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Understanding relationships between architectural properties of gene-regulatory net-
works (GRNs) has been one of the major goals in systems biology and bioinformatics,
as it can provide insights into, e.g., disease dynamics and drug development. Such
GRNs are characterized by their scale-free degree distributions and existence of network
motifs – i.e., small-node subgraphs that occur more abundantly in GRNs than expected
from chance alone. Because these transcriptional modules represent “building blocks”
of complex networks and exhibit a wide range of functional and dynamical properties,
they may contribute to the remarkable robustness and dynamical stability associated
with the whole of GRNs. Here, we developed network-construction models to better
understand this relationship, which produce randomized GRNs by using transcriptional
motifs as the fundamental growth unit in contrast to other methods that construct
similar networks on a node-by-node basis. Because this model produces networks
with a prescribed lower bound on the number of choice transcriptional motifs (e.g.,
downlinks, feed-forward loops), its fidelity to the motif distributions observed in model
organisms represents an improvement over existing methods, which we validated
by contrasting their resultant motif and degree distributions against existing network-
growth models and data from the model organism of the bacterium Escherichia coli.
These models may therefore serve as novel testbeds for further elucidating relation-
ships between the topology of transcriptional motifs and network-wide dynamical
properties.

Keywords: motif, degree distribution, power-law, attachment kernel, transcriptional network

1. INTRODUCTION

The dynamics of complex networks are derived using graph theoretical measurements that are
deduced from the topology of the network entities and their relationships. For example, science
collaboration networks are portrayed using nodes that represent scientists or authors, and links that
connect pairs of nodes that coauthored an article (Albert and Barabási, 2002). Unlike engineered
networks such as wireless sensor networks (Li et al., 2012) and airline transportation networks
(Bensong et al., 2010), science collaboration networks fall under the “small world” category of
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complex networks due to their smaller average over the ensemble
of shortest connected paths through a network. Networks sub-
scribing to the same category, such as the World Wide Web, cell
structures networks, protein–protein interaction networks, the
Internet, and infectious disease networks have all been analyzed
for path lengths, cluster formations, degree distributions, and evo-
lutionary patterns (Albert et al., 1999; Albert and Barabási, 2002;
Alm andArkin, 2003; Alon, 2003;Dorogovtsev andMendes, 2003;
Newman, 2003; Barabasi and Oltvai, 2004; Wang, 2004; Meyers
et al., 2005). Gene regulatory networks (GRNs) also belong to this
category. Understanding the dynamical consequences implied by
the architecture of GRNs has been one of the major goals in
systems biology and bioinformatics, as it can provide insights
into, e.g., disease dynamics and drug development (Margolin
et al., 2006; Faith et al., 2007). In gene-regulatory networks, the
nodes portray products of genes or transcription factor proteins
within a cell, and a set of directed bonds which each denote
pairs of nodes that interact by altering the activity of the target
gene (Shmulevich and Dougherty, 2010) parameterized by the
biological processes of translation and transcription (Feng et al.,
2007). Unlike engineered communication networks [as in Ghosh
et al. (2005)], GRNs exhibit a unique withstanding property – a
phenomenon known as “Biological Robustness” (Kitano, 2004,
2007), which describes an ability of individual genes to adapt to
and potentially resist disturbances to gene activity based, in part,
on their connectivity to other genes of the network (Prill et al.,
2005). Such a useful property could be potentially exploited to
design engineered networks with similar communication prop-
erties (Ghosh et al., 2011; Kamapantula et al., 2012, 2014 and
Kamapantula et al., under review).

Robustness in the expression patterns may arise from feed-
back-based regulatory loops or arrangements between various
repetitive subnetworks (Kauffman, 1993). This begs the question
of whether such robustness can be attributed to some statistically
significant GRN subnetwork, termed as transcriptional motifs
(Alon, 2007). Transcriptional motifs may represent “building
blocks” of many complex networks (Milo et al., 2002) (including
GRNs), as they appear more commonly in GRNs than observed
in randomized versions of these networks (Milo et al., 2002) –
i.e., networks with the same number of nodes, links, and degree
distribution as the principle network, but different overall topol-
ogy. Although much consideration has been focused toward
unfolding individual properties of transcriptional motifs, both
theoretically (Magnan and Alon, 2003) and experimentally (Wu
and Rao, 2010), little remains known regulating their patterns of
interactions to the biological mechanisms of natural evolution.

