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Background: Pyroptosis, a newly discovered type of programmed cell death,

has both anti-tumor and tumor-promoting effects on carcinogenesis. In

hepatocellular carcinoma (HCC), however, the associations between

pyroptosis-regulated genes and prognosis, immune microenvironment, and

immunotherapy response remain unclear.

Samples and methods: Sequencing data were collected from The Cancer

Genome Atlas database, The International Cancer Genome Consortium

(ICGC), and The Integrative Molecular Database of Hepatocellular Carcinoma

(HCCDB). First, we investigated the expression levels and copy number

variations (CNVs) of 56 pyroptosis genes in HCC and pan-cancer. Next, we

identified 614 genes related to 56 pyroptosis-associated genes at the

expression, mutation, and CNVs levels. Pathway enrichment analysis of

614 genes in the Hallmark, KEGG, and Reactome databases yielded a total of

253 significant signaling pathways. The pyroptosis-regulated genes (PRGs)

comprised 108 genes that were derived from the top 20 signaling pathways,

of which 57 genes had prognostic value in HCC. The least absolute shrinkage

and selection operator (LASSO) analysis was performed to screen for PRGs with

prognostic values. Ultimately, we constructed a risk score model with seven

PRGs to predict HCC prognosis and validated its predictive value in three

independent HCC cohorts. Risk scores were used to illustrate receiver

operating characteristic (ROC) curves predicting 1, 3, and 5-years overall

survival (OS). Single-sample gene set enrichment analysis (ssGSEA), was
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performed to study 28 types of immune cells infiltrated in HCC. The relationship

between the risk signature and six immune checkpoint genes and

immunotherapy was analyzed.

Results: A total of seven PRGs were obtained following multiple screening

steps. The risk score model containing seven PRGs was found to correlate

significantly with the HCC prognosis of the training group. In addition, we

validated the risk score model in two additional HCC cohorts. The risk score

significantly correlated with infiltrating immune cells (i. e. CD4+ T cells, etc.), ICB

key molecules (i. e. HAVCR2, etc.), and ICB response.

Conclusions: This study demonstrated a vital role of PRGs in predicting the

prognosis and immunotherapy response of HCC patients. The risk model could

pave the way for drugs targeting pyroptosis and immune checkpoints in HCC.

KEYWORDS

hepatocellular carcinoma, pyroptosis, prognosis, immunotherapy response, immune
infiltrated cells

Introduction

Liver cancer was ranked sixth in cancer incidence and

fourth in tumor-related mortality globally (Bray et al., 2018).

Each year, approximately 841,000 new cases of liver cancer are

diagnosed, and 782,000 people succumb to it (McGlynn et al.,

2021). The majority of liver cancer diagnoses and fatalities are

due to Hepatocellular carcinoma (HCC), the primary

histologic type. This disease remains undetected until its

advanced stage. Therefore, the global prognosis for liver

cancer is poor (Golabi et al., 2017). In the carcinogenesis of

HCC, many immunosuppressive cells coexist and interact

with one another (Lu et al., 2019). Antibodies against PD-1

and CTLA-4 can eradicate HCC cells by stimulating T cell

activation (Hida, 2018). Despite its effectiveness in treating

other tumors, Immunotherapy has progressed extremely

slowly for HCC.

Pyroptosis, a form of regulated cell death, is triggered by

inflammatory caspases and characterized by the cleavage of pore-

forming effector proteins: gasdermins (Kovacs and Miao, 2017).

In the classical pathway, the inflammasomes recruit their key

adapter protein, an apoptosis-associated speck-like protein with

a caspase recruitment domain (ASC), to bind to procaspase-1

and activate caspase-1. Caspase-1 catalyzes the proteolytic

cleavage of proIL-18/1β and gasdermin D (GSDMD). The

N-terminal pore-forming domain (PFD) of GSDMD creates

pores in the plasma membrane, which results in the release of

IL-18/1β, the swelling of cells, and ultimately the rupturing of

membranes (Kovacs and Miao, 2017). In the non-canonical

method, bacterial lipopolysaccharide (LPS) activates caspase-4/

5/11, resulting in pyroptosis through GSDMD cleavage (Ruan

et al., 2020). Recent studies have identified a novel pyroptosis

pathway dependent on the activation of caspase-3, a common

substrate of apoptosis. Mature caspase-3 mediates the cleavage of

gasdermin E (GSDME), separating its N-terminal PFD from its

C-terminal. The N-terminal PFD of GSDME creates pores in the

membrane and induces pyroptosis (Kovacs and Miao, 2017).

Pyroptosis is becoming a popular topic as it is involved in all

stages of tumor progression. In stomach cancer, decreased

GSDMD expression enhanced tumor growth by accelerating

cell proliferation (Wang W. J. et al., 2018). Another member

of the Gasdermin family, GSDME, induces pyroptosis in a

caspase-3-dependent manner and acts as a tumor suppressor

in stomach cancer (Wang Y. et al., 2018). Moreover, decreased

GSDME levels were correlated with a shorter survival time in

breast cancer (Zhang et al., 2020). Here, GSDME is considered a

tumor suppressor by inducing pyroptosis and strengthening the

anti-tumor effect (Zhang et al., 2020). The classical

inflammasome sensor, NLRP1 can induce apoptosis and

pyroptosis (Gorfu et al., 2014). NALP1 mRNA and protein

levels are reported to be reduced in colorectal cancer

compared to adjacent normal cells. 5-aza-2-deoxycytidine

(DAC) restores the expression of NALP1 and inhibits tumor

proliferation by inducing NLRP1-mediated caspase-1-dependent

pyroptosis (Chen et al., 2015). When compared to healthy

ovaries, GSDMD and gasdermin C (GSDMC) expression

increases in serous ovarian cancer, while GSDME expression

decreases (Berkel and Cacan, 2021). These studies have provided

a solid theoretical basis for the relationship between cancer and

pyroptosis.

