512102
https://doi.org/10.1002/ejsp.328
https://doi.org/10.1037/0033-295X.115.2.463
https://doi.org/10.1037/0033-295X.115.2.463
https://doi.org/10.1037/0012-1649.41.6.189
https://doi.org/10.1037/0012-1649.41.6.189


Cognitive Neuroscience, 28(11), 1700–1713. https://doi.org/10.
1162/jocn_a_00991

Brezis, N., Bronfman, Z. Z., & Usher, M. (2015). Adaptive spontaneous
transitions between two mechanisms of numerical averaging.
Scientific Reports, 5(1), 1–11. https://doi.org/10.1038/srep10415

Brezis, N., Bronfman, Z. Z., & Usher, M. (2018, February 1). A
perceptual-like population-coding mechanism of approximate nu-
merical averaging. Neural Computation. https://doi.org/10.1162/
NECO_a_01037

Brusovansky, M., Glickman, M., & Usher, M. (2018). Fast and effective:
Intuitive processes in complex decisions. Psychonomic Bulletin &
Review, 25(4), 1542–1548. https://doi.org/10.3758/s13423-018-
1474-1

Brusovansky, M., Vanunu, Y., & Usher, M. (2017). Why we should quit
while we’re ahead: When do averages matter more than sums?
Decision. https://doi.org/10.1037/dec0000087

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering
small and large numbers in monkeys and humans. Psychological
Science, 17(5), 401–406. https://doi.org/10.1111/j.1467-9280.
2006.01719.x

Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing
the average size in perceptual groups. Vision Research, 45(7), 891–
900. https://doi.org/10.1016/j.visres.2004.10.004

Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R.
(2007). Notation-dependent and -independent representations of
numbers in the parietal lobes. Neuron, 53(2), 307–314. https://doi.
org/10.1016/j.neuron.2006.12.025

Cordes, S., Gallistel, C. R., Gelman, R., & Latham, P. (2007). Nonverbal
arithmetic in humans: Light from noise. Perception &
Psychophysics, 69(7), 1185–1203. https://doi.org/10.3758/
BF03193955

Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability
signatures distinguish verbal from nonverbal counting for both large
and small numbers. Psychonomic Bulletin & Review, 8(4), 698–707.
https://doi.org/10.3758/BF03196206

Dakin, S. C. (2001). Information limit on the spatial integration of local
orientation signals. Journal of the Optical Society of America A,
18(5), 1016. https://doi.org/10.1364/josaa.18.001016

Dehaene, S. (2003, April 1). The neural basis of the Weber–Fechner law:
A logarithmic mental number line. Trends in Cognitive Sciences.
https://doi.org/10.1016/S1364-6613(03)00055-X

Dehaene, S. (2007). Symbols and quantities in parietal cortex: Elements of a
mathematical theory of number representation and manipulation
Stanislas Dehaene. In P. Haggard (Ed.), Sensorimotor foundations of
higher cognition (pp. 527–574). Retrieved from http://www.unicog.org/
publications/Dehaene_SymbolsQuantitiesMathematicalTheory_
ChapterAttPerf2007.pdf

Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract rep-
resentations of numbers in the animal and human brain. Trends in
Neurosciences, 21(8), 355–361. https://doi.org/10.1016/S0166-
2236(98)01263-6

Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison
digital? Analogical and symbolic effects in two-digit number com-
parison. Journal of Experimental Psychology: Human Perception
and Performance, 16(3), 626–641. https://doi.org/10.1037/0096-
1523.16.3.626

Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L.
(2008). The relationship between the shape of the mental number
line and familiarity with numbers in 5-to 9-year old children:
Evidence for a segmented linear model. Journal of Experimental
Child Psychology, 99, 1–17. https://doi.org/10.1016/j.jecp.2007.
08.006

Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., &
Kleinschmidt, A. (2009). Deciphering cortical number coding from
human brain activity patterns. Current Biology, 19(19), 1608–1615.
https://doi.org/10.1016/j.cub.2009.08.047

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of num-
ber. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.
1016/j.tics.2004.05.002

Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A.
(2003). Parietal representation of symbolic and nonsymbolic mag-
nitude. Journal of Cognitive Neuroscience, 15(1), 47–56. https://doi.
org/10.1162/089892903321107819

Gallistel, C. R., & Gelman, R. (2000). Non verbal numerical cognition:
From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.

