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Abstract

Background: Gene-fusion or chimeric transcripts have been implicated in the onset and progression of a variety of
cancers. Massively parallel RNA sequencing (RNA-Seq) of the cellular transcriptome is a promising approach for the
identification of chimeric transcripts of potential functional significance. We report here the development and use
of an integrated computational pipeline for the de novo assembly and characterization of chimeric transcripts in 55
primary breast cancer and normal tissue samples.

Methods: An integrated computational pipeline was employed to screen the transcriptome of breast cancer and
control tissues for high-quality RNA-sequencing reads. Reads were de novo assembled into contigs followed by
reference genome mapping. Chimeric transcripts were detected, filtered and characterized using our R-SAP algorithm.
The relative abundance of reads was used to estimate levels of gene expression.

Results: De novo assembly allowed for the accurate detection of 1959 chimeric transcripts to nucleotide level resolution
and facilitated detailed molecular characterization and quantitative analysis. A number of the chimeric transcripts are of
potential functional significance including 79 novel fusion-protein transcripts and many chimeric transcripts
with alterations in their un-translated leader regions. A number of chimeric transcripts in the cancer samples
mapped to genomic regions devoid of any known genes. Several ‘pro-neoplastic’ fusions comprised of genes
previously implicated in cancer are expressed at low levels in normal tissues but at high levels in cancer
tissues.

Conclusions: Collectively, our results underscore the utility of deep sequencing technologies and improved
bioinformatics workflows to uncover novel and potentially significant chimeric transcripts in cancer and normal somatic
tissues.
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Background

Gene-fusions are a prevalent class of genetic variants
that have been implicated in the onset and progression
of a variety of cancers [1, 2]. These variants may be gen-
erated on the DNA level by genomic rearrangements
(e.g., large deletions or insertions, inversions and/or
chromosomal translocations [3]). On the RNA level,
chimeric transcripts may be generated by co-
transcription or transcriptional read-through of neigh-
boring genes [4, 5], or by trans-splicing of multiple sim-
ultaneously processed pre-mature RNAs from different
genes [6, 7]. Recurrent gene-fusions in cancers have
often been employed as cancer biomarkers [1, 8] and, in
some cases, as potential candidates for targeted gene
therapy [9, 10].

In recent years, massively parallel RNA sequencing
(RNA-Seq) of the cellular transcriptome has emerged as
a promising approach for the identification of previously
uncharacterized fusion-gene or chimeric transcripts of
potential functional significance [7, 11-15]. In cancer
biology, for example, a recent RNA-Seq analysis of 24
primary breast cancer samples uncovered 15 subtype
specific fusion-genes that may serve as useful bio-
markers of drug sensitivities [16]. In another study, ana-
lysis of 89 breast cancer and control samples identified
several fusion transcripts involving MAST (microtubule
associated serine-threonine) kinase and Notch-family
genes that may be drivers of breast cancer onset and/or
progression [17].

Currently available computational methods for
chimeric transcript discovery such as Tophat-Fusion
[18], SnowShoeFTD [19] and FusionSeq [20], typically
rely upon reference genome mapping of short (50—
75 bp) paired-end reads generated by the sequencing of
both ends (5'- and 3'-) of an RNA or ¢cDNA fragment.
While these methods are relatively rapid, the results can
be ambiguous due to the inherent imprecision associated
with genome mapping of short reads [21, 22]. In this
study, we take an alternative method of whole transcrip-
tome de novo assembly to screen for fusion transcripts
in The Cancer Genome Atlas (TCGA) RNA-Seq data of
45 primary breast-cancer and 10 normal-breast tissue
samples. We developed an integrated computational
workflow to generate significantly longer (>800 bp) con-
tiguous sequences or contigs. These longer contigs not
only provide greater accuracy in reference genome map-
ping but also allow for more reliable identification of
splice-variants because longer contigs typically extend
across multiple exons [23]. We report here the detection
of 1959 chimeric transcripts including 1535 that are spe-
cific to the breast cancer samples, 155 that are present
only in the normal samples and 269 that are present in
both the cancer and normal samples. We found that a
number of these fusion transcripts are of potential
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functional significance including novel fusion-proteins
and chimeric transcripts with alterations in their un-
translated leader regions (UTRs). A number of breast
cancer chimeras mapped to genomic regions devoid of
any known genes. Finally, we identified several ‘pro-neo-
plastic’ chimeric transcripts [24] of potential significance
that are suppressed in normal tissue but activated in
cancer tissues. Collectively our findings indicate that an
unexpectedly large number of chimeric transcripts are
present in both cancerous and normal breast tissues and
that many of these variants may play a significant role in
breast cancer onset and development.

Methods

Data acquisition

Forty-five breast adenocarcinoma primary tumors and
10 adjacent normal breast tissue samples were selected
from ‘The Cancer Genome Atlas project’ (TCGA) data
portal and subsequently RNA-Seq raw data files were
downloaded from NCBI-SRA using dbGAP. RNA-Seq
data files downloaded in ‘sra’ format were further con-
verted to FastQ format files using the sra-toolkit
(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). We
selected only paired-end reads with high-read coverage
to ensure high accuracy in the downstream de novo
assembly.

Data analysis

For the accurate detection, characterization and quanti-
tative analysis of fusion transcripts using RNA-Seq data,
we designed a computational workflow (Fig. 1) that inte-
grates several existing bioinformatics tools including our
previously published pipeline R-SAP [25]. The overall
workflow is as follows:

Data pre-processing

RNA-Seq data may contain low-quality bases due to se-
quencing errors and fragments of sequencing adapters
derived from failed or short cDNA inserts during the li-
brary preparation. Such low-quality bases can reduce the
efficiency of the assembler and lead to miss-assembly
[26]. We, therefore, trimmed low-quality bases (quality
score < 20) and sequencing adapters from the 3'-end of
the reads using “Trim Galore’ [27]. Subsequently the
quality of the data was assessed using FastQC [28].

Transcriptome assembly

Since a major objective of this study was to detect fusion
transcripts where two non-contiguous genomic loci are
involved, a reference genome guided assembly approach
could not be used. Hence, we performed de novo assem-
bly (assembly without the reference genome) using
ABySS that is a memory efficient de Bruijn graph con-
struction based short-read assembler [29]. The de novo
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Fig. 1 Computational workflow for chimeric transcript discovery. The central blue blocks show the workflow, orange boxes represent the tools
and programs integrated with the workflow, purple boxes represent RNA-Seq reads and green boxes represent datasets from the UCSC genome
database. RNA-Seq reads (in fastg format) were trimmed and only paired-end reads were used for the assembly process. Assembled contigs (in
fasta format) were then aligned to the reference genome and the resulting alignment files (in psix format) were analyzed by R-SAP to detect
potential fusion transcripts. Fusion transcripts were further characterized by comparing alignment coordinates with known reference transcripts
(BED format) using R-SAP. Part of the filtering was done by R-SAP internally while additional filtering was done using in-house perl scripts.
A re-conformation step includes alignment of RNA-Seq reads to chimeric transcript sequences and also to the reference genome using
Bowtiel and Bowtie 2, respectively. Alignment files (in bam format) resulting from RNA-Seq reads to fusion- transcript sequences were

used to estimate the raw read-counts by expectation-maximization using RSEM

assembly process merges short DNA or RNA sequences
that share terminal overlapping bases into a longer con-
tiguous sequence (contig). The length of the terminal
overlap or “k-mer length” is a critical parameter for as-
sembly programs. Unlike genomic libraries, where a uni-
form representation of each base pair can be assumed,
non-normalized transcriptome libraries contain a broad
range of expressed transcripts and splicing isoforms.
Therefore, complete coverage of the transcriptome can-
not be achieved at a single k-mer value assembly [30].
To maximize coverage, we adopted previous recommen-
dations [30] and varied the k-mer length from half of the
read length up to the full read length in increments of
two base pairs at a time. For example, for a library with
50 bp long reads, we performed assembly for k-mer
length of 25, 27, ... 49. Multiple k-mer assemblies were
then merged into a single meta-assembly by using the
Trans-ABySS pipeline [30] that combines overlapping
contigs by extension and removes duplicate contigs from
the assembly.