As previously stated, accumulating evidence suggests that

pyroptosis plays an important role in predicting prognosis and

regulating the immune environment across multiple cancers.

Based on a risk model consist of 15 pyroptosis-related lncRNAs,

researchers found that the high-risk group displayed higher

immune infiltration fraction and activity in glioblastoma

(Xing et al., 2022). In a pyroptosis-derived lncRNA pair

prognostics signature in gastric cancer, the high-risk group

possessed lower levels of macrophage, monocytes, myeloid

dendritic cells, endothelial cells, and cancer-associated
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fibroblasts compared with the low-risk group (Guo et al., 2022).

A lncRNA signature encompassing 14 pyroptosis-related

lncRNAs revealed that the high-risk group characterized an

immunologically “cold” profile based on the immune cell

infiltration landscape in head and neck squamous cell

carcinoma (Zhu et al., 2021). However, the precise effect of

pyroptosis on the tumor microenvironment (TME) and

immune response in HCC is unknown. This study

comprehensively examined the genetic and transcriptional

changes of genes on the pyroptosis-regulated signal pathway.

We further established a risk model to predict the overall survival

of HCC, which showed high accuracy in both the training and

validation groups. Our findings established a good predictor of

prognosis, immune subtype, and immunotherapy responsiveness

in patients with HCC.

Materials and methods

Data sources

Supplementary Figure S1 shows the workflow chart for this

study. Gene expression, sample CNVs, and survival data of liver

hepatocellular carcinoma (LIHC), esophageal squamous carcinoma

(ESCA), lung squamous cell carcinoma (LUSC), lung

adenocarcinoma (LUAD), stomach adenocarcinoma (STAD),

colon adenocarcinoma (COAD) and rectum adenocarcinoma

(READ) were obtained from The Cancer Genome Atlas (TCGA)

website (https://xenabrowser.net/datapages/). The “CGDSR” R

package was used to obtain corresponding clinical information.

We used the “TCGA biolinks” R package to download the mutation

data. The training group comprised 370 HCC patients with survival

data from the TCGA-LIHC database. For model validation group 1,

we obtained 243 HCC patients’ expression matrix and clinical

information from the ICGC database (https://dcc.icgc.org/

releases/current/Projects). Validation group 2 consist of two

cohorts of HCC patients with expression and survival data,

HCCDB6 (n = 209)and HCCDB17 (n = 94), which were

obtained from the HCCDB database (http://lifeome.net/database/

hccdb/home.html). All survival data and clinical parameters from

the training and validation groups are summarized in

Supplementary Table S1_TCGA_clin.xlsx, Supplementary Table

1_ICGC_clin.xlsx, and Supplementary Table 1_B6_17_clin,

respectively. Table 1 provides the sample information.

Consensus analysis of pyroptosis genes

58 pyroptosis genes were obtained from the literature (Ye et al.,

2021) (PMID33828074) and the REACTOME_PYROPTOSIS gene

set in the Molecular Signatures Database (MSIGDB) (https://www.

gsea-msigdb.org/gsea/msigdb/) (Table 2). The TCGA-LIHC dataset

has no expression data for GSDME or PJVK. Finally, we used

56 pyroptosis genes for subsequent analysis.

The expression patterns, genetic variations, and survival

analysis of pyroptosis genes in various cancer types

The mRNA levels of 56 pyroptosis genes were compared

using the Wilcoxon test between normal liver tissue and HCC

samples. The expression profiles of 56 pyroptosis genes in ESCA,

LUSC, LUAD, STAD, COAD, and READ were determined. The

copy number variations (CNVs) of pyroptosis genes were also

examined in pan-cancer. The log-rank test was used to compare

the differences in overall survival (OS) between the high and low

groups based on pyroptosis gene expression.

Screening of candidate genes

Our goal was to screen genes that regulate the 56 pyroptosis

genes. First, the correlations between the 56 pyroptosis genes and the

rest 19,065 non-pyroptosis genes were assessed at three levels:

expression, mutation, and CNVslevels. A total of 614 genes were

identified as significantly correlated genes with a threshold of | Cor

| > 0.5 and an adjusted p-value of <0.05. Secondly, we carried out

pathway enrichment analysis to find out which pathways are the

614 genes involved in. Using the tools of KEGG (Kanehisa et al.,

2017), HALLMARK, and REACTOME in the metascape database

(https://metascape.org/) (Zhou et al., 2019), we screened

253 pathways the 614 candidate genes enriched in. The

top20 out of 253 pathways were selected as key pathways. A

total of 108 genes in the top20 pathways were identified as key

genes for model construction.

Functional enrichment analysis

The “ClusterProfiler” R packages were used to perform

functional enrichment analysis of candidate genes (Huang

et al., 2009). The Top10 significantly enriched pathways in

biological process (BP), molecular function (MF), and cellular

component (CC) were identified.