In the supplementary materials of Milo et al. (2002), the
authors enumerate all possible 3–6 node transcriptional motifs.
Among the most common transcriptional motifs observed in
GRNs of the model bacterium Escherichia coli (herein E. coli)
and the baker’s yeast Saccharomyces cerevisiae (herein labeled
Yeast), are feed-forward loops (FFLs) and bifans (BFs), which can
be observed natively in Figures 1A,B. An FFL is hierarchically
composed of three genes, a top-level “father” gene that regu-
lates two “child” genes, wherein one of the child genes regulates
the other. This specific topology allows for interesting dynami-
cal consequences, such as pulses, signal delays, and irreversible

speed-ups (Magnan and Alon, 2003). By contrast, BFs constitute
four genes, two of which simultaneously regulate the other two;
these motifs have been reported as constituents of dense overlap-
ping regulons in the GRN “backbone” responsible for vital life
functions, such as nutrient metabolism and bio-synthesis (Alon,
2007).

It is notable to point out that many motifs are a product of
the coupling between the subnetworks illustrated in Figure 2:
the uplink, the downlink, and the three chain. For instance, a BF
can be viewed as two downlinks coupled by sharing both child
genes, while an FFL can be viewed as an uplink or a downlink
sharing all three genes with a three-chain. Moreover, we have con-
ducted computational analysis to estimate the percentages of the
gene-regulatory interactions that participate in these components
for an E. coli GRN. We observed that 54.7% of interactions are
involved with FFLs, 82% with BFs, 99.4% by downlinks, 83.9% by
uplinks and 78.3% by three-chains. Given these data for E. coli,
we hypothesize that downlinks represent a primary component
in the evolution of GRN topology. Despite that the impacts of
motif-coupling on the functionality of GRNs remain largely mys-
terious, some results have been reported in this particular area.
For example, investigations of gene coupling for different motif
patterns have been conducted using mathematical modeling of
transcription and translation in order to reveal substructure func-
tionalities (Yung-keun and Kwang-hyun, 2007; Kim et al., 2008;
Wu and Rao, 2010). Additionally, experiments have revealed that
bacteria can endure a great deal of regulatory interaction rewiring
via manipulation of protein-binding DNA sequences (Isalan et al.,
2008).

To further understand how transcriptional motifs “interact” via
regulatory bonds, we have previously studied how the individual
genes of E. coli are distributed through the FFLs of its GRN (Mayo
et al., 2012). There we contrasted node-motif distributions of E.
coli with “randomized” networks constructed node-by-node via
a preferential attachment algorithm that leveraged both linear
and non-linear attachment kernels (Krapivsky et al., 2000). This
modified preferential attachment algorithm resulted in FFL abun-
dances that compared well to the overall GRN of E. coli; however,
fidelity of the motif participation distribution of the nodes in the
generated network was very low when compared with that from
E. coli. In this paper, we extend this prior algorithm based on the
following two criteria:

1. Our modified preferential attachment algorithm was oblivious
to the distinction of the two different types of nodes in tran-
scriptional networks: genes and transcription factors (TFs).
Since transcriptional networks only allowTF-to-TF andTF-to-
gene edges, a distinction between these biological classes that
restricts allowed bonds may improve fidelity of the “grown”
networks to that from E. coli or other GRNs.

2. The previous algorithm considered attachment of one node
at a time to the substrate network for growth following the
general premise of preferential attachment. However, this
failed to generate the correct FFL motif distribution of the
nodes in the grown network as compared to the GRN of E.
coli. In this paper, we consider the attachment of an entire
downlink motif at a time using a preferential attachment
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FIGURE 1 | Embedded within sample GRN subgraphs of E. coli, the topological representation of (A) bifans. Here, transcription factors arcA and glcC
co-regulate glcD and glcG. On the other hand, (B) the feed-forward loop constitutes a transcription factor (such as metJ) that regulates both a gene (metE) and
another transcription factor (metR). The regulated transcription factor co-regulates the same gene (metR→metE).

methodology. One or more of the three nodes of the incom-
ing downlink may be shared with selected nodes in the sub-
strate network resulting in the growth of the network by one
(if two vertices are shared between the incoming downlink
and substrate network) or two nodes (if one vertex is shared
between the incoming downlink and substrate network) or

zero nodes (if all three vertices of the incoming downlink
are shared with corresponding three vertices in the sub-
strate) at a time. The motivation for a downlink-based pref-
erential attachment model stems from an observation that
99.4% of the nodes in the GRN of E. coli participate in
downlinks.
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FIGURE 2 | The three-node two-edge motif substructures.