Chimeric transcript detection and filtering

Assembled transcripts were aligned to the human refer-
ence genome (hgl9, GRCh37) using BLAT (Blast like
alignment tool; [31]). BLAT reports independent align-
ment of different fragments of the RNA sequences and
allows long gaps in the alignment that can be represen-
tative of introns present in a RNA sequence. We ob-
served the presence of short stretches of homopolymers
(poly As and poly Ts) toward the ends of the assembled
contigs. Such repeats may affect the overall alignment
and may create ambiguous alignments. We therefore
trimmed homopolymer repeats as well as other low
complexity repeats detected using RepeatMasker (http://

www.repeatmasker.org) and Tandem Repeat Finder
(http://tandem.bu.edu/trf/trf.html).

For potential chimeric transcript detection, we
employed our previously developed pipeline R-SAP [25]
that efficiently detects gene-fusion events and filters po-
tential false positives and alignment errors. Alignment
files were exported in ‘.pslx’ format from BLAT and were
supplied to R-SAP as input for detecting chimeric tran-
scripts. Chimeric transcripts result in fragmented (or
split-) alignments where fragments of the chimeric tran-
scripts map to discrete genomic loci. R-SAP detects such
alignments and derives the underlying fusion structure
using the known gene models. We combined Ensembl
and lincRNA (long intergenic non-coding RNA) annota-
tions (available from UCSC genome database) in order
to generate a comprehensive set of known gene models.
R-SAP characterized each chimeric transcript based
upon the genic regions (5’UTR, protein coding se-
quences [CDS] or 3'UTR) of the reference transcripts
intersecting with the genomic loci involved in the
chimeric transcript formation.

Fusion transcripts, representing a fusion-gene event,
are very likely to produce discrete alignments to distant
or proximate genomic loci. These discrete alignments
are also called fragmented- or split-alignments. R-SAP
performs the characterization of detected fusion tran-
scripts by associating the fragmented alignments with
reference transcripts and categorizes various chimeric
transcript structures according to the genic or inter-
genic regions to which they map (Fig. 2). We created a
comprehensive set of 224,555 reference transcripts by
merging Ensembl [32] and lincRNA [33] annotations for
hgl9 available from the UCSC Genome Browser [34].
These merged annotations were used as the known tran-
script set for analysis by R-SAP.
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Fig. 2 Chimeric transcript detection and characterization by R-SAP. Assembled contigs (black box) representing chimeric transcripts will produce
discrete or fragmented alignments (blue and grey boxes) when mapped to the reference genome. It will result in the alignment structure where
fragments of the assembled contigs will map to the genomic locations (e.g. chromosome A and chromosome B) underlying the fusion-gene formation.
This structure is also called ‘split-mapping’ of the contig. R-SAP detects split-mapping and then compares the alignment coordinate of each fragment
with the genomic coordinates of the known reference transcripts (shown in green boxes). Based on the fusion-point mapping (vertical orange bar on

the top), R-SAP can determine the transcript regions (such as CDS or UTRs) that are involved in the gene-fusion

Fusion transcripts that were detected and character-
ized by R-SAP were subjected to additional stringent fil-
tering in order to minimize potential assembly and
alignment errors. First, to ensure the validity and signifi-
cance of the alignment, fusion transcript fragments were
required to be at least 25 bp long and to have an align-
ment identity of >95%. Fusion transcripts with fragments
mapping to the same gene were discarded as potential li-
brary artifacts. Similarly, fusion-gene events between
two paralogous genes (as determined using BioMart for
Ensembl genes; [35]) were also discarded because they
may potentially represent alignment errors.

Additional potential chimeric transcripts were dis-
carded if either component fulfilled at least one of the
following filtering criteria: a) Maps to mitochondrial or
Y chromosome; b) Overlaps with genome assembly gaps
or maps within 100 k bps of centromere or telomeres
(assembly gaps, centromere and telomere coordinates
were obtained from UCSC Genome Browser [34]); c)
Maps to a genomic region containing ribosomal RNAs
(defined by UCSC Genome Browser [34]); d) Has >50%
overlap with the genomic low-complexity or simple

repeat regions (determined by RepeatMasker track in
the UCSC Genome Browser [34]).

In order to further filter potentially miss-assembled
fusion contigs, we aligned the original RNA-Seq reads
to the fusion transcripts using Bowtie [36] in single-
end mode and retained only those contigs that had
support of at least two sequencing reads at the fusion
breakpoint (Fig. 3). We also aligned sequencing reads
to the reference genome using Bowtie2 [37] and defined
a fusion transcript to be supported by mate-pairs if both
mates of the same pair map to the genomic locations
involved in the fusion event. We required that each
fusion transcript be supported by at least two sets of
mate-pairs.

Fusion transcripts are generally considered to be in
low abundance in the human transcriptome [38].
Ninety-five percent (52/55) of our samples exceeded the
sequencing depth of 100 million reads recommended for
optimal detection of low abundance transcripts [30]. In
addition, the correlation between the number of reads in
the RNA-Seq library and the number of filtered fusion
transcripts was insignificant (R = 0.24, Student t-test

sequencing reads
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Fig. 3 Re-confirmation of chimeric transcripts. In order to remove chimeric transcripts resulting from potential mis-assemblies, we looked for the
support for chimeric transcripts (green-orange boxes) in the original RNA-Seq reads (black boxes). RNA-Seq reads were mapped to the chimeric
transcripts and reads spanning the fusion-junction (vertical red box) were counted. Reads were also mapped to the reference genome and the
occurrence of mate-pairs mapping to the genomic locations underlying the gene-fusions confirmed. We consider a chimeric transcript as ‘confirmed” if
there are at least two reads supporting the fusion-junction and at least two mate pairs supporting the genomic alignment of the chimeric transcript
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p-value >0.05) further indicating our estimates of fu-
sion transcripts are independent of depth of sequen-
cing coverage.

Expression quantification

We performed a two-way expression estimation on the
filtered set of 1959 chimeric transcripts. First, we esti-
mated the expression (also known as normalized read
count) of the reference transcripts (comprised of
Ensembl and lincRNA annotation set) that were involved
in the chimer transcript formation. Reference transcript
sequences were obtained from the UCSC genome data-
base and filtered RNA-Seq reads were mapped using
Bowtie. Alignment files were obtained in “bam” format
that were sorted using Samtools [39]. Abundance was
estimated as expected read counts by using RSEM
(RNA-Seq by Expectation Maximization) [40]. Expres-
sion values were then normalized using the “Upper
quartile normalization” method proposed by Bullard et
al. [41]. Expression values of reference transcripts (non-
chimers) were used to calculate the fold change of 5'-
and 3'- UTR change-associated chimers in cancer sam-
ples relative to the normal samples.

In order to determine the relative fusion-read fre-
quency and also the “pro-neoplastic” potential of the
nominated chimeric transcripts, we relied upon the ex-
pression (or normalized read count) of the chimeric
transcript itself rather than the associated reference tran-
scripts. We estimated the expression for each chimeric
transcript. RNA-Seq reads were mapped to the assem-
bled contig representing the chimera and read counts
were then estimated using RSEM. Read counts were nor-
malized using upper-quartile normalization [41].

Fusion transcript frequency was calculated as percent-
age of fusion transcript reads relative to total reads that
included fusion transcript reads, wild-type 5'-reference
gene reads and wild-type 3'-reference gene reads. Ex-
pression fold change for pro-neoplastic chimeric tran-
scripts in cancer relative to normal was computed using

Page 5 of 20

the average expression values measured across cancer
and normal samples.

