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Abstract

HIV-1 circulates both as free virus and within immune cells, with the level of free virus being predictive of clinical course.
Both forms of HIV-1 cross the blood-brain barrier (BBB) and much progress has been made in understanding the
mechanisms by which infected immune cells cross the blood-brain barrier BBB. How HIV-1 as free virus crosses the BBB is
less clear as brain endothelial cells are CD4 and galactosylceramide negative. Here, we found that HIV-1 can use the
mannose-6 phosphate receptor (M6PR) to cross the BBB. Brain perfusion studies showed that HIV-1 crossed the BBB of all
brain regions consistent with the uniform distribution of M6PR. Ultrastructural studies showed HIV-1 crossed by a
transcytotic pathway consistent with transport by M6PR. An in vitro model of the BBB was used to show that transport of
HIV-1 was inhibited by mannose, mannan, and mannose-6 phosphate and that enzymatic removal of high mannose
oligosaccharide residues from HIV-1 reduced transport. Wheatgerm agglutinin and protamine sulfate, substances known to
greatly increase transcytosis of HIV-1 across the BBB in vivo, were shown to be active in the in vitro model and to act
through a mannose-dependent mechanism. Transport was also cAMP and calcium-dependent, the latter suggesting that
the cation-dependent member of the M6PR family mediates HIV-1 transport across the BBB. We conclude that M6PR is an
important receptor used by HIV-1 to cross the BBB.
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Introduction

Human immunodeficiency virus-1 [1] crosses the blood-brain

barrier (BBB) to infect the central nervous system (CNS). It crosses

the BBB both within infected immune cells and as free virus

[2,3,4]. How free HIV-1 crosses the BBB is unclear as the brain

endothelial cells that comprise the vascular BBB are both CD4

and galactosylceramide negative [5]. In vivo and in vitro studies

show that interactions between the HIV-1 viral coat glycoprotein

gp120 and unknown glycoproteins on the cell membranes of brain

endothelia interact to induce a type of vesicular transport termed

adsorptive transcytosis [4,6,7], a transport that is enhanced by

protamine sulfate, wheatgerm agglutinin, and heparan sulfate, all

of which likely act by binding to the unknown glycoproteins

[7,8,9].

Evidence suggests that high mannose type glycans are involved

in HIV-1 internalization. High mannose glycans are one type of

carbohydrate moiety found on gp120 [10]. By way of these

mannose residues, gp120 can bind to and be internalized by

macrophages through a CD4-independent, mannose-specific

endocytic receptor pathway [11]; this is consistent with the high

mannose sites being related to HIV-1 infectivity [12].

One such mannose binding receptor is the insulin-like growth

factor-II/mannose-6 phosphate receptor (M6PR). This multi-

ligand transporter uniquely binds phosphorylated mannose (M6P),

a feature it uses to identify and route lysosomal enzymes to the

lysosomal compartment. HIV-1 is also routed to lysosomes by an

unknown endocytic process that is independent of CD4 [13,14].

Mannose-6 phosphate can inhibit gp160 binding [15], suggesting

that gp160 binds to the M6PR; furthermore, microglial uptake of

HIV-1 involves M6PR [16]. The M6PR is involved in the

trafficking of at least one other virus: herpes varicella-zoster [17].

The M6PR has recently been shown to be an inducible transporter

at the BBB for lysosomal enzymes [18,19,20]. These various lines

of evidence led us to postulate that the M6PR could be involved in

the transport of HIV-1 across the BBB.

Methods

Radioactive labeling of HIV-1 and bovine albumin
The virus HIV-1 (MN) CL4/CEMX174 (T1) prepared and

rendered noninfective by aldrithiol-2 treatment as previously

described [21,22] was a kind gift of the National Cancer Institute,

NIH. In brief, HIV-1(MN) CL.4/CEMX174(T1) was prepared by

infecting CEMX174(T1) cells (obtained from Peter Cresswell at

the Howard Hughes Medical Center) using virus obtained from

the HIV-1(MN)/H9CL.4 cell line [23]. HIV-1(MN) CL.4/

CEMX174(T1) cell cultures were grown in suspension using
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850 cm2 roller bottles. Cells were maintained in complete RPMI