2. RELATED WORKS

Algorithms [e.g., Mayo et al. (2012)] that generate scale-free
directed networks aim to mimic a target networks’ topological
properties, and are useful for understanding processes that gov-
ern dynamical formation of many complex networks. Features
considered in our previous analysis were the distributions of the
in-, out-, cumulative degrees, and the participation of genes in
FFLs (see Methods and Materials for details) of the largest con-
nected component of E. coli’s transcriptional-regulatory network.
We consider the same features in the analysis of the proposed
algorithm in this paper for comparing the generated and target
networks, except for gene participation, where we consider the
genes that participate in downlinks only, but not FFLs (Mayo et al.,
2012). A brief description of the modified preferential attachment
algorithm from Mayo et al. (2012) follows.

A candidate node in the existing substrate network of n nodes
at given time – i.e., the network resultant from the sum total of all
previous attachment steps – is denoted with subscript i (1≤ i≤ n).
The probability for this candidate node to be connected to an
external (incoming) node with a directed edge incident on the
external node is given by A(Ki, Ri), wherein Ki and Ri denote,
respectively, its out- and in-degrees. The probability that a link
is projected from the external node onto the candidate node is
given by B(Ki, Ri). The probabilities of all the candidate nodes are
normalized to form attachment kernels that determine whether a
link is to be considered (Krapivsky et al., 2000). The formulae for
three different attachment kernels considered inMayo et al. (2012)
are given in Table 1.

The algorithm from Mayo et al. (2012) allows for multiple
links to be placed per attachment step; therefore, it was necessary
to consider nucleation of the network from a connected 8-node
candidate network at t= 0 to avoid null attachments. A candidate
node is always selected at random if it has not been selected
before during a single attachment. Next, a random number, d, is
drawnuniformly from the interval [0,1]. If the condition d≤A(Ki,
Ri) is satisfied, an outgoing link from the candidate node is
connected to the external node. The process is then repeated
for an outgoing link originating from the external node that
connects to a candidate node, provided the probability satisfies
d≤B(Ki, Ri). This process is repeated mi − 1 times wherein mi
is an integer drawn at random from an exponential probability
distribution:

ρ(mi) = (f
1

1−m0 − 1)f−mi/(1−m0), (1)

wherein f = 0.25 and m0 ∈ {2, 3, 4} (Mayo et al., 2012).
The attachment mechanism of this algorithm is similar to that

of the Barabási-Albert model (Barabási and Albert, 1999) (BA),

TABLE 1 | Attachment kernels used here to “grow” networks (Mayo et al.,
2012).

Functional type Attachment Kernels

A(Ki, Ri) B(Ki, Ri)

Linear
Ki∑n
i=1 Ki

Ri∑n
i=1 Ri

Power-law
K0.8
i∑n

i=1 K0.8
i

R0.8
i∑n

i=1 R0.8
i

Sigmoid
Ki∑n

i=1 (Ki + Ri)
Ri∑n

i=1 (Ki + Ri)

in that it preserves the phenomenon of “the rich get richer and
the poor get poorer.” For instance, a node having relatively large
number of outgoing links will probably continue to increase its
out-degree during attachments together with a smaller chance
of connecting nodes with fewer incoming links. However, early
versions of the BA model did not account for the directional-
ity of the links; while it could not be expected to topological
properties of biological networks with high fidelity, it was very
successful in capturing many of their qualitative features, such
as the scale-free degree distribution. By contrast, other models,
such as the duplication divergence (DD) model suggested by
Vázquez et al. (2003), have been used to generate model biological
networks, which was later extended in Chung et al. (2003). The
DD model was designed based on the fact that proteins/genes
evolve through duplication followed by spasmodic mutations.
However, only very few of the networks grown show resemblance
to their final target structures in terms of degree distributions. The
modified preferential attachment algorithm in Mayo et al. (2012)
reflects a first attempt to create a directed biological network
growing algorithm capable of preserving the abundance of FFLs in
“grown” random networks with reasonable accuracy as compared
to the largest connected component of E. coli’s transcriptional
network.

3. MATERIALS AND METHODS

3.1. Transcriptional Network Datasets
To evaluate the fidelity of artificially constructed networks, we
sampled subnetworks from the entire body of the E. coli tran-
scriptional network, herein referred to as “target networks.” As
mentioned above, we defined two types of nodes arranged hier-
archically in these GRNs, classified as either (a) genes or (b) tran-
scription factors, and defined such that genes reflect a regulatory
terminus wherein they do not regulate other nodes (i.e., have no
outgoing links), and transcription factors are nodes that regulate
genes. Consequently, there are three possibilities for the class of
nodes that constitute a downlink motif:

1. three transcription factors (herein TTT);
2. a transcription factor regulating two genes (herein TGG); or
3. a transcription factor that regulates another transcription fac-

tor and a gene (herein TTG).