Results
An average of 35 chimeric transcripts per sample were
detected in cancerous and normal breast tissue samples
analyzed
RNA-Seq data for breast cancer and normal breast tis-
sues were downloaded from the TCGA database [42].
The RNA-Seq data (Additional file 1) were generated by
sequencing total RNA libraries on the Illumina
HiSq2000 system in paired-end mode. The raw data
consisted of 50 bp long paired-end reads with an average
of 170 million (range 47 million to 374 million; Fig. 4).
We selected for analysis only paired-end reads with high
read-coverage (45 breast adenocarcinoma primary tu-
mors and 10 normal breast tissue samples) to ensure
high accuracy in the downstream de-novo assembly. An
integrated computational workflow was employed that
included the ABySS [29] and Trans-ABySS [30] algo-
rithms to generate long (>800 bp) contiguous sequences
or “contigs”. De novo assembly (see Methods) of 7.8 bil-
lion 50 bp long reads from the 55 RNA-Seq libraries re-
sulted in 12.8 million contigs (an average of 233,615
contigs per sample) with an average length of 860 bps
(Additional file 1). The R-SAP algorithm [25] was incor-
porated into the workflow to identify and characterize
chimeric transcripts (Fig. 1). R-SAP follows a hierarch-
ical decision-making procedure to characterize various
classes of transcripts such as splice-variants and gene-
fusions. Chimeric transcripts (or gene-fusions) are de-
tected by comparing the fragmented reference genome
alignments of assembled contigs with well-annotated ref-
erence transcripts. R-SAP also applies stringent filtering
to limit the potential of false-positive detection (for an
independent experimental validation of our pipeline see
Additional file 2).

After subjecting the putative chimeric transcripts to a
stringent set of filtering criteria (see Methods), 2461
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Fig. 4 Sequencing coverage distribution across samples. The X-axis displays the 55 breast tissue samples analyzed in the study and y-axis presents
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high-confidence chimeric transcripts remained. Of these,
nearly 21% were immunoglobulin (Ig) gene fusions likely
due to infiltrating T-cells in breast tissue and were ex-
cluded from further analysis. After this additional filter-
ing, 1959 chimeric transcripts remained with an average
of 35 chimeric transcripts per sample (range 3 to 121)
(Fig. 5). We compared chimeric transcripts across all
normal and cancer samples by comparing the genomic
alignment coordinates of each partner fragment of the
chimeric transcript and allowing up to six base pairs to
vary around the breakpoint. Out of the 1959 identified
chimeric transcripts, 1535 were detected only in the can-
cer samples, 155 were detected only in the normal sam-
ples and 269 were detected in both the normal and
cancer samples (Fig. 6a).

Chimeric transcripts were classified based on structural
and functional criteria
A detailed characterization of all chimeric transcripts
identified in this study was carried out using the R-SAP
algorithm [25] and employing a comprehensive set of
224,555 reference transcripts (Ensembl version 73 and
lincRNAs, see Methods). Most (98.82%) of the cancer-
specific chimeric transcripts overlapped with at least one
reference transcript. Overall 2012 reference transcripts
(corresponding to 1917 genes) were associated with
chimeric transcripts across all breast cancer samples
(Additional file 3). Interestingly, the proportion of
protein-coding reference transcripts associated with
chimeric transcripts was significantly greater (Fisher’s
exact test p < 0.0001) than the proportion associated
with the entire reference annotation set (Fig. 6b). This
suggests that protein-coding transcripts may be prefer-
entially selected in the formation of chimeric transcripts.
To more accurately characterize fusion transcripts and
infer potential functional significance, we first estab-
lished a hierarchical classification system (Fig. 7) where
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the fusion transcripts were divided into three major clas-
ses: inter-genic-where the fusion is composed of two an-
notated genes; gene-desert I- where the fusion is
composed of one annotated gene and a sequence from
an un-annotated or “gene-desert” region (lacking any an-
notated gene within 5 kb); and gene-desert II- where the
fusion is comprised of sequences from two distant ‘gene-
desert’ regions. Overall, the vast majority (>80%) of fu-
sion transcripts were inter-genic while <18% were gene-
desert-I chimers. Only ~1% of the chimers were com-
prised of two un-annotated transcripts (gene desert-II)
(Fig. 8).

We further classified the detected fusions into six
functional sub-categories (Fig. 9): A) Fusion-protein- fu-
sion transcripts that combine protein coding sequences
(CDS) from two different annotated genes while keeping
the open-reading frames intact; B & C) 5" or 3" UTR-
UTR exchange from another gene or gene-desert region
in such a way that the original protein-coding region of
the fusion remains intact. This group may include inter-
genic and gene-desert-1 type chimeras (Fig. 7); D) Cryp-
tic splice-site- A novel splice-variant fusion where the
breakpoint lies within a known intron. This group may
include inter-genic and gene-desert-I chimeras; E) 3’
truncated-protein- The in-frame coding sequence of the
upstream (5') gene in the fusion is partially included
(truncated) while the coding region of the 3" gene is not
in frame. This group may include inter-genic and gene-
desert I fusions; and F) Novel-RNA- Non-canonical fu-
sion transcript formation where the potential function of
the transcript, if any, is unknown (e.g., 5UTR-3’'UTR fu-
sions). This group also includes out-of-frame truncated
fusion-protein transcripts. The distribution of the identi-
fied chimeras in each of these functional groups is dis-
played in Fig. 10 and Tables 1, 2 and 3.

Out of 1535 cancer specific fusions, 5% (79/1535) are
fusion-proteins, 3% (45/1535) are 5° UTR changes and
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Fig. 5 Chimeric transcript distribution across samples before and after filtering. The X-axis displays the 55 breast tissue samples analyzed in this
study; the y-axis displays the number of chimeric transcripts per tissue sample. Pre-filtered chimeric transcripts (blue line) are those that were detected by
R-SAP while post-filtered chimeric transcripts (black line) are those that were retained after initial filtering, re-confirmation and removal of immunoglobulin
(Ig) gene-associated chimers (see Methods for details)
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11% (166/1535) are 3" UTR changes. The novel-RNAs
constitute the most abundant class (30%, 459/1535) of
fusion transcripts. The next most frequent class is the 3’
truncated-protein (27%, 419/1535) followed closely by
the cryptic splice-site fusions (24%, 367/1535) (Fig. 10a).
These relative proportions were generally maintained in the
normal specific and overlap class of fusions (Fig. 10b, c).

Some fusion-protein transcripts recur across the cancer
patient samples investigated

Although the functional significance of fusion transcripts
cannot be unambiguously determined without experimental

validation, the recurrence of chimeric transcripts across
multiple patients is sometimes taken as tentative indication
of biological significance [1]. For example, the KRII-ATRX
fusion transcript is the most frequently observed fusion
transcript in our dataset (present in nine cancer and one
normal samples). It involves a fusion between a partial ORF
associated with the KRII (KRI 1 homolog) gene and the
DEAD helicase domain (helicase domain containing amino
acid sequence D-E-A-D = asp-glu-ala-asp) from the ATRX
(ATP-dependent helicase ATRX) gene. The DEAD box heli-
cases are a family of proteins involved in ATP hydrolysis
dependent DNA and RNA unwinding that, in-turn,

a Inter-genic

Chimeric transcript

' UTR 5" UTR 3" UTR

C Gene-desert-Il

gene-desert region

b Gene-desert-I

<+
gene-desert region

gene-desert region

Fig. 7 Hierarchical classification system for chimeric transcripts. Chimeric transcripts are depicted as a black-grey box, reference transcripts are
represented by blue and green boxes where thick boxes represent open-reading-frames and thin boxes represent 5" and 3 UTRs. An
Inter-genic chimera (a) is defined as a chimeric transcript where components map independently to annotated genes; A ‘gene-desert-I' chimera
(b) is defined as a chimeric transcript where one component maps to a gene-desert region (black box) while the other maps to an annotated gene
(green); A ‘gene-desert-Il' chimera (c) is defined as a chimeric transcript where both components map to gene-desert regions. A gene-desert region is
defined as the genomic region devoid of any annotated genes within 5 kb of the transcript
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Fig. 8 Relative distribution of inter-genic, gene-desert-l and gene
desert-ll in (@) cancer samples, (b) in normal tissue samples, and (c) in
both cancer and normal tissue samples. Classification scheme is
described in Fig. 7

regulates RNA expression and its translational efficiency
(e.g, [43]. The frequency of recurrent fusion transcripts
across cancer samples is shown in Fig. 11 and Table 4.