TABLE 1 Sample information.

Data Sample size Usage

TCGA-LIHC 370 T vs. 50 N Model building

TCGA-ESCA 151 T vs. 11 N Characteristic description

TCGA-STAD 348 T vs. 31 N Characteristic description

TCGA-COAD 430 T vs. 39 N Characteristic description

TCGA-READ 154 T vs. 9 N Characteristic description

TCGA-LUAD 497 T vs. 58 N Characteristic description

TCGA-LUSC 489 T vs. 49 N Characteristic description

ICGC-LIHC 243 T Model validation

HCCDB6+ HCCDB17 303T Model validation
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Model construction and independent
verification

Survival analysis revealed that 57 out of the 108 key genes

have prognostic value in HCC. The 57 key genes were

subjected to Lasso regression analysis (Frost and Amos,

2017) and a risk model consisting of seven genes was

constructed. The risk score was calculated as follows:

Risk score = ∑(genei*coefi).

Where genei is the expression level of key genes after Lasso

regression, and coefi is the weight.

This formula was used to calculate the risk scores in the

training and validation groups. The optimal cut-off value was

used to divide HCC patients into the high- and low-risk

groups. Kaplan-Meier plotter and ROC curve were used to

evaluate the prediction power of the prognostic model in one

training group and three validation groups.

Quantification of immune infiltrating cells
proportions

Single sample gene set enrichment analysis (ssGSEA) is

an extension of the GSEA method, which allows the

definition of an enrichment score that represents the

absolute degree of enrichment of the gene set in each

sample within a given dataset (Charoentong et al., 2017).

To determine the proportions and differences in immune

cells in different risk groups, we used ssGSEA in the R

package GSVA to evaluate the infiltration level of 28 types

of immune cells. The detailed method has been described in

previous studies (Liu et al., 2021; Guo et al., 2022). The

Wilcoxon test was used to compare the differences between

the high- and low-risk groups. Correlations between the

risk score and the immune cell infiltration were further

explored.

Evaluation of immune checkpoint profiles

The relationship between six immune checkpoints

(HAVCR2, CTLA-4, PDCD1, PDCD1LG2, IDO1, and

CD274) and risk group were examined.

Immunotherapy assessment

Immunophenoscore (IPS) could act as a good predictor of

CTLA-4 and PD-1 responsiveness as well as the response to

immunotherapy. The immune checkpoint inhibitor (ICI)

immunophenoscore file was obtained from the Cancer

Immunome Database (TCIA, https://tcia.at/home) (Van

Allen et al., 2015; Hugo et al., 2017). We then compared

the responses to immunotherapy between the high- and low-

risk groups.

Statistical analysis

ROC curves and the area under curves (AUC) were

computed using the “pROC” and the “timeROC” packages,

respectively. Analyses between the two or more groups were

performed using the Wilcox test and the Kruskal Wallis test,

respectively. We used the Kaplan-Meier method for survival

analysis and the log-rank test to calculate the significance of

differences. All statistical analyses were performed in R

4.3.0 and SPSS16 software. All statistical p values are two-

side and p < 0·05 represents statistical significance. In the

statistical graph, ns denotes p ≥ 0.05, * denotes p < 0.05, **:

denotes p ≤ 0.01, *** denotes p ≤ 0.001, **** denotes p ≤
0.0001.

Results

Changes in the transcriptional and genetic
expression of 56 pyroptosis genes in HCC
and pan-cancer

In comparison to normal controls, 46 out of the 56 (82.1%)

pyroptosis genes were dysregulated in HCC. Thirty-six

pyroptosis genes exhibited significantly higher transcriptional

levels in HCC, including APIP, BAK1, BAX, CASP3, CASP4,

CASP6, CASP8, CASP9, CHMP2A, CHMP2B, CHMP3,

CHMP4A, CHMP4B, CHMP4C, CHMP6, CHMP7, CYCS,

DFNA5, DHX9, GPX4, GSDMB, GSDMC, GSDMD, HMGB1,

IL1A, IRF2, NLBP1, NLRP9, NOD1, NOD2, PLCG1, PRKACA,

PYCARD, SCAF11, TIRAP, and TP53. In contrast, the

TABLE 2 Fifty-eight pyroptosis genes.

Source Number Gene name

PMID33828074 33 AIM2 CASP1 CASP3 CASP4 CASP5 CASP6 CASP8 CASP9 ELANE GPX4 GSDMA GSDMB GSDMC GSDMD GSDME
IL18 IL1B IL6 NLRC4 NLRP1 NLRP2 NLRP3 NLRP6 NLRP7 NOD1 NOD2 PJVK PLCG1 PRKACA PYCARD
SCAF11 TIRAP TNF

MSIGDB 25 APIP DHX9 DFNA5 GZMA GZMB NAIP NLRP9 ZBP1 BAK1 BAX CHMP2A CHMP2B CHMP3 CHMP4A CHMP4B
CHMP4C CHMP6 CHMP7 CYCS HMGB1 IL1A IRF1 IRF2 TP53 TP63
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FIGURE 1
The expression profile of 56 pyroptosis genes in HCC. (A) Heat map illustrating the expression of 56 pyroptosis genes in HCC samples and
normal liver tissues. The color from blue to red indicates a transition from low expression to high expression. * Means p < 0.05, ** means p < 0.01,
***means p < 0.001 (the same below).; (B)Heat map of the expression of 56 pyroptosis genes in male and female HCC patients; (C)Heat map of the
expression of 56 pyroptosis genes in HCC patients of different age groups. The green color indicates patients ≤65 years old. The orange color
indicates patients >65 years old. (D) The expression of BAK1 and BAX in HCC samples with low or high histologic grade. (E) The expression of
CHMP7 and NLRP6 in HCC patients with N0, N1, or NX. (F) The expression of CASP1 and CHMP2A in HCC patients with M0, M1, or MX.