All transcriptional interactions of E. coli GRNs have been vali-
dated experimentally (Shen-Orr et al., 2002), and target networks
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have been rendered using GeneNetWeaver (Schaffter et al.,
2011) – a bioinformatics software originally designed to evaluate
the accuracy of network inference algorithms. GeneNetWeaver
provides options for sampling subnetworks from the GRNs of
both E. coli and S. cerevisiae. The E. coli network supported by
GeneNetWeaver is composed of 23 disjoint components together
encompassing 1,565 genes and 3,758 links. Here, we focus our
investigations on connected GRNs; hence, we consider E. coli’s
largest connected component (LCC), which itself contains 1,477
nodes and 3,671 links. Moreover, our analyses do not account
for the effects of self-loops associated with transcription factors.
For simplicity, we have removed them from the target networks
considered here.

3.2. Vertex-Based Motif Networks and
Downlink Coupling
Conventional preferential attachment models estimate the attach-
ment probability from the degree of single candidate nodes in
the target networks. However, to conceptualize a downlink-based
preferential attachment method, which is a collection of nodes,
we must first identify a way to express a downlink motif from the
substrate network into a single, effective “lumped” node.

To achieve this we propose to apply a network transformation
to the E. coli LCC, defined so that each node of the transformed
network represents a downlink derived from the LCC; downlink
“nodes” are connected to others with edges weighted by the
number of nodes shared between the two downlink motifs. For
example, two downlink motifs that share a single node would
equate with two nodes connected by a single link of unit weight.
Herein we term such a resultant network, a vertex-based motif
network (VMN). An illustration of this graph transformation is
shown in Figure 3. VMNs are therefore manifestly undirected
networks. Although E. coli is sparse (Genio et al., 2011), its equiv-
alent VMN contains many more nodes due to the approximately
278,000 downlinks supported in the network, most of which share
nodes due to the hierarchical nature of the E. coliGRN. Therefore,
it’s VMN is dense.

Figure 4 contrasts differences in the total degree distribu-
tions of three sample GRN subnetworks of sizes n= 500 (right
panels)with their correspondingVMNs (left panels). SomeVMNs
reached as much as 400-fold the number of nodes as their original
subnetwork. Finally, we note that degree distributions exhibited
by VMNs indicate an absence of correlation in the abundance of
shared vertices among downlink motifs.

3.3. Data Representation
Computationally, we have represented GRNs and VMNs using
square matrices, respectively, labeled G and V. A GRN link from
node j and incident on node k is represented by Gjk = 1, and the
absence of such connection is represented byGjk = 0, similar to an
adjacency matrix. Because GRN links carry no weight, the matrix
G may only hold values of 0 and 1. In G of size n, the downlink
count SDL can be determined mathematically using the equation:

SDL =
1
2

n∑
a=1

n∑
b=1

n∑
c=1

[Gab ∩ Gac] . (2)

However,V differs fromG in that it is symmetric with elements
given by the weights 0, 1, 2, and 3, depending on the number of
vertex overlaps between one downlink and another. Therefore,
Vlm =Vml = 0 if downlinks l and m do not share any nodes,
Vlm =Vml = 1 if downlinks l and m share one node, and so on.

3.4. Algorithm for Network Growth
A subnetwork of a target network, termed a “substrate,” accumu-
lates one downlink per attachment step. Table 2 illustrates possi-
ble downlink-to-downlink attachments, as based on the number
of vertices shared between a candidate and incoming downlink
motif (DL). In order to determine the appropriate attachment, the
following steps are considered.

3.4.1. Step 1 – Determine Candidate Downlink Type
In order to select an existing downlink from the substrate network
as a candidate for attachment, its type needs to be specified. We
denote the sums of the three downlink types as NTGG, NTTG, and
NTTT, such that

SDL = NTGG + NTTG + NTTT. (3)

Using Eq. 3, the probability that a selected candidate downlink
is of type TGG, TTG, or TTT is determined by, PTGG = NTGG

SDL ,
PTTG = NTTG

SDL , and PTTT = NTTT
SDL in that order. These proba-

bilities are later used as selection kernels to determine the type
of candidate downlink. A random number, r1, is generated with
uniform probability on the interval r1 ∈ [0,1]. If 0≤ r1 <PTGG, a

FIGURE 3 | The steps for forming the VMN from a GRN: (Step 1) An
initial GRN is considered. (Step 2) A list of the downlink structures is
derived from the GRN giving each downlink structure its unique id. (Step 3)
Each downlink’s constituent nodes are contrasted with every other downlink’s
nodes. Downlinks form topological interactions in the VMN if they have at
least one common node. The strength of the interaction is equivalent to the
number of shared nodes between the corresponding downlinks.
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FIGURE 4 | A plot of the number of nodes (vertical axis) vs. the cumulative degrees (horizontal axis) of VMNs (left) as compared to their respective
GRNs (right).