Seventy-nine cancer-specific fusions encode protein-
coding domains where the ORFs are maintained

We identified 79 breast cancer specific fusion transcripts
where the fusion occurs within the protein coding re-
gions of the two participating genes and the open-
reading frames are maintained (Fig. 10a; Table 1). We
analyzed the protein coding domains in these 79 fusion-
protein transcripts using SMART (simple modular archi-
tecture research tool; [44]). We found that 38% (30/79)
of the fusion-protein transcripts contained functional
domains for both genes involved in the fusion formation
(Additional file 4). Interestingly, 50% (15/30) of these
protein coding fusion-transcripts involved the novel
joining of a signal peptide (2/15) or a trans-membrane
domain (13/15) with a protein coding domain not previ-
ously associated with these functional groups. Signal
peptide sequences are components of proteins that are
normally secreted from cells [45]. Trans-membrane
(TM) domains are signaling, transport and subcellular
localization components of proteins that are critical to a
variety of inter- and intracellular interactions [46-48].
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Mutations resulting in the gain or loss of TM domains
are known to have a significant effect on cellular func-
tions and molecular interactions [49]. Of the 15 fusions
associated with signal peptide/TM domain sequences, 12
are fusions with protein coding sequences (COL27A1,
IGFBP4, KDM5A, MDMI1, NAPi1L2, NHP2L1, NMT2,
PAXIP1, RP11-433C9.2, SMARCA4, STXBP6 and TRIO)
not previously associated with these signaling functions
(genes defined in Fig. 12).

Fusions that place protein-coding genes under novel
regulatory control are frequent in the breast cancer sam-
ples investigated

A gene fusion between two different genes often puts
one gene (downstream or 3’ partner gene) under the
transcriptional regulatory elements (promoter or enhan-
cer) of the other gene (upstream or 5' partner gene).
Such fusion-based regulatory variants have often been
associated with the activation of the 3" proto-oncogene
in cancer cells. For example, it has been previously re-
ported that the oncogenic transcription factor ERG
(ETS-related gene), is up regulated in prostate cancer
due to the fusion with the 5’ region of the TMPRSS2
(trans-membrane protease, serine 2) gene that contains
an androgen responsive promoter element [50].

For the 79 fusion-protein transcripts in the cancer
samples, we estimated the fold-change in gene expres-
sion of the 3" partner genes involved in the fusion rela-
tive to their expression in their normal configurations
(i.e, non-chimeric) by comparing the expression of each
of the 3" partners. We used normalized read counts as
expression estimates (see Methods) and found that 24%
(19/79) of the 3° partners were associated with a > 2-
fold expression increase in cancer for at least one pro-
tein coding domain (Additional file 5). Several of the
genes involved in these up-regulated fusions have been
previously identified as either cancer biomarkers or as
potential therapeutic targets. For example, the
B4GALNT2 (beta-1,4 N-acetylgalactosaminyltransferase
2) gene, the 3" partner in the THRA (thyroid hormone
receptor, alpha)-B4GALNT?2 fusion, has been previously
proposed as a prognostic biomarker of breast cancer
[51] and is reported to be up regulated in colorectal and
metastatic prostate cancer [52, 53]. The ABCC3 (canalic-
ular multispecific organic anion transporter 2) gene, the
3’ partner in the MEDI (mediator complex subunit 1)-
ABCC3 fusion, is known to efflux therapeutic com-
pounds resulting in multidrug resistance in cancer cells
[54, 55].

We also compared the expression of the 79 protein-
fusion transcripts with the 419 3’-truncated fusions. The
protein-fusions were found to have 2.7-fold higher ex-
pression (p-value: 0.005; Student t-test one-tailed) than
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the 3'-truncated fusions (Fig. 13 and Additional file 6)
possibly due to non-sense mediated decay (NMD) [56].
Another class of fusions that may be expected to alter
patterns of gene expression involves the exchange of 5’
or 3’ un-translated leader regions (UTRs) of intact pro-
tein coding sequences. For example, alteration in the
poly-A tail attached to 3’'UTR and removal of 5" cap (7-
methyle guanosine) may promote mRNA decay and
hence overall turnover in the cell [57]. Additionally, fu-
sions involving the exchange of a 5’UTR may place a
gene under the control of a novel promoter. For ex-
ample, chromosomal rearrangements involving UTRs
that result in high - level expression of the ETS (E26
transformation-specific) gene family members are com-
mon events in human prostate cancer [50]. Similarly,
changes in the 3'UTR can alter microRNA target bind-
ing sites leading to changes in the gene expression. For

example, in glioblastoma, the FGFR3 (fibroblast growth
factor receptor 3) gene has been shown to escape regula-
tion by the miR-99a microRNA due to a fusion with the
3UTR of the TACC3 (transforming, acidic coiled-coil
containing) gene [58].

In our analysis, 14% (211/1535) of the fusions detected
in our breast cancer samples consisted of un-disrupted
protein coding sequences fused with heterologous UTRs.
Nearly 21% (45/211) of these are 5UTR fusions while
79% (166/211) are fusions with 3'UTRs (Fig. 10a, Table
1). Most (88%, 186/211) of the UTRs were interchanged
between two known genes but 12% of the chimers in-
volved the UTRs of known coding sequences with se-
quences from un-annotated ‘gene-deserts’ regions of the
genome (Table 1).

We estimated the effects of 5" and 3" UTR changes on
gene expression by measuring the fold-change in the
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Fig. 10 Relative distribution of functional classes of fusion transcripts
present. (@) Only in cancer tissue samples; (b) only in normal tissue
samples; and (c) in both normal and cancer samples

expression level of each UTR-protein coding gene fusion
in the cancer samples relative to the protein-coding
gene’s average level of expression in our normal samples
(see Methods). The results indicate that 54 of the UTR-
protein coding fusion genes are >2-fold up regulated
relative to their wild-type counterparts in normal cells
(Fig. 14; Additional file 7). Several of the up-regulated
genes encode transcription factors previously implicated

Table 1 Distribution of cancer specific fusion transcripts across
multiple structural and functional classes

Page 10 of 20

Table 2 Distribution of structural and functional classes for
chimers found only in normal tissue samples

inter-genic  gene-desert-l  gene-desert-ll  Total

fusion-protein 9 NA NA 9

3" truncated-protein = 22 4 NA 26
5" UTR-change 6 2 NA 8

3" UTR-change 18 1 NA 19
cryptic splice-site 41 6 NA 47
novel RNA 39 6 1 46
Total 135 19 1 155

in cancer. For example, the epigenetic transcriptional
regulator proteins CBX3 (chromobox homolog 3) and
CBX4 (chromobox homolog 4) were up regulated in our
cancer samples due to alternative 3'UTRs obtained by
gene-fusion. CBX3 has been previously identified as a
potential biomarker for tumor stem cells in osteosar-
coma [59], while CBX4 has been reported to induce
hypoxia-mediated activation of VEGFA (vascular endo-
thelial growth factor A) and angiogenesis in hepatocellu-
lar carcinomas [60]. Another chimeric transcript up
regulated in our cancer samples is a fusion of the tran-
scriptional regulator-encoding gene, RARA (retinoic acid
receptor, alpha), with the 3" UTR from the PSME3 (pro-
teasome activator subunit 3) gene. Interestingly, an
analogous reciprocal translocation between the RARA
with PML (promyelocytic leukemia) genes has been pre-
viously associated with the primary cytogenetic abnor-
mality leading to acute promyelocytic leukemia [61].