1640 supplemented with 10% heat-inactivated fetal bovine serum,

100 U/ml penicillin, and 100 ug/ml streptomycin. Each roller

bottle contained 300 ml of culture and was incubated at 37uC
while rotating at 0.20 rpm on roller racks. Cultures were harvested

at 3 to 4 day intervals by decanting 20 ml from each roller bottle

and refeeding with 20 ml of fresh medium. Immediately after

harvesting, the material was filtered using a Prostack filtration

system (Millipore Corp) containing a 0.8 A membrane. The

filtrate was treated with a final concentration of 1mM aldrithiol-2

and stored overnight at 4uC while stirring. Virus from infected

cells was recovered by continuous flow ultracentrifugation using a

CF-32 Ti rotor (Beckman Instruments) containing a 280 ml

sucrose gradient (25–50%; RNAse free) in TNE buffer

(0.01MTris–HCl pH 7.40, 0.1MNaCl, and 1mMEDTA in Milli-

Q water). After centrifugation, the gradient was monitored for

absorbance at 280 nm and collected in 25 ml fractions. The

density of each fraction was determined with a refractometer

(Bausch and Lomb). Virus containing fractions were identified by

UV absorption and density. Peak fractions were pooled, diluted to

below 20% sucrose with TNE buffer, ultracentrifuged to a pellet,

and resuspended in TNE at 1000x relative to the starting cell

culture filtrate. Aliquots were stored in a liquid N2 vapor phase

freezer.

The virus was radioactively labeled by the chloramine-T

method, a method which preserves vial coat glycoprotein activity

[24,25]. Two mCi of 131I-Na (Perkin Elmer, Boston, MA), 10 ug

of chloramine-T (Sigma Chemical Co, St. Louis, MO), and 5.0 ug

of the virus were incubated together for 60 sec. The radioactively

labeled virus (I-HIV) was separated from free iodine on a column

of Sepharose 200-B (Sigma) and had a specific activity estimated to

be between 50–150 Ci/g. Bovine serum albumin (Sigma; 5 ug)

was labeled by the chloramine-T method with 0.5 mCi of 125I-Na

(Perkin Elmer) and purified on a G-10 column (I-Alb).

Brain uptake of I-HIV-1
Brain uptake of I-HIV was determined by the brain perfusion

method of Banks et al. [26]. Male CD-1 mice from our in-house

colony (VA St. Louis, MO) were anesthetized with an ip injection

of 0.2 ml urethane (40%). All animal studies were approved by the

IACUC at the John Cochran Veterans Affairs Medical Center in

St. Louis, MO and were conducted at that facility. I-HIV was

diluted to a concentration of 16(105) cpm/ml in Zlokovic’s buffer

(pH 7.4; 7.19 g/l NaCl, 0.3 g/l KCl, 0.28 g/l CaCl2, 2.1 g/l

NaHCO3, 0.16 g/l KH2PO4, 0.17 g/l anhydrous MgCl2, 0.99 g/

l D-glucose, and 10 g/l bovine serum albumin (BSA; which was

added on the day of perfusion). The thorax was opened, the heart

was exposed, the descending thoracic aorta was clamped, and both

jugular veins were severed. A 26-gauge butterfly needle was

inserted into the left ventricle of the heart, and the buffer

containing the I-HIV was infused at a rate of 2 ml/min for 2, 4, 6,

8, or 10 min (n = 6/time point). At the end of the perfusion time,

20 ml of lactated Ringer’s solution was infused through the heart

cannula in less than one minute to wash out the vascular space of

the brain and any virus loosely adhering to the luminal surface of

the brain vasculature. Mice were then decapitated and the brain

was collected, dissected into 10 regions (frontal cortex, parietal

cortex, occipital cortex, striatum, hippocampus, hypothalamus,

thalamus, cerebellum, midbrain, pons-medulla) after the method

of Glowinski and Iversen [27], and each region weighed and

counted in a gamma counter for 3 min. The olfactory bulb was

also collected, weighed, and its level of radioactivity determined.

Whole brain values were determined by summing the weights and

radioactivity levels of the constituent 10 brain regions for that

brain without inclusion of olfactory bulb. The brain/perfusion

ratios (ml/g) for each region and for whole brain were calculated

by the following formula:

Brain/perfusion ratio = (cpm/g of brain)/(cpm/ml of perfu-

sion).