TGG downlink is considered as a candidate for attachment. If
PTGG ≤ r1 < PTGG +PTTG, a TTG downlink is considered. Other-
wise a TTT is considered for attachment.

3.4.2. Step 2 – Selection of Candidate Downlink
A VMN is created from the downlinks subscribing to the type
selected in Step 1 and the preferential attachment mechanism
is employed (Barabási and Albert, 1999). A random downlink l
is picked with uniform probability, and its degree centrality is
calculated as follows:

Cl =
∑t−1

a=1 Vla∑t
a=1

∑t
b=1 Vab

, (4)

wherein t represents the total number of downlinks in the VMN.
Next, a random number 0≤ r2 < 1, is compared with Cl such that
if r2 <Cl, l is selected as a candidate downlink. On the other hand,
if the condition is not satisfied another downlink is picked at
random and the process is repeated.

3.4.3. Step 3 – The Type of Incoming Downlink
Incoming downlinks may be either of the three downlink types,
generated at random with uniform probability.

3.4.4. Step 4 – The Number of Shared Nodes
A similar strategy to that of Step 1 is implemented, except that the
probability distribution depends on the number of shared nodes
between pairs of downlinks and not the number of each type of
downlink. There are Spair = SDL (SDL – 1)/2 total cases of downlink
pairs sharing nodes, each of which can share 0, 1, 2, or 3 nodes.
Since our model does not account for disjoint components, we
ignore the cases where downlink pairs share no nodes. We denote
the number of pairs sharing 1, 2, and 3 nodes as Ns1, Ns2, and

Ns3, respectively. Consequently the probabilities for node sharing
can be determined by Ps1 = Ns1

(Ns1+Ns2+Ns3)
, Ps2 = Ns2

(Ns1+Ns2+Ns3)
,

and Ps3 = Ns3
(Ns1+Ns2+Ns3)

. Next a third random variable 0≤ r3 ≤ 1
will be compared with the ranges (0, Ps1), (Ps1, Ps1 + Ps2), and
(Ps1 +Ps2, Ps1 + Ps2 +Ps3), respectively, to determine the number
of shared nodes as was done in Step 1.

3.4.5. Step 5 – The Attachment Pattern
Knowing the candidate downlink, the type of incoming downlink
and the number of nodes to be shared (or overlapped), we can
use Table 3 to proceed with an attachment. For example, having
selected a candidate TGG, an incoming TTG, whichwill share two
nodes, from Table 3 we are only allowed to proceed with three
attachment patterns {P4, P5, P6}. Each pattern is given an equal
probability of being chosen (here 1/3). A process similar to the
random number generated in Steps 1 and 4 is used to determine
which pattern will be chosen.

3.5. Maximum Likelihood Estimation
A key task in the analysis of many biological networks is to
estimate the exponent of a power-law type degree distribution
(Clauset et al., 2009). To assess the performance of our proposed
algorithm, we evaluated the following relationships:

• in-degree distribution, viewed as a plot of the different in-
degrees against the number of nodes possessing those in-
degrees;

• out-degree distribution, viewed as a plot of the different out-
degrees against the number of nodes that posses those out-
degrees;

• total-degree distribution, taken as a plot of the different total-
degrees against the number of nodes that posses those total-
degrees; and
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TABLE 2 | Every type of potential downlink-to-downlink attachment.

Category Pattern id Pattern graph Attachment description Applicable DL–DL combinations

One node
attachment

P1 Root TF coupling TGG–TGG, TTG–TGG, TTT–TGG, TGG–TTG,
TTG–TTG, TTT–TTG, TGG–TTT, TTG–TTT, TTT–TTT

P2 Leaf TF to root TF coupling TTG–TGG, TTT–TGG, TGG–TTG, TTG–TTG,
TTT–TTG, TGG–TTT, TTG–TTT, TTT–TTT

P3 Leaf gene coupling TGG–TGG, TTG–TGG, TGG–TTG, TTG–TTG,
TTT–TTG, TTG–TTT, TTT–TTT