In our breast cancer samples, 17 genes were estimated
to be >2-fold down-regulated due to the fusion with
novel UTRs (Table 1; Fig. 14; Additional file 7). For ex-
ample, a fusion between the PTEN (phosphatase and
tensin homolog) and the 3" UTR of the PIK3C2A (phos-
phatidylinositol-4-phosphate 3-kinase, catalytic subunit
type 2 alpha) genes resulted in the down regulation of
PTEN > 2-fold in our cancer samples. PTEN is a well-
known tumor suppressor gene that displays loss-of-
function mutations in many cancers (e.g., [62]).

Table 3 Distribution of structural and functional classes for
chimeras found in both normal and in cancer tissue samples

inter-genic  gene-desert-l  gene-desert-ll  Total inter-genic  gene-desert-l  gene-desert-ll  Total

fusion-protein 79 NA NA 79 fusion-protein 23 NA NA 23
3" truncated-protein 6 133 NA 419 3" truncated-protein - 53 4 NA 57

5" UTR-change 41 4 NA 45 5" UTR-change 6 0 NA 6

3" UTR-change 145 21 NA 166 3" UTR-change 52 0 NA 52
cryptic splice-site 289 78 NA 367 cryptic splice-site 33 15 NA 48
novel RNA 400 41 18 459 novel RNA 79 4 0 83
Total 1240 277 18 1535 Total 246 23 0 269
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Other protein coding genes involved in UTR fusions
in our cancer samples that have been previously associ-
ated with cancer onset and/or progression are the inter-
feron gamma receptor 1 (IFNGRI) gene [63], the period
circadian clock 2 (PER2) gene [64, 65], the chloride
intracellular channel 4 (CLIC4) gene [66], the sorbin and
SH3 domain containing 2 (SORBS2) gene [67] and the
eukaryotic translation initiation factor 2-alpha kinase en-
coding (EIF2AK?2) gene [68, 69].

A number of detected fusion transcripts include
sequences from gene-desert regions of the genome
Previous studies have shown that the human genome is
more pervasively transcribed than previously thought
[70]. For example, the recent ENCODE (Encyclopedia of
DNA Elements; [71]) data release suggests that nearly
80% of the human genome displays transcriptional

Table 4 Recurrence of chimeric transcripts across cancer

samples

Recurrence Frequency Percentage
1 1309 93.97
2 55 3.95
3 17 122
4 5 036
5 5 0.36
6 1 0.07
7 0 0

8 0 0

9 1 0.07
Total 1393

Recurrence is defined as the number of times a chimeric transcript was found
in patient samples. The frequency is defined as the number of chimeric
transcripts in each recurrence class
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functionality in a cell type specific manner [72]. Al-
though many of these transcripts are derived from anno-
tated protein-coding genes, others may represent long
non-encoding RNAs or other non-encoding regulatory
RNAs of currently undetermined function. In our cancer
samples, we identified 338 ‘gene-desert’ fusions where ei-
ther one (319, gene-desert-I) or both components (19,
gene-desert-1I) of the chimeric transcript maps to the
‘gene-desert’ regions of the genome (Fig. 7; Additional
file 8).

We obtained transcription factor binding site (TFBS)
predictions based on Chip-Seq data from the ENCODE
project [71] for five breast or mammary cell lines
(HMEC, HMF, MCF-7, MCF10A-Er-Src, T-47D). We
then searched for active TFBS in the ENCODE database
at positions proximal to gene-desert regions involved in
our chimeric transcripts. Since most TFBSs are present
within 8 kb of the transcription start site of regulated
genes [73], we considered only those TFBSs mapping
within 8 kb of the gene-desert transcripts (Fig. 15a).
Interestingly, all (100%, 319/319) of the gene-desert re-
gions involved in chimer formation had at least one ac-
tive TFBS within 8 KB of the transcript. Also, we found
that the gene-desert chimeric regions are distributed at
distances from TFBS similar to that observed for anno-
tated reference transcripts (Fig. 15b). These findings
support the contention that actively transcribed tran-
scripts mapping to gene-desert regions of the genome
participate in fusion formation. However, since neither
the structure nor the function of transcripts mapping to
these gene-desert regions are currently known, the po-
tential functional significance of gene-desert fusions also
remains undetermined. Nevertheless, the fact that 9%
(28/319) of gene-desert chimeric transcripts involve the
fusion of known protein-coding sequences with UTRs
from gene-desert regions suggests that at least some of
these fusions may represent significant regulatory
variants.

Fusion transcripts are associated with both high and low
frequency clones

Because breast cancers, like most solid tumors, are gen-
erally polyclonal in make-up [74], RNA-sequencing
reads typically represent a mixture of transcripts arising
from the various clones comprising the tumor. While
higher frequency or predominant clones may make up
the bulk of the tumor, a number of lower frequency
clones are often also present. To estimate the proportion
of the 79 protein fusions associated with high- and low-
frequency clones, we computed the frequency of each
type of fusion transcript reads relative to the total num-
ber of reads detected in the patient samples (see
Methods). The results presented in Table 5 (see also
Additional file 9) indicate that >50% (43/79) of the
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identified protein fusions represent <10% of total reads in  significance. Tumors are a dynamic community of cells
the patient samples indicating that they are likely associated ~ where inter-clonal selection is continuously ongoing as new
with low-frequency clones. In contrast, 9% (7/79) of the variants arise and/or new environmental challenges (e.g.,
identified protein fusions represent >50% of the identified = chemotherapy) are presented to the tumors.

reads in individual patient tumors indicating that these fu-

sions are associated with high-frequency clones. While the = Comparative analysis of fusion transcripts in normal and
association of protein fusions with high frequency clones is  cancer samples identifies potential pro-neoplastic genes
suggestive, the relative frequency of fusions in a tumor sam-  Comparison of fusion transcripts across all normal and
ple is not necessarily indicative of relative functional cancer samples was carried out by comparing the
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genomic alignment coordinates of each partner fragment
of the chimeric transcript and allowing up to six base
pairs to vary around the breakpoint. Although 88%
(1716/1959) of all chimeric transcripts detected were
found in the cancer samples and only 12% (243/1959) in
the normal samples, this is largely attributable to the dis-
proportionate number of samples examined (45 cancer
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Fig. 14 Gene-expression change due to fusion with heterologous
UTRs. Chimera formation can result in the altered 5'UTR or 3'UTR
while keeping the original ORF intact. Histograms display the
number of chimeric transcripts where the protein-coding genes are
up-regulated (red) or down-regulated (green) by >2 fold in breast
cancer samples relative to the protein-coding genes (native state) in
normal breast tissue
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Fig. 15 Detection of transcription factor binding sites (TFBS) in
proximity to gene-desert regions involved in chimera formation. (a)
A search was carried out for documented transcription factor
binding sites (TFBS; grey box) within 8 kb from gene-desert transcripts
(black box) involved in breast cancer gene fusions. (b) At least
one active TFBS is located within 8 KB of gene-desert transcripts
involved in gene-fusions in cancer. The distribution of the locations
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associated with annotated reference transcripts (blue line). The x-axis is
the distance in kilobases of a TFBS detected from a transcript;
the y-axis is the percentage of transcripts with a specific TFBS
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vs. 10 normal). When the average number of chimers
detected per sample is compared, the differences are less
dramatic (normal: 24/sample; cancer: 38/sample) albeit
still significant (Student’s t-test p < 1.05E-03).