Frontiers in Molecular Biosciences frontiersin.org05

Zhang and Wang 10.3389/fmolb.2022.890215

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.890215


expression levels of ten pyroptosis genes, including AIM2,

ELANE, IL-1β, IL6, NLRC4, NLRP3, NLRP6, NLRP7, TNF,
and TP63, were significantly lower than those of healthy

controls (Figure1A). In subgroup analysis, 14 genes (SCAF11,

TIRAP, CASP3, PRKACA, NLRP2, GSDMD, CHMP4B, CYCS,

CASP6, BAK1, CHMP3, NOD2, NAIP, and NLRC4) exhibited

significant expression differences between male and female

patients (Figure1B). Nine genes (PRKACA, NLRP6, GPX4,

CHMP4C, CHMP4A, TP53, CHMP7, CHMP3, and ELANE)

exhibited expression differences between patients under or over

65 years of age (Figure1C). The expressions of BAK1 and BAX

were significantly higher in high histologic grade HCC samples

than that in low-grade HCC samples (Figure 1D, see

Supplementary Figure S2 for all genes). Patients with N0 or

NX had significantly different expressions of CHMP7 and

NLRP6 (Figure1E, see Supplementary Figure S3 for all genes).

CASP1 and CHMP2A mRNA levels were significantly different

between M0 or MX patients (Figure 1F, see Supplementary

Figure S4 for all genes). Our study demonstrated that the

expression patterns of pyroptosis genes may be indicative of

distinct traits in HCC patients.

Subsequently, we examine the expression levels of

56 pyroptosis genes between pan-cancer and their

corresponding normal controls, including esophageal

squamous carcinoma (ESCA), lung squamous cell carcinoma

(LUSC), lung adenocarcinoma (LUAD), stomach

adenocarcinoma (STAD), colon adenocarcinoma (COAD),

and rectum adenocarcinoma (READ). The majority of

pyroptosis genes exhibited significant dysregulation in tumor

tissues compared to normal controls (Figure 2A-2F, single-gene

comparison of single cancer was shown in Supplementary Figure

S5–S10).

Meanwhile, we explored the copy number variations

(CNVs) of pyroptosis genes in pan-cancer. The result

showed the 56 pyroptosis genes had multiple CNVs in

these cancers. Here, we used the CNVs modification of four

genes (AIM2, APIP, BAK1, and CASP1) in pan-cancer as an

example (Figure 2G, see all genes in Supplementary

Figure S11).

Prognostic value of pyroptosis genes in
HCC and pan-cancer

Tumor samples were divided into high and low expression

groups based on the median value of gene expression.

According to the results of the survival analysis, 14 out of

the 56 Pyroptosis genes were significantly associated with

HCC prognosis. The high expression of BAK1, BAX,

CASP4, CHMP2B, CHMP3, CHMP4A, CHMP4B, DFNA5,

DHX9, IL-1A, IRF2, NLRP6, NOD1, and SCAF11 predicted

poor prognosis in HCC (Figure 3, see the rest genes in

Supplementary Figure S12).

FIGURE 2
The expression and copy number variations (CNVs) of
56 pyroptosis genes in pan-cancer. (A–F): The expression of
56 pyroptosis genes in esophageal squamous carcinoma (ESCA), lung
squamous carcinoma (LUSC), lung adenocarcinoma (LUAD),
stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD) and
rectum adenocarcinoma (READ). *Indicates p < 0.05, ** indicates p <
0.01, ***indicates p < 0.001 (the same below). (G): The copy
number variations of AIM2, APIP, and BAK1 in pan-cancer. The orange
color indicates amplification (Amp). The blue color indicates deletion
(Del). The grey color indicates no copy number variations (None).

Frontiers in Molecular Biosciences frontiersin.org06

Zhang and Wang 10.3389/fmolb.2022.890215

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.890215


Screening of candidate genes

To comprehensively study the genes regulated by the pyroptosis

gene, correlation analysis was performed between the 56 pyroptosis

genes and the remaining genes at the expression, mutation, and

CNV levels. By setting a threshold of |correlation coefficient| (| Cor

|) > 0.5 and adjusted p-value (padj) < 0.05, we obtained 9,759,

18,063, and 7,509 pyroptosis-related genes at the expression level,

FIGURE 3
Kaplan–Meier survival curve of HCC samples with high- and low-expression of the 14 pyroptosis genes (BAK1, BAX, CASP4, CHMP2B, CHMP3,
CHMP4A, CHMP4B, DFNA5, DHX9, IL-1A, IRF2, NLRP6, NOD1, and SCAF11). OS denotes overall survival.
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mutation level, and CNV level, respectively. Using the intersection

set, 614 candidate genes associated with pyroptosis genes at all three

levels were obtained. Figures 4A–C show the one-to-one correlation

between three candidate genes (C1orf112, NFYA, and NIPAL3)and

three pyroptosis genes (DHX9, BAK1, and CASP9) at the

transcription level, mutation level, and CNV level, respectively

(See all the 614 genes in Supplementary Table 4_cor_genes.xlsx).