Two node
attachment

P4 (1) Root TF coupling and (2) one leaf gene
coupling

TGG–TGG, TTG–TGG TGG–TTG, TTG–TTG,
TTT–TTG, TTG–TTT, TTT–TTT

P5 (1) Root TF couples with leaf TF, and (2) one leaf
TF couples with root TF

TGG–TTG, TTG–TTG, TTT–TTT

P6 (1) Leaf TF couples with root TF, and (2) one leaf
gene couples with leaf node

TTG–TGG, TGG–TTG, TTG–TTG, TTT–TTG,
TTT–TTT

P7 (1) Leaf gene couples with leaf gene, and (2) one
leaf gene couples with leaf gene

TGG–TGG, TTG–TTG, TTT–TTT

Three node
attachment

P8 (1) Root TF couples with leaf TF, and (2) one leaf
TF couples with root TF, and (3) one leaf gene
couples with leaf gene

TTG–TTG, TTT–TTT

TABLE 3 | Applicable downlink to downlink attachments for a given candidate downlink, incoming downlink, and number of vertex overlaps.

DL–DL
combination

Applicable
patterns

DL–DL
combination

Applicable
patterns

DL–DL
combination

Applicable
patterns

One node attachment TGG–TGG {P1, P3} TTG–TGG {P1, P2, P3} TTT–TGG {P1, P2}
TGG–TTG {P1, P2, P3} TTG–TTG {P1, P2, P3} TTT–TTG {P1, P2, P3}
TGG–TTT {P1, P2} TTG–TTT {P1, P2, P3} TTT–TTT {P1, P2, P3}

Two node attachment TGG–TGG {P4, P7} TTG–TGG {P4, P6} TTT–TGG NA
TGG–TTG {P4, P5, P6} TTG–TTG {P4, P5, P6, P7} TTT–TTG {P4, P6}
TGG–TTT NA TTG–TTT {P4} TTT–TTT {P4, P5, P6, P7}

Three node attachment TGG–TGG NA TTG–TGG TTT–TGG NA
TGG–TTG NA TTG–TTG {P8} TTT–TTG NA
TGG–TTT NA TTG–TTT TTT–TTT {P8}
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TABLE 4 | Statistics for the difference between power-law exponents of candidate and target network’s degree distributions resulting from either the
attachment kernel method reported in Mayo et al. (2012), or from the downlink attachment method reported here.

Attachment probability Networks

1 2 3 4 5

In Out Total In Out Total In Out Total In Out Total In Out Total

Attachment kernel method
Linear 0.91±

0.6
0.94±
0.6

0.81±
0.6

0.25±
0.3

0.55±
0.2

0.18±
0.1

0.86±
0.4

0.74±
0.3

0.63±
0.6

1.18±
0.5

0.87±
0.4

0.75±
0.7

0.8±
0.5

1.92±
0.2

0.21±
0.3

Power-law 1.09±
0.5

1.08±
0.5

0.99±
0.7

0.23±
0.2

0.57±
0.2

0.16±
0.1

0.8±
0.4

0.71±
0.4

0.73±
0.7

1.09±
0.5

0.99±
0.2

0.46±
0.6

0.88±
0.6

1.91±
0.2

0.19±
0.4

Sigmoidal 0.92±
0.6

0.98±
0.5

0.97±
0.7

0.42±
0.3

0.63±
0.1

0.15±
0.1

1.01±
0.5

0.66±
0.3

0.82±
0.6

1.25±
0.5

0.65±
0.4

1.09±
0.6

0.62±
0.5

1.91±
0.2

0.3±
0.2

Downlink attachment method
Target attachment 0.08±

0.1
0.96±
0.6

0.13±
0.1

0.38±
0.0

0.21±
0.3

0.07±
0.1

0.62±
0.5

0.12±
0.1

0.1±
0.0

0.22±
0.2

0.44±
0.3

0.07±
0.0

1.89±
0.0

1.9±
0.0

0.35±
0.3

Substrate attachment 0.16±
0.1

1.4±
0.2

0.61±
0.4

0.37±
0.0

0.69±
0.2

0.02±
0.0

0.38±
0.0

0.9±
0.0

0.36±
0.6

0.48±
0.7

0.94±
0.2

0.37±
0.3

1.9±
0.0

1.9±
0.0

0.41±
0.4

• distribution of genes participating in downlinks, which is the
relationship between the number of downlinks, vs. the number
of nodes that participate in all the different downlinks of the
network.

A curve-fitting methodology is commonly used to estimate
the fitted parameters; however, a least squares-based optimization
algorithm may not accurately determine whether the data are
power-law distributed (Hoogenboom et al., 2006; Clauset et al.,
2009). To address this issue, Hoogenboom et al. (2006) presented
a maximum likelihood estimation-based approach to determine
whether a distribution follows a power-law. We used this method
to compare best-fit values of power-law exponents for target
networks with the substrate networks grown using our proposed
algorithm.