Gevers, W., Kadosh, R. C., & Gebuis, T. (2016). Sensory integration
theory: An alternative to the approximate number system.
Continuous Issues in Numerical Cognition, 405–418. https://doi.
org/10.1016/B978-0-12-801637-4.00018-4

Haberman, J., & Whitney, D. (2011). Efficient summary statistical rep-
resentation when change localization fails. Psychonomic Bulletin &
Review, 18(5), 855–859. https://doi.org/10.3758/s13423-011-0125-
6

Haberman, J., Harp, T., & Whitney, D. (2009). Averaging facial expres-
sion over time. Journal of Vision, 9(11), 1–1

Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013).
Topographic representation of numerosity in the human parietal
cortex. Science (New York, N.Y.), 341(6150), 1123–1126. https://
doi.org/10.1126/science.1239052

Hollands, J. G., & Dyre, B. P. (2000). Bias in proportion judgments: The
cyclical power model. Psychological Review, 107(3), 500–524.
https://doi.org/10.1037/0033-295X.107.3.500

Hollingworth, H. L. (1910). The central tendency of judgment. The
Journal of Philosophy, Psychology and Scientific Methods, 7(17),
461. https://doi.org/10.2307/2012819

Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates in-
terval timing. Nature Neuroscience, 13(8), 1020–1026. https://doi.
org/10.1038/nn.2590

Katzin, N., Salti, M., & Henik, A. (2018). Holistic processing of numer-
ical arrays. Journal of Experimental Psychology: Learning ,
Memory , and Cognition, 45(6), 1014–1022. https://doi.org/10.
1037/xlm0000640.

Khayat, N., & Hochstein, S. (2018). Perceiving set mean and range:
Automaticity and precision. Journal of Vision, 18(9), 1–14. https://
doi.org/10.1167/18.9.23

Khayat, N., & Hochstein, S. (2019). Relating categorization to set sum-
mary statistics perception. Attention, Perception, & Psychophysics,
81(8), 2850–2872

Leibovich, T., & Henik, A. (2013). Magnitude processing in nonsymbol-
ic stimuli. Frontiers in Psychology, 4(June), 375. https://doi.org/10.
3389/fpsyg.2013.00375

Leibovich, T., & Henik, A. (2014). Comparing performance in discrete
and continuous comparison tasks. Quarterly Journal of
Experimental Psychology, 67(5), 899–917. https://doi.org/10.1080/
17470218.2013.837940

Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2016). From ‘sense of
number’ to ‘sense of magnitude’—The role of continuous magni-
tudes in numerical cognition. Behavioral and Brain Sciences.
https://doi.org/10.1017/S0140525X16000960

Luyckx, F., Nili, H., Spitzer, B., & Summerfield, C. (2019). Neural struc-
ture mapping in human probabilistic reward learning. ELife, 8.
https://doi.org/10.7554/eLife.42816

Malmi, R. A., & Samson, D. J. (1983). Intuitive averaging of categorized
numerical stimuli. Journal of Verbal Learning and Verbal Behavior,
22, 547–559. Retrieved from https://search.proquest.com/openview/
fb96a7452bfc5369bcdb3dbda8c9e5f9 /1?pq-or igs i te=
gscholar&cbl=1819609

McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving
along the number line: Operational momentum in nonsymbolic ar-
ithmetic. Perception & Psychophysics, 69(8), 1324–1333. https://
doi.org/10.3758/BF03192949

1167Atten Percept Psychophys  (2021) 83:1152–1168

https://doi.org/10.1162/jocn_a_00991
https://doi.org/10.1162/jocn_a_00991
https://doi.org/10.1038/srep10415
https://doi.org/10.1162/NECO_a_01037
https://doi.org/10.1162/NECO_a_01037
https://doi.org/10.3758/s13423-018-1474-1
https://doi.org/10.3758/s13423-018-1474-1
https://doi.org/10.1037/dec0000087
https://doi.org/10.1111/j.1467-9280.2006.01719.x
https://doi.org/10.1111/j.1467-9280.2006.01719.x
https://doi.org/10.1016/j.visres.2004.10.004
https://doi.org/10.1016/j.neuron.2006.12.025
https://doi.org/10.1016/j.neuron.2006.12.025
https://doi.org/10.3758/BF03193955
https://doi.org/10.3758/BF03193955
https://doi.org/10.3758/BF03196206
https://doi.org/10.1364/josaa.18.001016
https://doi.org/10.1016/S1364-6613(03)00055-X
http://www.unicog.org/publications/Dehaene_SymbolsQuantitiesMathematicalTheory_ChapterAttPerf2007.pdf
http://www.unicog.org/publications/Dehaene_SymbolsQuantitiesMathematicalTheory_ChapterAttPerf2007.pdf
http://www.unicog.org/publications/Dehaene_SymbolsQuantitiesMathematicalTheory_ChapterAttPerf2007.pdf
https://doi.org/10.1016/S0166-2236(98)01263-6
https://doi.org/10.1016/S0166-2236(98)01263-6
https://doi.org/10.1037/0096-1523.16.3.626
https://doi.org/10.1037/0096-1523.16.3.626
https://doi.org/10.1016/j.jecp.2007.08.006
https://doi.org/10.1016/j.jecp.2007.08.006
https://doi.org/10.1016/j.cub.2009.08.047
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1162/089892903321107819
https://doi.org/10.1162/089892903321107819
https://doi.org/10.1016/B978-0-12-801637-4.00018-4
https://doi.org/10.1016/B978-0-12-801637-4.00018-4
https://doi.org/10.3758/s13423-011-0125-6
https://doi.org/10.3758/s13423-011-0125-6
https://doi.org/10.1126/science.1239052
https://doi.org/10.1126/science.1239052
https://doi.org/10.1037/0033-295X.107.3.500
https://doi.org/10.2307/2012819
https://doi.org/10.1038/nn.2590
https://doi.org/10.1038/nn.2590
https://doi.org/10.1037/xlm0000640.
https://doi.org/10.1037/xlm0000640.
https://doi.org/10.1167/18.9.23
https://doi.org/10.1167/18.9.23
https://doi.org/10.3389/fpsyg.2013.00375
https://doi.org/10.3389/fpsyg.2013.00375
https://doi.org/10.1080/17470218.2013.837940
https://doi.org/10.1080/17470218.2013.837940
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.7554/eLife.42816
https://doi.org/10.3758/BF03192949
https://doi.org/10.3758/BF03192949