The unexpected abundance of chimeric transcripts in
normal samples and the fact that the majority of these
(> 60%, 269/424; see Fig. 6) were also present in the can-
cer samples, led us to explore these fusions in more de-
tail. It is possible that at least some of the chimeric
transcripts detected in normal tissue may represent
“pro-neoplastic” fusions whose cancer-causing potential
is at least partially repressed in normal cells (i.e, onco-
gene expression repressed; tumor suppressor potential

Table 5 Distribution of percentage of fusion reads across
functional classes in cancer specific chimeric transcripts

chimer functional class ~ Min% Max%  Average%  Median%
fusion-protein 0.00360 93.79 16.87 9.16

3" truncated-protein 0.00034  99.64 15.19 6.54
cryptic splice-site 0.00600 99.83 17.50 437
novel RNA 0.00041 99.72 26.23 10.30

Percent of fusion reads was calculated as fusion (chimeric) transcript reads
divided by total reads (fusion read count + wild-type (non-fusion) 5-gene read
count + wild-type (non-fusion) 3'-gene read count) (see Methods). RSEM
estimated normalized read counts were used. Metric shown in the table
were calculated using 1535 breast cancer specific chimer transcripts
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amplified). For example, chimeric transcripts of the well-
studied chronic myeloid leukemia causing BCR-ABL
(breakpoint cluster region-Abelson protooncogene) fu-
sion gene have been detected at low levels in the blood
cells of healthy individuals as well [75]. Similarly, the
anti-apoptotic chimeric transcript comprised of the zinc
finger genes JAZF1 (JAZF zinc finger 1) and JJAZ1 (also
known as SUZI2 or SUZI2 polycomb repressive com-
plex 2) is highly expressed in nearly 50% of all endomet-
rial stromal sarcomas [76, 77], but has also been
detected at low levels in normal endometrial stromal
cells as well [24].

We detected 269 chimeric transcripts that were shared
between our normal and breast cancer samples. Many of
these fusions are associated with moderate- to high-
frequency clones (Table 6). For example, four of these
shared chimeric transcripts were identified as in-frame
fusion-protein coding transcripts of potential pro-
neoplastic significance (ZBTB47-FGD1, KRI1-ATRX,
CACNAID-CTNNBLI, and SCAF4-TNRC6A) (genes de-
fined in Fig. 16; Additional file 10). RNA-Seq reads were
mapped to the assembled contigs representing each of
these four fusions and read counts were estimated using
RSEM (RNA-Seq by Expectation Maximization; [78])
and normalized using upper-quartile normalization [41]
(see Methods). Two of the fusions (ZBTB47-FGDI and
KRII-ATRX) displayed a > 2.5-fold increase in expres-
sion in cancer relative to the normal samples (Fig. 16a,
b; Additional file 10). Both of these fusions are estimated
to be associated with clones in moderately high fre-
quency in their respective tumors based on % of total
reads (Additional file 10). A third fusion (SCAF4-
TNRC6A), also associated with moderately high-
frequency clones (Additional file 10), displayed a 1.3-fold
increase in expression (Fig. 16¢c) in the cancer samples
while a fourth fusion (CACNA1D-CTNNBLI), associated
with a lower-frequency clone (Additional file 10), dis-
played a decrease in expression in the cancer samples
(Fig. 16d; Additional file 10).

In the ZBTB47-FGDI fusion transcript, a BTB/POZ
domain (BR-C, ttk and bab domain/Pox virus and Zinc
finger virus and zinc finger domain) from ZBTB47 (zinc
finger and BTB domain containing 47) is fused with the
RhoGEF (ak.a. the Dbl homologous domain), PH

Table 6 Distribution of percentage of fusion reads in
nominated pro-neoplastic transcripts in breast cancer

Min% Max%
0.55318 3313

Fusion type Average% Median%

12.00 893

Pro-neoplastic

Percent of fusion reads was calculated as using fusion (chimeric) transcript
reads divided by total reads (fusion read count + wild-type (non-fusion)
5'-gene read count + wild-type (non-fusion) 3'-gene read count) (see
Methods). RSEM estimated normalized read counts were used. Metrics
shown in table are calculated using read counts of pro-neoplastic transcripts
in breast cancer samples
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(pleckstrin homology) and FYVE domains from FGDI.
Interestingly, a previously identified oncogenic fusion
gene (Dbl) was also found to contain a RhoGEF domain
whose over-expression is essential to the Dbl gene’s
oncogenic potential [79]. Over expression of FGDI has
also been previously associated with cancer progression
in prostate and breast cancer [80]. The 3" member of
the KRII-ATRX fusion (ATRX) has been previously asso-
ciated with childhood neuroblastoma [81] and the 3’
member of the CACNAID-CTNNBL1 fusion
(CTNNBL1), is associated with an anti-apoptotic, tumor
suppressive function [82, 83] consistent with its reduced
expression in our breast cancer samples.

Fusion transcripts display breast cancer subtype
specificity

Breast cancer is a heterogeneous disease with distinct
clinical subtypes [84]. For example, the estrogen recep-
tor negative (ER-), progesterone receptor negative (PR-)
and human epidermal growth factor receptor 2 negative
(HER2-) (a.k.a., triple negative) sub-type is particularly
aggressive and associated with a high risk of metastasis.
Previous studies suggest that gene-fusions in breast can-
cers are often sub-type specific (e.g., [85, 86]). To inves-
tigate this question in our dataset, we divided our breast
cancer samples into two categories: a) ER+/HER2+
(n = 33) and b) triple negative (ER-, PR-, HER2-)
(n = 12). Consistent with previous reports, we found that
the fusions identified in our study were also highly sub-
type specific (Table 7). For example, only =3% (41/
1535 = 0.026) of all of the identified fusion transcripts
were detected in both subtype groups (Table 7; Add-
itional file 11). The majority of fusions were associated
with the ER+/HER+ sub-group (1052/1535 = 0.68). For
the 79 in-frame fusion protein transcripts this preference
was even more pronounced (59/79 = 0.75) with only one
protein fusion, LNPEP-ANPEP (leucyl and cystinyl ami-
nopeptidase- alanyl aminopeptidase, membrane) being
shared between the ER+/HER+ and triple negative sub-
groups.

Discussion

The oncogenic potential of gene fusions and fusion tran-
scripts was first recognized in malignant hematological
disorders and childhood sarcomas [87]. In recent years,
the importance of fusions in the onset and progression
of a vast diversity of solid tumors has become more
widely appreciated. The rapidly growing awareness of
the extensiveness and potential importance of fusion
transcripts in cancer has been facilitated by the high-
throughput transcriptome sequencing of a broad
spectrum of cancer types. The Cancer Genome Anatomy
Project [88] currently lists well over 1800 fusions identi-
fied in >63,000 cancer patient samples and it has been
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the structure of five gene-fusions and associated protein domains that we have characterized as potential pro-neoplastic fusions. Square boxes
with numbers represent exons (5’ gene: orange, 3' gene: blue); exons not shown in the figure are represented by a dashed empty box; the red
star represents the fusion point for each fusion; gene symbols and (chromosomal location), as well as, the number of each fusion transcript detected
in normal (N) and cancer (C) samples is presented above each gene-fusion structure. Protein domains are displayed under each structure. Histograms
on the right display average expression levels of the 3" members of the fusions in their native or parental (pre-fusion) genes in normal samples (blue)
and the expression of the fusion transcript in cancer samples (orange) bar. Fold change is shown under each expression plot. All of the 3" partners of
these fusion transcripts have been previously associated with cancer progression (see text for details). (@) ZBTB47-FGD1 = zinc finger and BTB domain
containing 47 gene fused with FYVE, RhoGEF and PH domain-containing protein 1 gene; (b) KRIT-ATRX = KRI 1 homolog gene fused with
ATP-dependent helicase ATRX gene; (c) SCAF4-TNRC6A = SR-related CTD associated factor 4 gene fused with trinucleotide repeat-containing
gene 6A; (d) CACNATD-CTNNBL1 = calcium channel, voltage-dependent, L type, alpha 1D subunit gene fused with the catenin beta like 1 gene;
and (e) ACHET-CES4A = acetylcholinesterase 1 gene fused with carboxylesterase 4A gene

estimated that gene-fusions account for >20% of human
cancer morbidity [2].