4. RESULTS AND DISCUSSION

4.1. Fidelity of the Downlink-Based
Preferential Attachment Mechanism
We extracted five different target networks of 100 nodes from
the E. coli LCC using the GeneNetWeaver software in the man-
ner explained above. We extracted substrate subnetworks upon
which to “grow” new networks from these target networks of
relative sizes equal to 10, 20, 30, and 40 nodes. We sampled
five substrates of each size, resulting in a total of 20 sub-
strate subnetworks per target network derived from the E. coli
LCC. Each substrate network was grown to a size of 100 nodes
using two algorithms: (i) the attachment kernel (linear, power-
law, and sigmoidal) method as presented in Mayo et al. (2012)
and (ii) the downlink-based attachment mechanism explained
above.

For networks generated using the downlink-based preferential
attachmentmechanism, we calculated the three types of downlink
attachment probabilities in two ways. In the first method, termed
“target attachment,” values for the fraction of downlinks of each
type, PTGG, PTTG, PTTT, and fractions of downlinks that share one

(Ps1 ), two (Ps2 ), and three (Ps3 ) vertices were all calculated from
the target networks derived from the E. coli LCC. This method
is biased, given that we must use the structure of the biological
networks to inform that of the “grown” networks. The second
method, termed “substrate attachment,” calculates the same prob-
abilities as the first method, but iteratively from the current state
of the grown network. This method is unbiased, in the sense that
it is ignorant of the final topology of the target network.

Degree distributions of the “grown” networks were fitted to the
data using a power-law equation, and each of the two methods
was compared individually to the fitted exponents of the biological
networks as a measure of their fidelity. Exponents, γ, were esti-
mated not only for in-, out-, total degree distributions (Table 4)
but also for distributions relating the participation of nodes in
downlink substructures (Table 5). A lower value for the difference
in fitted exponents suggests a higher fidelity of the attachment
model to the properties of the “target” biological network. As
can be seen from Table 4, fidelity of the degree distributions
between grown and target networks is higher for downlink-based
attachment mechanisms as compared to the attachment kernel
method of Mayo et al. (2012).

Error bounds for the distribution of nodes participating in
downlink substructures show similar traits to that observed for the
degree distributions. Out of the five substrates, the fifth network
had marginally better distributions when grown with single node
attachments for the same reasons explained above. Additionally,
using the probabilities calculated from the target network (i.e.,
“target attachment, Tables 4 and 5) does not always lead to higher
fidelity, as can be seen in the fourth and fifth networks. This is
again because quite a few nodes do not participate in downlink
structures and hence the probability distributions from the goal
network make the counts skewed.

4.2. Evolutionary Mechanisms and
Downlink-Based Network Growth
Preferential attachment mechanisms have been suggested, some-
times in addition to other mechanisms (e.g., duplication events),
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TABLE 5 | Statistics or the difference between fitted power-law exponent
for candidate and target networks’ distributions of genes participating in
downlinks.