The pharmacokinetic parameters of unidirectional influx rate

(Ki, ml/g-min) and initial volume of distribution within brain (Vi,

ml/g) were determined by first plotting the brain/perfusion ratios

(ml/g) against time (min) for each brain region. The Ki was taken

as the slope and Vi as the Y-intercept for the linear portion of the

brain/perfusion ratio vs time relation. The Ki and Vi with their

error terms were calculated by the least squares method with the

Prism 5.0 statistical package (GraphPad, Inc, San Diego, CA).

HIV-1 electron microscopy
Adult male CD-1 mice aged 8–10 weeks from our in house

colony (VA-St. Louis) received an injection into the jugular vein of

200 ul lactated Ringers solution containing 1% BSA with or

without 20 ug of HIV-1. The mice were decapitated 5 min after

the jugular injection, the brain sliced into 12 coronal sections, and

the 6th slice placed in 2.5% gluteraldehyde solution (2.5%

glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.25

containing 3% sucrose and 2 mM calcium chloride). Slices were

submitted for EM with the EM evaluator blinded as to which mice

received HIV in their injections.

Tissue Processing for Standard Transmission Electron

Microscopy. The cerebral cortex from the 6th slice was further

chopped in fixative with a razor and transferred to fresh fixative

for overnight fixation at 4uC. After washing in 0.1 M sodium

cacodylate buffer, pH 7.25 containing 5% sucrose, the tissue was

post-fixed in 1% osmium tetroxide in 0.1 M sodium cacodylate

buffer, pH 7.25 containing 2% sucrose overnight at 4uC. This was

followed, at room temperature, by a 2615 min wash in distilled

water, 1 h incubation in 2% aqueous uranyl acetate, dehydration

through graded ethanols to 100% ethanol, 2615 min in propylene

oxide and an overnight incubation in a 1:1 mixture of Polybed

resin and propylene oxide. The tissue was then incubated in fresh

Polybed resin (PolySciences) for 6 h, transferred to BEEM capsules

filled with fresh resin and polymerized overnight at 70uC. Thin

sections were cut on a Reichert Ultracut E ultramicrotome,

collected on 200 mesh copper grids, stained with uranyl acetate

and lead citrate, and viewed and photographed with a JEOL

100CX electron microscope.

Immuno-Gold Cytochemistry. Tissue processing and im-

muno-gold labeling was carried out as previously described

[28,29]. Tissue pieces from the 6th anterior-posterior brain slice

were fixed with 4% paraformaldehyde and 1% glutaraldehyde in

PBS, pH 7.2, overnight at 4uC. The tissue was then washed with

PBS, dehydrated through graded ethanols to 100% ethanol and

infiltrated overnight in LR White resin (PolySciences), all at 4uC.

The tissue was then embedded in fresh LR White resin in BEEM

capsules and polymerized overnight at220uC by UV irradiation.

Thin sections were collected on formvar-coated nickel grids and

incubated on 20 ul drops of the following solutions in a closed

humidified container at room temperature unless noted otherwise:

PBS (161 min), 0.02M glycine (361 min), 1% bovine serum

albumen (BSA) and 1% fish gelatin in PBS (1610 min), 0.1% BSA

in PBS (161 min), goat anti-human HIV-1 gp120 (HIV-1SF2

gp120 antiserum from NIH aids reagents facility) or normal goat

serum (Sigma) diluted 1:10–1:100 in 0.1% BSA in PBS (overnight

at 4uC), 0.1% BSA in PBS (461 min), protein A-10 nm colloidal

gold diluted 1:100 in 0.1% BSA in PBS (1 hour), PBS (165 min),

2.5% glutaraldehyde in PBS (165 min), PBS (265 min) and

distilled water (265 min). After air drying the grids were post-
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stained with uranyl acetate and lead citrate and examined and

photographed in a JEOL 100CX EM.

Primary culture of mouse brain microvascular endothelial
cells (BMECs)

BMECs were isolated by a modified method of Szabó et al. [30]

and Nakagawa et al. [31]. In brief, the cerebral cortices from 8-

week-old CD-1 mice were cleaned of meninges and minced. The

homogenate was digested with collagenase type II (200 U/mL;

Invitrogen, Carlsbad, CA) and DNase I (30 U/mL; Sigma, St.