Mitrani-Rosenbaum, D., Glickman, M., & Usher, M. (2020). Extracting
summary statistics of rapid numerical sequences. https://doi.org/10.
31234/osf.io/6scav

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of
numerical inequality. Nature, 215(5109), 1519–1520.

Nieder, A., Freedman, D. J., &Miller, E. K. (2002). Representation of the
quantity of visual items in the primate prefrontal cortex. Science
(New York, N.Y.), 297(September), 1708–1711. https://doi.org/10.
1126/science.1072493

Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude:
Compressed scaling of numerical information in the primate pre-
frontal cortex. Neuron, 37(1), 149–157. https://doi.org/10.1016/
S0896-6273(02)01144-3

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M.
(2001). Compulsory averaging of crowded orientation signals in
human vision. Nature Neuroscience, 4(7), 739–744. https://doi.
org/10.1038/89532

Patalano, A. L., Zax, A., Williams, K., Mathias, L., Cordes, S., & Barth,
H. (2020). Intuitive symbolic magnitude judgments and decision
making under risk in adults. Cognitive Psychology, 118, 101273.
https://doi.org/10.1016/j.cogpsych.2020.101273

Peters, E., Slovic, P., Västfjäll, D., & Mertz, C. K. (2008). Intuitive num-
bers guide decisions: Judgment and decision making (Vol. 3).
Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=1321907

Peters, E., Västfjäll, D., Slovic, P., Mertz, C. K., Mazzocco, K., &
Dickert, S. (2006). Numeracy and decision making. Psychological
Science, 17(5), 407–413. https://doi.org/10.1111/j.1467-9280.2006.
01720.x

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004).
Tuning curves for approximate numerosity in the human
intraparietal sulcus. Neuron, 44(3), 547–555. https://doi.org/10.
1016/j.neuron.2004.10.014

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A Magnitude
Code Common to Numerosities and Number Symbols in Human
Intraparietal Cortex. Neuron, 53(2), 293–305. https://doi.org/10.
1016/j.neuron.2006.11.022

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approx-
imate arithmetic in an Amazonian indigene group. Science (New
York, N.Y.), 306(5695), 499–503. https://doi.org/10.1126/science.
1102085

Pleskac, T. J., Yu, S., Hopwood, C., & Liu, T. (2019). Mechanisms of
deliberation during preferential choice: Perspectives from computa-
tional modeling and individual differences. Decision, 6(1), 77–107.
https://doi.org/10.1037/dec0000092

Robitaille, N., & Harris, I. M. (2011). When more is less: Extraction of
summary statistics benefits from larger sets. Journal of Vision,
11(12), 18–18. https://doi.org/10.1167/11.12.18

Roe, R.M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative
decision field theory: A dynamic connectionist model of decision
making. Psychological Review, 108(2), 370–392. https://doi.org/10.
1037/0033-295X.108.2.370

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estima-
tion in young children. Child Development, 75(2), 428–444. https://
doi.org/10.1111/j.1467-8624.2004.00684.x

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical
estimation: evidence for multiple representations of numerical quan-
tity. Psychological Science, 14(3), 237–243. https://doi.org/10.
1111/1467-9280.02438

Solomon, J. A., May, K. A., & Tyler, C. W. (2016). Inefficiency of
orientation averaging: Evidence for hybrid serial/parallel temporal
integration. Journal of Vision, 16(1), 13–13