Attachment probability Networks

1 2 3 4 5

Attachment kernel method
Linear 1.17±

0.5
1.19±
0.5

0.79±
0.4

1.32±
0.4

0.33±
0.3

Power-law 0.9±
0.5

1.27±
0.6

0.72±
0.1

1.07±
0.5

0.51±
0.2

Sigmoidal 1.43±
0.0

1.1±
0.3

0.86±
0.1

1.56±
0.1

0.15±
0.1

Downlink attachment method
Target attachment 0.67±

0.2
0.43±
0.1

0.34±
0.0

0.75±
0.4

0.63±
0.6

Substrate attachment 0.75±
0.3

1.2±
0.5

0.34±
0.0

0.69±
0.4

0.62±
0.6

as models of evolutionary formation of gene-regulatory (Chung
et al., 2003), protein interaction (Eisenberg and Levanon, 2003),
and metabolic networks (Light et al., 2005). For gene-regulatory
networks, mutations to DNA bases may alter the affinity of DNA-
binding proteins or cis-regulatory modules to result in rewiring
or admission of novel regulatory interactions (Erwin and David-
son, 2009). It is plausible that evolutionary mutations to DNA
sequences result in creation of whole downlink transcriptional
modules over a single generation, given the local nature of cis-
regulatorymutationmechanisms and the potential for gene dupli-
cation events. For example, base-pair mutations can alter the
availability of new binding sites, which manipulates the “distance”
between interacting sites via insertion or deletion of cis-regulatory
modules or sub-functionalization due to regional duplications,
among others (Erwin and Davidson, 2009). At the system level,
correlations between mutations over successive generations may
be needed to consistently evolve new cis-regulatory modules
and gene-regulatory interactions. However, even a node-by-node
attachment mechanism (i.e., DNA sequence mutations that result
in a single novel gene-regulatory interaction) holds potential for
multiple novel gene-regulatory interactions formed over a single
generation (Chung et al., 2003), which may explain the fewer
nodes in the GRN observed to not participate in downlink mod-
ules. This can be linked to the error bounds generated for the
fifth substrate, where results are marginally better for single node
attachments; in this network only approximately 80% of the nodes
participated in downlinkmotifs as opposed to ≥90% for networks
labeled 1–4.

It is currently difficult to directly test hypotheses regarding
network “growth” mechanisms due to experimental difficulties
in manipulating the evolution of transcriptional networks in
microorganisms such as bacteria. An attempt to experimentally
emulate the “bottom up” approach employed in many attachment
or duplication-based network growth mechanisms, such as the
motif-based attachment method proposed in this paper, may be
therefore impractical with current technologies. One alternative
might be to reverse the growth process. Transcriptional regulatory

networks, such as the E. coli network dataset analyzed here, serve
as target states of the growth mechanisms; beginning with these
fully formed networks and sequentially “deactivating” regulatory
interactions between genes and transcription factors may provide
valuable insight into the processes that formed them. For example,
protein production could be suppressedwithRNAi tailored to spe-
cific mRNA, thereby eliminating a regulatory interaction by pre-
venting protein proliferation; another strategy could be to target
a transcription factor’s activated state, perhaps by interfering with
phosphorylation/dephosphorylation reactions through crosstalk
(Rowland and Deeds, 2014), thus modulating its binding affinity
to the correct DNA sequence and preventing gene activation. As
a proof of principle, some experimental efforts have already suc-
ceeded in extensively “rewiring” E. coli’s transcriptional regulatory
network (Isalan et al., 2008). Even so, future work is needed to
predict dynamical consequences of adding or removing regula-
tory interactions specific to the attachment mechanism (in our
case, regulatory interactions associated with downlink motifs),
which could be evaluated using these or other experimental
methods.

Recent developments in “in vitro” circuit design usingmicroflu-
idic cell-free systems for the rapid prototyping of synthetic genetic
networks as a “biomolecular breadboard” for molecular program-
ing (OpenWetWare, 2014) is another promising avenue for exper-
imentally validating the network growth principles proposed here.
The biomolecular breadboards project has successfully synthe-
sized different types of feed-forward loop motifs (Sen et al., 2014)
and can be extended to design coupled FFL circuits. Similarly,
such synthetic biology circuits of coupled downlink motifs can
experimentally validate the dynamical consequences of our pro-
posed network growth method thereby creating new hypotheses
on whether coupled downlinks exhibit any preferences in natural
selection. Currently however, this can only be achieved at a smaller
scale by synthesizing small networks of connected downlinks.

5. CONCLUSION

We have presented a directed transcriptional network growing
algorithm using the concept of motif-based preferential attach-
ment, which allows for several new genes and regulatory interac-
tions to be accumulated per step in the network evolution. While
many existing algorithms in this area grow undirected networks
using the preferential attachment model, or directed networks
using the modified preferential attachment scheme with vari-
ous attachment kernels, they fail to generate networks with high
fidelity of motif distributions when contrasted with real-world
biological networks. We have proposed using entire transcrip-
tional motifs, which some view as “building blocks of complex
networks” (Alon, 2007), as the fundamental unit of network evo-
lution, rather than the accumulation of single genes and regulatory
interactions at each potential growth opportunity. Our resulting
networks built using this method exhibit higher fidelity to E. coli
transcriptional networks, both in terms of degree distributions
and downlink distributions.

Our algorithm accounts not only for the abundance of down-
linkmotifs, which seem to covermost of the nodes and edges from
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the E. coli transcription regulatory network, but also accounts
for two classes of nodes in gene-regulatory networks: genes and
transcription factors. One interesting line of future work will
be to understand how other transcriptional motifs and types of
coupling may contribute to the overall properties of an evolved
network model. Another possibility is to consider various cen-
trality measures based on a network renormalized using VMN-
based graph transformations. Nevertheless, realistic models of
gene-regulatory network evolution will serve to aid future investi-
gations into diverse phenomena, from dynamical signaling over
transcriptional-regulatory networks to efforts relating network
topology with biological function.
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