Louis, MO) in Dulbecco’s modified Eagle’s medium (DMEM)

(Invitrogen) containing 100 units/mL penicillin, 100 mg/mL

streptomycin, 50 mg/mL gentamicin and 2 mM GlutaMAXTM-I

(Invitrogen) at 37uC for 40 min. Neurons and glial cells were

removed by centrifugation in 20% bovine serum albumin (BSA)-

DMEM (1,0006g for 20 min). The microvessels obtained in the

pellet were further digested with collagenase/dispase (1 mg/mL;

Roche, Mannheim, Germany) and DNase I (30 U/mL) in

DMEM at 37uC for 30 min. Microvessel endothelial cell clusters

were separated by 33% Percoll (Amersham Biosciences, Piscat-

away, NJ) gradient centrifugation (1,0006g for 10 min). The

obtained microvessel fragments were washed in DMEM (1,0006g

for 10 min) and seeded on 60 mm culture dishes (BD FAL-

CONTM, BD Biosciences, Franklin Lakes, NJ) coated with

0.05 mg/mL fibronectin (Sigma), 0.05 mg/mL collagen I (Sigma)

and 0.1 mg/mL collagen IV (Sigma). They were incubated in

DMEM/Nutrient mixture F-12 HAM (DMEM/F-12) (Invitrogen)

supplemented with 20% plasma derived bovine serum (PDS,

Animal Technologies, Tyler, TX), 100 units/mL penicillin,

100 mg/mL streptomycin, 50 mg/mL gentamicin, 2 mM Gluta-

MAXTM-I and 1 ng/mL basic fibroblast growth factor (bFGF;

Sigma) at 37uC with a humidified atmosphere of 5% CO2/95%

air. On the next day, the BMECs migrated from the isolated

capillaries and started to form a continuous monolayer. To

eliminate contaminating cells (mainly pericytes), BMECs were

treated with 4 mg/mL puromycin (Sigma) for the first 2 days

(Perrière et al., 2005). After 2 days of the treatment, puromycin

was removed from the culture medium. Culture medium was

changed every other day. After 7 days in culture, BMECs typically

reached 80–90% confluency.

Preparation of in vitro BBB models
BMECs (46104 cells/well) were seeded on the inside of the

fibronectin-collagen IV (0.1 and 0.5 mg/mL, respectively)-coated

polyester membrane (0.33 cm2, 0.4 mm pore size) of a TranswellH-

Clear insert (Costar, Corning, NY) placed in the well of a 24-well

culture plate (Costar). Cells were cultured in DMEM/F-12

supplemented with 20% PDS, 100 units/mL penicillin, 100 mg/

mL streptomycin, 50 mg/mL gentamicin, 2 mM GlutaMAXTM-I,

1 ng/mL bFGF and 500 nM hydrocortisone (Sigma) at 37uC with

a humidified atmosphere of 5% CO2/95% air until the BMEC

monolayers reached confluency (3 days). To check the integrity of

the BMEC monolayers, transendothelial electrical resistance was

measured before the experiments using an EVOM voltohmeter

equipped with STX-2 electrode (World Precision Instruments,

Sarasota, FL). The TEER of cell-free TranswellH-Clear inserts

were subtracted from the obtained values.

Endoglycosidase F1 treatment
Virus was treated with endoglycosidase F1 (eF1; CalbiochemH,

EMD Biosciences, La Jolla, CA) to cleave high mannose

oligosaccharides. HIV-1 (10 mg) was incubated for 24 hr at 37uC
in 50 mL of phosphate buffer (pH 5.5) containing 0.5 mM

phenylmethanesulfonyl fluoride (Sigma) and 2000 mU/mL eF1.

After the incubation period, sample was diluted with phosphate

buffer (pH 7.4). To remove eF1 (MW 32,000), the sample was

filtered by MicroconH YM-100 (Millipore, Bedford, MA) with the

100K cut-off membrane. The virus retained on the membrane was

used for radioactive labeling as described above. The iodinated

virus was purified by filtration on Sepharose 4B-200 (Sigma)

columns. Control HIV-1 was incubated in the same manner

without eF1.