We used the “ClusterProfiler” R packages for functional

enrichment analysis of 614 candidate genes. The result showed

that these candidate genes were strongly associated with nuclear-

transcribed mRNA catabolic process, translational initiation, and

other biological processes, suggesting were involved in gene

expression and protein synthesis. The top10 entries for biological

process (BP), molecular function (MF), and cellular component (CC)

are shown (Figure 4D, p < 0.05, Supplementary Table

5_corsigs_GOBP.xlsx, Supplementary Table 5_

corsigs_GOCC.xlsx, Supplementary Table 5_corsigs_GOMF.xlsx).

Using the metascape database, we performed pathway

enrichment analysis against the Hallmark, KEGG, and

Reactome pathways to investigate the signaling pathways in

FIGURE 4
The characterization of pyroptosis-regulated genes (PRGs). (A–C): Three representative genes (C1orf112, NFYA and NIPAL3) significantly
associated with three pyroptosis genes (DHX9, BAK1 and CASP9) at the expression level (A), mutation level (B), and copy number variation level (C).
(D)Gene ontology (GO) functional classification of candidate genes. BP: biological process; CC: cellular component; MF:molecular function. (E) The
interaction network of top20 enriched pathways. (F) The top20 enriched pathways of candidate genes. The vertical axis represents enriched
pathways, and the horizontal axis represents the p-value of enrich analysis of each pathway.

Frontiers in Molecular Biosciences frontiersin.org08

Zhang and Wang 10.3389/fmolb.2022.890215

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.890215


which 614 candidate genes are involved. 253 pathways were

identified using a p-value <0.05 threshold, and the top

20 pathways were retrieved as major pyroptosis-regulated

pathways (Supplementary Table 6_sig_pathway_metascape.

xlsx). Figures 4E,F show the net network and quantitative

analysis of the top 20 key pathways, respectively.

We designated 108 genes that participated in the pyroptosis-

regulated pathways as pyroptosis-regulated genes (PRGs)

(Supplementary Table 7_sig_gene. xlsx). The CNVs, mutations,

and expression of 48 PRGs in the key pathway “Genes from

Metabolism of RNA” were systematically studied. The results

showed that 48 PRGs exhibited varying degrees of CNV

alterations and mutation levels in pan-cancer (Figure 5A, see the

rest of the pyroptosis-regulated pathways in Supplementary Figure

S13 (1)–(19)). In terms of expression level, the vast majority of the

48 PRGs showed a higher level in cancer tissues compared to normal

controls in pan-cancer (Figure 5B, see the rest of the pyroptosis-

regulated pathways in Supplementary Figure S14 (1)–(19)).

FIGURE 5
The mutation and expression profile of key genes of the key pathway “Genes fromMetabolism of RNA”. (A) The mutation status of key genes of
the key pathway “Genes from Metabolism of RNA” in pan-cancer. Mutation type is classified as: amplification (Amp, the orange color), deletion (del,
the blue color), point mutation (mut, the green color). The color transition from light pink to orange indicates a trend from lowmutation frequency to
high mutation frequency. (B) The expression patterns of key genes of the key pathway “Genes fromMetabolism of RNA” in pan-cancer. *Means
p < 0.05, ** means p < 0.01, ***means p < 0.001, ****means p < 0.0001.
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FIGURE 6
Seven pyroptosis-regulated genes with prognostic value in the training group. (A) The LASSO coefficient profiles of the 57 pyroptosis-regulated
genes. (B)Cross-validation plot for the penalty term. (C) The risk score formula and the coefficients of seven pyroptosis-regulated genes. (D)Western
blotting results showing the expression level of the seven pyroptosis-regulated genes in four HCC cell lines (Hep3B, HepG2, PLC8024, and Huh7)
and one normal hepatocyte cell line (LO2). (E) Survival analysis of seven pyroptosis-regulated genes by the Kaplan-Meier Plotter method.
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Generation of risk score