Spitzer, B., Waschke, L., & Summerfield, C. (2017). Selective
overweighting of larger magnitudes during noisy numerical compar-
ison. Nature Human Behaviour, 1(8), 1–8. https://doi.org/10.1038/
s41562-017-0145

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value inte-
gration explains decision biases and preference reversal.
Proceedings of the National Academy of Sciences of the United
States of America, 109(24), 9659–9664. https://doi.org/10.1073/
pnas.1119569109

Usher, M., &McClelland, J. L. (2004, July). Loss aversion and inhibition
in dynamical models of multialternative choice. Psychological
Review. https://doi.org/10.1037/0033-295X.111.3.757

Vandormael, H., Castañón, S. H., Balaguer, J., Li, V., & Summerfield, C.
(2017). Robust sampling of decision information during perceptual
choice. Proceedings of the National Academy of Sciences of the
United States of America, 114(10), 2771–2776. https://doi.org/10.
1073/pnas.1613950114

Vanunu, Y., Pachur, T., & Usher, M. (2018). Constructing preference
from sequential samples: The impact of evaluation format on risk
attitudes. Decision, 6(3), 223–236 https://doi.org/10.1037/
dec0000098

Weber, E. U. (2010). Risk attitude and preference.Wiley Interdisciplinary
Reviews: Cognitive Science, 1(1), 79–88. https://doi.org/10.1002/
wcs.5

Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in
humans: The psychophysics of number representation.
Psychological Science, 10(2), 130–137. https://doi.org/10.1111/
1467-9280.00120

Zeigenfuse, M. D., Pleskac, T. J., & Liu, T. (2014). Rapid decisions from
experience. Cognition, 131(2), 181–194. https://doi.org/10.1016/j.
cognition.2013.12.012

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1168 Atten Percept Psychophys  (2021) 83:1152–1168

https://doi.org/10.31234/osf.io/6scav
https://doi.org/10.31234/osf.io/6scav
https://doi.org/10.1126/science.1072493
https://doi.org/10.1126/science.1072493
https://doi.org/10.1016/S0896-6273(02)01144-3
https://doi.org/10.1016/S0896-6273(02)01144-3
https://doi.org/10.1038/89532
https://doi.org/10.1038/89532
https://doi.org/10.1016/j.cogpsych.2020.101273
https://doi.org/10.1111/j.1467-9280.2006.01720.x
https://doi.org/10.1111/j.1467-9280.2006.01720.x
https://doi.org/10.1016/j.neuron.2004.10.014
https://doi.org/10.1016/j.neuron.2004.10.014
https://doi.org/10.1016/j.neuron.2006.11.022
https://doi.org/10.1016/j.neuron.2006.11.022
https://doi.org/10.1126/science.1102085
https://doi.org/10.1126/science.1102085
https://doi.org/10.1037/dec0000092
https://doi.org/10.1167/11.12.18
https://doi.org/10.1037/0033-295X.108.2.370
https://doi.org/10.1037/0033-295X.108.2.370
https://doi.org/10.1111/j.1467-8624.2004.00684.x
https://doi.org/10.1111/j.1467-8624.2004.00684.x
https://doi.org/10.1111/1467-9280.02438
https://doi.org/10.1111/1467-9280.02438
https://doi.org/10.1038/s41562-017-0145
https://doi.org/10.1038/s41562-017-0145
https://doi.org/10.1073/pnas.1119569109
https://doi.org/10.1073/pnas.1119569109
https://doi.org/10.1037/0033-295X.111.3.757
https://doi.org/10.1073/pnas.1613950114
https://doi.org/10.1073/pnas.1613950114
https://doi.org/10.1037/dec0000098
https://doi.org/10.1037/dec0000098
https://doi.org/10.1002/wcs.5
https://doi.org/10.1002/wcs.5
https://doi.org/10.1111/1467-9280.00120
https://doi.org/10.1111/1467-9280.00120
https://doi.org/10.1016/j.cognition.2013.12.012
https://doi.org/10.1016/j.cognition.2013.12.012

	The averaging of numerosities: A psychometric investigation of the mental line
	Abstract
	Experiment 1
	Computational predictions and design motivation
	Method
	Results
	Discussion

	Experiment 2
	Method
	Results
	Discussion

	Experiment 3
	Method


	This link is https://search.proquest.com/openview/fb96a7452bfc5369bcdb3dbda8c9e5f9/1?pqrigsitescholar&cbl=,",
	This link is https://papers.ssrn.com/sol3/papers.cfm?abstract_id=,",
	Outline placeholder
	Results

	General discussion
	Appendix
	Bayesian version of the scalar-variability model simulation

	References