We present here an integrated computational workflow
that not only allows accurate detection of fusion transcripts
to nucleotide level resolution but also facilitates detailed
molecular characterization and quantitative analysis. We
employed this workflow to analyze 55 breast transcriptomes
that, to our knowledge, is the first such study to explore
global patterns and characteristics of chimeric transcripts in
any tumor using a de novo assembly approach.

Since the de novo assembly approach allows for con-
struction of long contigs capable of traversing multiple
exons, we were able to map each gene-associated
chimeric transcript to specific genomic loci. Accurate
mapping followed by hierarchical structural and func-
tional classification enabled us to systematically infer the
potential functional role and biological significance of a
number of novel chimeric transcripts. While prior RNA-
Seq based studies have focused primarily on the canon-
ical gene fusion structures of fusion-protein and UTR
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Table 7 Distribution of chimeric transcripts across breast cancer subtypes

Chimer Functional Class ER+/HER2+ only Triple negative only Common Total®
Fusion-protein 59 18 1 79

3" UTR change 111 33 11 166
5"UTR change 31 10 2 45

3" truncated protein 294 107 9 419
cryptic splice-site 292 133 8 441
novel RNA 265 100 10 385
Overall 1052 401 41 1535

Number of breast cancer specific (not detected in normal tissues) chimeric transcripts from different functional classes in breast cancer subtypes. Two major
subtype groups were defined. ER+/HER+ is where patient is either ER+ or HER2+ or both; triple negative where patient is ER-, PR- and HER2-. ®Total: Common

transcripts are counted twice since they are present in both subtype groups

associated alterations, our de novo assembly based ap-
proach allowed us to explore other classes of fusion
structures such as cryptic-splice sites and non-canonical
RNA structures. While the accuracy of our pipeline was
experimentally validated using a prostate cancer cell line
dataset (Additional file 2), the tissue samples used in es-
tablishing the TCGA datasets employed in this analysis
are not available for experimental confirmation. Thus,
although the potential functional impact of many of the
chimeric transcripts computationally identified here have
yet to be experimentally verified, their widespread occur-
rence in the breast cancer samples investigated in this
study strongly suggests that this class of chimeric tran-
scripts warrants further investigation. In total, we identi-
fied 111 novel gene-fusions, 13 of which were detected
across multiple patient samples.

Most previously identified gene-fusions in cancer have
been associated with oncogene activation [89]. Our find-
ings suggest that gene-fusions can also result in signifi-
cant down regulation of potentially significant genes. For
example, while we identified 54 examples of genes being
up regulated in cancer due to fusions with heterologous
UTRs, an additional 17 such fusions resulted in a signifi-
cant down regulation in gene expression including the
well-known tumor suppressor gene PTEN.

Chimeric transcripts are typically associated with can-
cer cells but, with notable exceptions (e.g., [90]), their
presence in normal somatic cells is often overlooked. In
our study, we identified a number of fusion transcripts
that are present in both normal and cancer tissues but
significantly differentially expressed in these two tissue
types. Several of these were identified as potential pro-
neoplastic fusions where domains previously associated
with oncogenic functions were up regulated in cancer
while those previously associated with tumor suppressor
functions were down regulated in cancer.

Finally, we detected a large number of chimeric tran-
scripts mapping partially or completely to genomic re-
gions devoid of any known genes (“gene deserts”). We
observe that the fusion transcripts involving gene-desert

regions can result in the fusion of altered 5’ or 3" UTRs
to known protein-coding genes resulting in significant
changes in gene expression. We also detected the fusion
of transcripts mapping to two distinct gene-desert re-
gions giving rise to novel RNA structures of currently
unknown significance.

Conclusions

Overall, our de novo assembly approach has revealed an
unexpected prevalence and diversity of chimeric tran-
scripts in breast cancer tissues. While our results are
highly suggestive, we recognize that our conclusions can
only be taken as tentative until they are substantiated by
experimental validation. While we hope that our findings
will stimulate such empirical investigations, we believe
our present results underscore the utility of deep se-
quencing technologies and improved bioinformatic
workflows to uncover novel and potentially significant
fusion transcripts in cancer and normal somatic tissues.

Additional files

Additional file 1: Summary statistics on raw and processed RNA-Seq
data from the 55 breast samples used in this study. Additional columns
contain statistics on assembled contigs, initial and final number of
chimeric transcripts after filtering. The first sheet in the excel file contains
the data columns and a key describing the data is on the second excel
sheet. (XLSX 18 kb)

Additional file 2: Summary of independent validation of fusion
detection pipeline. File describes the test dataset, conducted in silico
experiment and test results. Summary statistics and test results are
summarized in tables. (DOCX 20 kb)

Additional file 3: Detailed alignment and annotation information on
1959 filtered chimeric transcripts from 55 samples analyzed in the study.
Each chimeric transcript is represented by a unique ID in the first column.
Structural and functional classification (as described in the text)
information is presented in columns S, T and U. Cells in the gene name
columns (‘geneName1’ and ‘geneName2’) with value “none” represent
gene-desert regions. The first sheet in the excel file contains the data
columns and a key describing the data is on the second excel sheet.
(XLSX 684 kb)

Additional file 4: Cancer specific in-frame fusions where at least one
protein domain from each (5" and 3) of the participating genes is covered
by the ORFs involved in the chimera formation. Protein domain names
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(as defined by SMART database) are present in columns K and T. The first
sheet in the excel file contains the data columns and a key describing the
data is on the second excel sheet. (XLSX 115 kb)

Additional file 5: Cancer specific in-frame fusions where the 3' partner
gene is up regulated by >2X relative to the intact gene in normal tissue
samples. Expression is the normalized RNA-Seq read counts as estimated
using RSEM and followed by upper quartile normalization. Expression fold
change for the 3™ gene is present in column U. The first sheet in the
excel file contains the data columns and a key describing the data is on
the second excel sheet. (XLSX 113 kb)

Additional file 6: Expression (normalized read count) for breast cancer
specific 79 fusion-protein and 419 3'-truncated protein transcripts.
Expression is the normalized RNA-Seq read counts as estimated using
RSEM and followed by upper quartile normalization. File contains expression
data for breast cancer specific fusion-protein and 3"-truncated protein
transcripts only. The first sheet in the excel file contains the data columns
and a key describing the data is on the second excel sheet. (XLSX 33 kb)

Additional file 7: Cancer specific chimeric transcripts with fused 5' or 3'
UTRs and having the ORF of the coding gene intact and displaying >2X
change in expression relative to the intact gene’s expression in normal
tissue. The first sheet in the excel file contains the key defining column
entries. The second sheet contains data for chimeras with a fused 5' UTR;
the third sheet contains data for chimeras with a fused 3" UTR. For 5-UTR
fusions, the expression fold change for the 3' partner gene is calculated;
for 3" UTR fusions, the expression fold change for the 5' partner gene is
calculated. The upper portion in each data sheet summarizes the
down-regulated genes and the lower portion summarizes the
up-regulated genes. (XLSX 27 kb)

Additional file 8: Detailed information for gene-desert-I and gene-
desert-Il chimeric transcripts. The first sheet of the excel file contains the
key defining column entries. The data for cancer specific, normal control
and shared chimeric transcripts is presented separately in second, third
and fourth sheets, respectively. Cells in the gene name columns
(‘geneName1’ and ‘geneName2’) with value “none” represent gene-desert
regions. (XLSX 72 kb)