By performing survival analysis, we identified 57 out of

108 PRGs that showed prognostic value in HCC

(Supplementary Table 8_keggsiggenes_cox.xlsx). To

exclude the overfitting, we performed the LASSO-Cox

regression on 57 PRGs and identified a total of seven

PRGs in the training group. The screening process and

results are displayed in Figures 6A,B. We then obtained a

risk model consisting of seven key genes (UBE2S, KPTN,

RNF2, GSR, FTSJ3, DCAF13, and EIF4E) (Figures 6A,B,

Supplementary Table 9_lasso_Coefficients. xlsx). The risk

score formula is: Risk score =

0.0794*KPTN+0.1912*UBE2S+0.1701*RNF2+0.0892*GSR+

0.0766*FTSJ3+0.023*EIF4E+0.1867*DCAF13. Western blot

was carried out to examine the protein expression of the seven

PRGs in one normal liver cell line (LO2) and four HCC cell

lines (Figure 6D). Single survival analyses of the seven genes

FIGURE 7
Prognostic risk score features of pyroptosis-regulated genes in the training group and validation group 1. (A) The scatterplot showing the
riskscore from low to high in the training set. The blue color indicates low risk group. The yellow color indicates high risk group (the same below). (B)
The scatter plot reveals the distribution of the risk score of each sample corresponding to the survival time and survival status in the training set. (C)
The heatmap showing the gene expression patterns of the pyroptosis-regulated signature. (D) Kaplan-Meier Plotter of the risk model of the
training set. Difference groups were compared using the log-rank test. (E) The ROC curve at 1, 3 and 5 years and AUC of the pyroptosis-regulated
signature.
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FIGURE 8
Prognostic risk score features of pyroptosis-regulated genes in the validation groups (A) The scatterplot displaying the risk score from low to high in the
validation group 1 (ICGC). The blue color indicates low risk group. The yellow color indicates high risk group. (B) The scatter plot showing the distribution of
the risk scores of each sample corresponding to the survival time and survival status in the validation group 1. (C)Theheatmap illustrating the gene expression
pattern of the pyroptosis-regulated signature. (D) Kaplan-Meier Plotter of the risk model validation group 1. Different groups were compared using the
log-rank test. (E)TheROCcurve at 1, 2 and3years andAUCof thepyroptosis-regulated signature. (F)The scatterplot showing the risk scores from low tohigh
in the validation group 2 (HCCDB6and HCCDB17). The blue color indicates low risk group. The yellow color indicates high risk group. (G) The scatter plot
demonstrating thedistributionpatternof the risk scoresof each sample corresponding to the survival timeand survival status in the validation group2. (H)The
heatmap showing the gene expression of the pyroptosis-regulated signature. (I) Kaplan-Meier Plotter of the risk model validation group 2. Different groups
were compared using the log-rank test. (J) The ROC curve at 1, 2 and 3 years and AUC of the pyroptosis-regulated signature.
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were listed in Figure 6E. We observed that the high expression

of the seven PRGs conferred a disadvantage over overall

survival.

To determine the power of the risk score model in

predicting HCC prognosis, we separated training group

patients into high- and low-risk groups according to the

best cut-off value. The risk scores distribution of the two

groups is shown in Figure 7A. A scatterplot displayed the

corresponding survival status of the patient with different

risk scores in Figure 7B. Figure 7C is a heatmap created by

expressions of UBE2S, KPTN, RNF2, GSR, FTSJ3, DCAF13,

and EIF4E between the two groups. Survival analysis

demonstrated that the low-risk group had an obvious

survival advantage over the high-risk group (Figure 7D).

We further established that the risk score was a good

indicator for the 1-year survival, 3-years survival, and 5-

years survival of HCC patients (Figure 6E, AUCmax = 0.8,

Supplementary Table 10_TCGA_riskscore.xlsx).

To further establish the predictive power of the risk score

model, we validated it in an independent dataset ICGC.

Patients were divided into the low-risk and high-risk

groups based on the optimal cut-off value. Figure 8A shows

a distribution of risk scores in the two groups. Figure 8B shows

a scatterplot of the survival status. Figure 8C shows the

distribution of seven PRGs using a heat map. Survival

analysis revealed that the high-risk group had poorer

survival than the low-risk group (Figure 8D). The risk

model exhibited excellent predictive power for 1-year, 3-

years, and 5-years survival (AUCmax = 0.733, Figure 8E,

Supplementary Table 10_ICGC_risk.xlsx). Another

independent cohort (HCCDB6 and HCCDB17) was used as

the second validation group. Patients were also divided into

the low-risk and high-risk groups using the best cut-off value.

Figure 8F shows a distribution of risk scores in the two groups.

Figure 8G shows a scatterplot of the survival status. Figure 8H

shows the distribution of seven PRGs using a heat

map. Survival analysis revealed that the high-risk group

had poorer survival than the low-risk group (Figure 8I).

The risk model exhibited excellent predictive power for 1-

year, 3-years, and 5-years survival (AUCmax = 0.730,

Figure 8J, Supplementary Table 10_B6_17_Risk.xlsx).

Clinical features, tumor
microenvironment characteristics, and
immunotherapy of the risk score model
in HCC

In the training cohort, we analyzed the relationship between

clinical manifestations and the risk score. Figures 9A,B show that

there were no significant differences between age groups

(≤65 and >65 years old) and gender. A previous study

reported that the collagen proportional area (CPA)

measurement may be a useful prognostic indicator for HCC

(Guo et al., 2022). Our study demonstrated that there were

statistically significant differences among all CPA stages

(Figure 9C, C1: 0%–5%, C2: 5%–10%, C3: 10%–20%, C4:

>20%). A significant difference was observed between patients

with and without microvascular invasion (Figure 9D).

Interestingly, there was no correlation between the risk score

and the severity of HCC (Figure 9E). Figures 9F–H shows the

significant increase in the risk scores when the tumor grade (G1-

G3), T stage (T1-T3), and TNM stage (I-III) increased. In

addition, patients with a p53 mutation had a significantly

higher risk score than those without the p53 mutation

(Figure 9I). To our knowledge, no direct evidence

demonstrated correlation between p53 and pyroptosis. Normal

but not mutant p53 transcriptionally upregulates caspase-1,

which acts as a tumor suppressor in breast cancer (Celardo

et al., 2013). The mutant p53 is related with chronic

inflammation, promoting tumor growth and immune

dysfunction across different types of human cancers, including

HCC (Agupitan et al., 2020). Inflammation induced by cancer

cell pyroptosis leads to attenuated antitumor immunity due to

the differential duration and released cellular contents (Hou

et al., 2021). However, further solid exploitations are needed

to find the effect of normal or mutant p53 on pyroptosis in HCC.

Next, we determined the pattern of immune cell

infiltration in 370 HCC patients using the ssGSEA (Xiao

et al., 2020). Results showed that the high-risk group

possessed higher levels of activated CD4+ T cells, activated

dendritic cells, central memory CD4+ T cells, effector

memory CD4+ T cells, immature dendritic cells,

regulatory T cells, type 2 T helper cells compared with the

low-risk group. Meanwhile, high-risk group displayed lower

infiltration levels of eosinophils and memory B cells

(Figure 10A, p < 0.05, Supplementary Table 11_ssgsea-

xlsx, Supplementary Table 12_SSgsea_cluster.xlsx).

Pearson correlation analysis was performed to assess the

association between risk score and the abundance of immune

cells. As shown in Figure 10B, the risk score was positively

correlated with activated CD4+ T cells, activated dendritic

cells, central memory CD4+ T cells, effector memory CD4+

T cells, MDSC, regulatory T cells, and type 2 T helper cells

and negatively correlated with CD56bright natural killer

cells, effector memory CD8+ T cells, eosinophils, mast

cells, memory B cells, nature killer cells, neutrophils, and

type 1 T helper cells.

Immunotherapy, particularly immune checkpoint blocking

(ICB) therapy, is currently at the forefront of anticancer drugs.

The immunoreaction of HCC has emerged as a promising topic

worthy of further investigation. Therefore, we analyzed six key

immune checkpoint inhibitor genes (HAVCR2, CTLA-4,

PDCD1, PDCD1LG2, IDO1, and CD274) in an HCC cohort

(Kanehisa et al., 2017; Ye et al., 2021; Zhu et al., 2021). The

correlation analysis revealed that HAVCR2 (p < 0.0001) and
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CTLA-4 (p < 0.001) expression was significantly up-regulated in

the high-risk group than in the low-risk group (Figure 10C).

There was no significant difference between the risk groups and

the transcriptional levels of PDCD1, PDCD1LG2, IDO1, and

CD274 (Figure 10C). These results suggested that the risk model

could distinguish different responses to current popular ICB

treatments. Since PD-L1 and PD-1 antibodies show significant

efficacy in the treatment of various cancers, we determined the

applicability of risk score in HCC. We obtained a profile of

immunotherapy-undergoing TCGA-LIHC patients from the

FIGURE 9
The risk score in HCC samples with different clinical traits. (A) Relationships between risk score and age groups (≤65 years old vs .> 65 years old).
ns means no significance (the same below). (B) Relationships between risk score and gender (female vs. male). (C) Relationships between risk score
and collagen proportional area (CPA) grade (C1 vs. C2 vs. C3 vs. C4). (D) Relationships between risk score and vascular invasion status (micro vascular
invasion vs. macro vascular invasion). (E) Relationships between risk score and degree of hepatitis (mild hepatitis vs. severe hepatitis). (F)
Relationships between risk score and tumor grade (G1 vs. G2 vs. G3 vs. G4). (G) Relationships between risk score and tumor T stage (T1 vs. T2 vs. T3 vs.
T4). (H) Relationships between risk score and tumor TNM stage (I vs. II vs. III vs. IV). (I) Relationships between risk score and TP53mutation status (wild
vs. mutation).
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FIGURE 10
Evaluation of the infiltrating immune cells, checkpoints, and immune checkpoint blockade response between the high- and low-risk group. (A)
Comparasion of each TME-infiltrating cell between high- and low-risk groups. (B) Correlations between risk score and immune cell types. (C) The
expression of six immune checkpoints (HAVCR2, CTLA4, PDCD1, PDCD1LG2, IDO1, CD274) in the high - and low-risk groups. (D) Immunotherapy
response between high- and low-risk groups.

Frontiers in Molecular Biosciences frontiersin.org15

Zhang and Wang 10.3389/fmolb.2022.890215

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.890215


TCIA database. The result demonstrated that the high-risk group

was associated with a lower immune checkpoint inhibitor (ICI)

score and immunotherapy sensitivity than the low-risk group

(Figure 10D). In a nutshell, HCC patients in the low-risk group

are distinguished by a high level of immune infiltration, a better

prognosis, and a favorable response to ICI therapy.

Discussion

Due to its high morbidity and mortality rate, HCCHCC

continues to pose a serious threat to human health. Currently, the

prognosis and treatment of HCC patients largely rely on the

pathological examination, AJCC TNM, and BCLC stage (Bruix

et al., 2016). The existing HCC diagnosis and prognosis

approaches are insufficiently sensitive. Therefore, a large

number of novel and precise diagnostic and prognostic

biomarkers are required. A growing number of researchers

have demonstrated that pyroptosis has both tumor-promoting

and anti-tumor effects. However, the majority of researchers

concentrated on only one or a few pyroptosis genes; hence, little

attention has been paid to the study of signal pathways controlled

by the pyroptosis genes.