Additional file 9: Fusion read frequency for 79 breast cancer specific
fusion-protein transcripts relative to total reads. Expression for fusion tran-
scripts, as well as, those associated wild-type 5- and 3" reference tran-
scripts is summarized in the file. Expression is the normalized RNA-Seq
read counts as estimated using RSEM followed by upper quartile
normalization. Fusion read frequency is shown in column H. The first
sheet in the excel file contains the data columns and a key describing
the data is on the second excel sheet. (XLSX 19 kb)

Additional file 10: Distribution of fusion reads relative to total reads for
pro-neoplastic fusion-protein transcripts in breast cancer samples. File
contains fusion specific read counts, as well as, the read counts for wild-
type 5 and 3" partner reference genes for nominated pro-neoplastic
transcripts (in-frame fusion gene transcripts present in both normal and
cancer samples) in breast cancer. Expression levels are presented as nor-
malized RNA-Seq read counts as estimated using RSEM and upper quar-
tile normalization. Column J contains relative fusion read frequency as
percentage value. The first sheet in the excel file contains the data col-
umns and a key describing the data is on the second excel sheet. (XLSX
12 kb)

Additional file 11: Fusion read relative frequency in breast cancer
subtypes. Expression for 79 breast cancer specific fusion transcripts as
well as those associated wild-type 5™- and 3- reference genes is summa-
rized in the file. Expression is the normalized RNA-Seq read counts as esti-
mated using RSEM and followed by upper quartile normalization. Fusion
transcripts were divided into two breast cancer sub-type groups: ER and/
or HER2 positive and triple negative. The first sheet in the excel file con-
tains the data columns and a key describing the data is on the second

excel sheet. (XLSX 39 kb)

Abbreviations

ABCC1: ATP-binding cassette, sub-family C (CFTR/MRP), member 1 gene;
ABCC3: ATP-binding cassette sub-family C, member 3 gene; ABL: Abelson
protooncogene; ACHE1: Acetylcholinesterase 1 gene; ANKLE2: Ankyrin repeat
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and LEM domain containing 2 gene; ANO2: Anoctamin 2 gene;

ANPEP: Alanyl aminopeptidase, membrane gene; ATP: Adenosine
triphosphate; ATRX: ATP-dependent helicase ATRX gene; BAGALNT2: Beta-
14 N-acetylgalactosaminyltransferase 2 gene; BCR: Breakpoint cluster region;
BLAT: Blast-like alignment tool; BTB: BR-C, ttk and bab domain;

CACNA1D: Calcium channel, voltage-dependent, L type, alpha 1D subunit
gene; CBX3: Chromobox homolog 3; CBX4: Chromobox homolog 4;

cDNA: Complementary DNA; CDS: Protein coding sequences;

CES4A: Carboxylesterase 4A gene; CLIC4: Chloride intracellular channel 4
gene; COL27A1L: Collagen, type XXVII, Alpha 1 gene; Contig: Contiguous
sequence; CTNNBL1: Calcium channel, voltage-dependent, L type, alpha 1D
subunit gene; dbGAP: Database of Genotypes and Phenotypes;

DEAD: Helicase domain containing amino acid sequence D-E-A-D (asp-glu-
ala-asp); EIF2AK2: Eukaryotic translation initiation factor 2-alpha kinase encod-
ing gene; ENCODE: Encyclopedia of DNA Elements; ER—/+: Estrogen receptor
negative or positive gene; ERG: ETS-related gene; ETS: E26 transformation-
specific gene; FGD1: FYVE, RhoGEF and PH domain-containing protein 1
gene; FGFR3: Fibroblast growth factor receptor 3 gene; HER2—/+: Human
epidermal growth factor receptor 2 negative or positive gene; HMEC: Human
microvascular endothelial cell line; HMF: Human mammary fibroblast cell
line; IFNGR1: Interferon gamma receptor 1 gene; Ig: Immunoglobulin genes;
IGFBP4: Insulin-like growth factor binding protein 4 gene;

IGSF3: Immunoglobulin superfamily, member 3 gene; ITGA8: Integrin, alpha 8
gene; JAZF1: JAZF zinc finger 1 gene; JJAZ1: AKA, SUZ12 polycomb
repressive complex 2 gene; KDM5A: Lysine (K)-specific demethylase 5A gene;
K-mer: All the possible subsequences (of length k) from a read obtained
through DNA-seq; KRI1: KRI T homolog gene; lincRNA: Long intergenic non-
coding RNAs; LNPEP: Leucyl and cystinyl aminopeptidase gene;

MARCH11: Membrane-associated ring finger (C3HC4) 11 gene;

MAST: Microtubule associated serine-threonine gene; MCF10A-Er-

Src: Michigan Cancer Foundation-10A, mammary, non-tumorigenic epithelial
inducible cell line, containing a derivative of the Src kinase oncoprotein
fused to the ligand-binding domain of the estrogen receptor; MCF-

7: Michigan Cancer Foundation-7, breast cancer cell line; MDM1: Mdm1
nuclear protein homolog (mouse) gene; MED1: Mediator complex subunit 1
gene; NAP1L2: Nucleosome assembly protein 1-like 2 gene; NCBI-

SRA: National Center for Biotechnology Information-Sequence Read Archive;
NHP2L1: NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae) gene;
NMD: Nonsense mediated decay; NMT2: N-myristoyltransferase 2 gene;

ORF: Open reading frame; PAXIP1: PAX interacting (with transcription-
activation domain) protein 1 gene; PER2: Period circadian clock 2 gene;
PIK3C2A: Phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2,
alpha gene; PML: Promyelocytic leukemia gene; PODXL2: Podocalyxin-like 2
gene; POZ: Pox virus and Zinc finger virus and zinc finger domain; PR

—/+: Progesterone receptor negative or positive gene; PSME3: Proteasome
activator subunit 3 gene; PTEN: Phosphatase and tensin homolog gene;
PTPRK: Protein tyrosine phosphatase, receptor type, K gene; RARA: Retinoic
acid receptor, alpha gene; RNA-Seq: Sequencing RNA; RP11-433C9.2: clone
based putative protein coding gene on chromosome 3 gene; R-SAP: RNA-
Seq analysis pipeline; RSEM: RNA-Seq by Expectation Maximization;

SCAF4: SR-related CTD associated factor 4 gene; SCNN1G: Sodium channel,
non-voltage-gated 1, gamma subunit gene; SLC24A1: Solute carrier family 24
(sodium/potassium/calcium exchanger), member 1 gene; SLC35B1: Solute
carrier family 35, Member B1 gene; SMARCA4: SWI/SNF related, matrix
associated, actin dependent regulator of chromatin, subfamily A, member 4
gene; SMART: Simple modular architecture research tool; SORBS2: Sorbin and
SH3 domain containing 2 gene; STXBP6: Syntaxin binding protein 6 (Amisyn)
gene; T-47D: Breast epithelial metastatic cell line; TACC3: Transforming acidic
coiled-coil containing gene; TCGA: The cancer genome atlas;

TFBS: Transcription factor binding site; THRA: Thyroid hormone receptor,
alpha gene; TM: Transmembrane; TMPRSS2: Transmembrane protease, serine
2 gene; TNRC6A: SR-related CTD associated factor 4 gene fused with
trinucleotide repeat-containing gene 6A; TRIO: Trio Rho guanine nucleotide
exchange factor gene; UCSC: University of California, Santa Cruz;

UTR: Untranslated leader regions; VEGFA: Vascular endothelial growth factor
A; VMP1: Vacuole membrane protein 1 gene; ZBTB47: Zinc Finger and BTB
Domain Containing 47
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