This study revealed extensive alterations in pyroptosis genes at

the transcriptional, mutation, and CNV levels in HCC. The

correlation between pyroptosis genes and HCC prognosis was

investigated, and 614 candidate genes were found to be

significantly associated with pyroptosis genes at mutation,

amplification, and expression levels. Using pathway enrichment

analysis, we identified 108 PRGs that were significantly enriched

in Hallmark, KEGG, and Reactome pathways. Fifty-seven out of the

108 PRGs exhibited a significant relationship with the prognosis of

HCC. Using the LASSO Cox analysis, we constructed a risk score

model based on pyroptosis-regulated signaling pathways using

seven PRGs, namely UBE2S, KPTN, RNF2, GSR, FTSJ3,

DCAF13, and EIF4E. This risk model was evaluated in an

external validation cohort LIRI-JP, where it demonstrated a high

prediction accuracy. We constructed a nomogram to estimate the

survival of patients who were diagnosed with HCC using the risk

score model. According to the findings of the ssGSEA analysis, the

high-risk group possessed higher levels of activated CD4+ T cells,

activated dendritic cells, central memory CD4+ T cells, effector

memory CD4+ T cells, immature dendritic cells, regulatory

T cells, type 2 T helper cells Furthermore, the high-risk group

also had higher transcriptional levels of HAVCR2 and CTLA-

4 than the low-risk group, indicating that they may have a

distinct immune pattern. We also found that the high-risk group

had a lower ICI score and a decreased sensitivity to immunotherapy

than the low-risk group.

In 2001, D’Souza et al. proposed the term “pyroptosis”. Since

then, many researchers have investigated this novel pro-

inflammatory programmed cell death (Fink and Cookson, 2005).

Due to its pro-tumor and anti-tumor effects, pyroptosis has been an

intriguing topic in cancer research in recent years (Xia et al., 2019).

On the one hand, pyroptosis exerts beneficial effects on skin cancer,

colorectal cancer, and liver cancer (Shi et al., 2015; Zhao et al., 2018;

Sharma et al., 2019; Chen et al., 2020; Fenini et al., 2020). On the

other hand, tumor cells undergoing pyroptosis may secrete

inflammatory molecules that provide a survival benefit to their

companion cells. Fu et al. constructed a prognostic model for

predicting HCC prognosis using three pyroptosis genes, namely

GSDME, GPX4, and SCAF11. (Fu and Song, 2021). However, signal

pathways and genes that regulate pyroptosis in HCC have been the

subject of few studies.

In the present study, seven genes regulated by pyroptosis,

namely UBE2S, KPTN, RNF2, GSR, FTSJ3, DCAF13, and EIF4E

were used to establish an independent risk score model. UBE2S or

ubiquitin-conjugating enzyme E2 S was found to be up-regulated in

HCC (Ma et al., 2018; Pan et al., 2018). In a total of 845 HCC

patients, the elevated expression of UBE2S was significantly

associated with higher tumor grade, larger tumor volume,

vascular invasion, higher serum AFP level, advanced TNM stage,

recurrence, and poorer outcomes (Pan et al., 2018). UBE2S exerts its

oncogenic effects by enhancing the ubiquitination and degradation

of p53, p27, and PTEN (Pan et al., 2018; Gui et al., 2021; Zhang et al.,

2021). Mutations in KPTN mutation are closely related to a

syndrome characterized by macrocephaly, neurodevelopmental

delay, and seizures (Baple et al., 2014). To the best of our

knowledge, however, no studies have elucidated its role in cancer.

This study revealed that high expression of KPTN is associated with

shorter survival in HCC patients, implying that suppressing KPTN

may be an effective treatment strategy for HCC. High

RNF2 expression is associated with poor overall survival and

promotes tumor cell growth and metastasis in HCC (Qu and

Qu, 2017). GSR, or glutathione reductase, is one of the major

determinants of HCC in a complicated and context-dependent

manner (McLoughlin et al., 2019). FTSJ3 is one of the RNA

methyltransferases (RNMTs) which regulates RNA structures,

properties, and biological functions. Kaplan-Meier analysis

revealed that copy number amplification of FTSJ3 is associated

with a shorter overall survival time in breast cancer (Manning et al.,

2020). DCAF13, an estrogen receptor-binding protein, is

overexpressed and associated with a poor prognosis in HCC

(Qiao et al., 2019; Luo et al., 2020). The staining intensity of the

EIF4E protein is significantly and positively correlated with high

serum AFP level, high gamma-glutamyl transferase level, and

vascular invasion of HCC (Cao et al., 2019).

Pyroptosis is closely associated with inflammation. However,

chronic inflammation exerts tumor-promoting effects by

inhibiting specific immune cells’ anti-tumor function,

including activated CD8+ T cells and Natural Killer cells (NK)

(Raposo et al., 2015). Our study revealed that the high-risk group

lacks immune cells, such as the activated CD8+ T cell,

CD56 bright Natural killer cell, effector memory CD8+ T cell,

eosinophil, natural killer cell, and type I T helper cell. In CTLA-4/

PD-1 immunotherapy, the high-risk group had a lower ICI score
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and was less sensitive to immunotherapy than the low-risk

group. Therefore, immune-promoting and immunosuppressive

environments are essential for effective clinical treatment. Our

findings confirmed that pyroptosis can be used to classify the

subtypes and landscapes of TME, as well as influence the clinical

response to ICB. The established risk score model can help to

predict the survival, TME status, and response to

immunotherapy in HCC.

Conclusion

In summary, our risk score model based on pyroptosis-

regulated genes can be used to predict the prognosis of

patients, immune cell infiltration characteristics, and response

to immunotherapy in patients with HCC.
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