Transendothelial transport of 131I-HIV-1
For the transport experiments, the medium was removed and

BMECs were washed with physiological buffer containing 1%

BSA (141 mM NaCl, 4.0 mM KCl, 2.8 mM CaCl2, 1.0 mM

MgSO4, 1.0 mM NaH2PO4, 10 mM HEPES, 10 mM D-glucose

and 1% BSA, pH 7.4). The physiological buffer containing 1%

BSA was added to the outside (abluminal chamber; 0.6 mL) of the

TranswellH insert. To initiate the influx of 131I-HIV-1 experi-

ments, 131I-HIV-1 (36106 cpm/mL) was loaded on the luminal

chamber. The side opposite to that to which 131I-HIV-1 was

loaded is the collecting chamber. Samples were removed from the

collecting chamber at 15, 30, 60 and 90 min and immediately

replaced with an equal volume of fresh 1% BSA/physiological

buffer. The sampling volume from the abluminal chamber was

0.5 mL. All samples were mixed with 30% trichloroacetic acid

(TCA; final concentration 15%) and centrifuged at 5,4006g for

15 min at 4uC. Radioactivity in the TCA precipitate was

determined in a gamma counter. The permeability coefficient

and clearance of TCA-precipitable 131I-HIV-1 were calculated

according to the method described by Dehouck et al. [32].

Clearance was expressed as microliters (uL) of radioactive tracer

diffusing from the luminal to abluminal (influx) chamber and was

calculated from the initial level of radioactivity in the loading

chamber and final level of radioactivity in the collecting chamber:

Clearance (uL) = [C]C 6 VC/[C]L, where [C]L is the initial

radioactivity in a uliter of loading chamber (in cpm/uL), [C]C is

the radioactivity in a uL of collecting chamber (in cpm/uL), and

VC is the volume of collecting chamber (in uL). During a 90-min

period of the experiment, the clearance volume increased linearly

with time. The volume cleared was plotted versus time, and the

slope was estimated by linear regression analysis. The slope of

clearance curves for the BMEC monolayer plus TranswellH
membrane was denoted by PSapp, where PS is the permeability 6
surface area product (in uL/min). The slope of the clearance curve

with a TranswellH membrane without BMECs was denoted by

PSmembrane. The real PS value for the BMEC monolayer [33] was

calculated from 1/PSapp = 1/PSmembrane +1/PSe. The PSe values

were divided by the surface area of the TranswellH inserts

(0.33 cm2) to generate the endothelial permeability coefficient (Pe,

in cm/min).

The effects of mannose, mannan, and mannose-6-phosphate,

(all purchased from Sigma) on 131I-HIV-1 transport were

determined by adding various concentrations of mannose (1–

50 mM), mannan (1–5 mg/mL), and mannose-6-phosphate (1–

10 mM) to the loading chamber with 131I-HIV-1. Effects of 8-

bromo-cAMP (0.1–1 mM, Sigma) and forskolin (1–30 mM,

Sigma) on 131I-HIV-1 transport was determined by pretreatment

of BMECs for 30 min prior to the transport experiment.

Uptake of 131I-HIV-1 by BMECs
The uptake of 131I-HIV-1 by BMECs was measured based on

the method for microvessels reported previously (Banks et al.,

2004) with a minor modification. BMECs were cultured in 24 well

culture plates for 3–4 days and washed three times with 1% BSA/
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physiological buffer. BMECs were incubated with 200 mL of 1%

BSA/physiological buffer containing 131I-HIV-1 (36105 cpm) and
125I-albumin (16106 cpm) for 15 min at 37uC. The incubation

supernatants were removed, and then cells were washed four times

with ice-cold physiological buffer. An acid wash technique was

used to remove the labeled virus binding to cell surface and to

evaluate the amounts of the labeled virus internalized into

BMECs. The cells were incubated with ice-cold acid wash buffer

(28 mM sodium acetate, 120 mM NaCl and 20 mM sodium

barbital, pH 3.0) for 6 min at 4uC. The buffer was removed and

the cells were subsequently washed again. Acid washed BMECs

were lysed with 150 mL of 1M NaOH. Aliquots (50 mL) of cell

lysate were measured cellular protein by BCA Protein Assay

Reagent (Pierce, Rockford, IL). To determine the TCA-precipi-

table radioactivity in the cell lysate (intracellular 131I-HIV-1) and

incubation buffer (surface-bound 131I-HIV-1), aliquots of cell

lysate (50 uL) and incubation buffer (100 microL) were mixed with

30% TCA (final concentration 10%) and centrifuged at 5,4006g

for 15 min at 4uC. Radioactivity in the TCA precipitate was

determined in a gamma counter. The uptake of TCA-precipitable

radiolabeled protein by BMECs was expressed as the cell/medium

ratio (radiolabeled protein amounts in the cells (in cpm/mg

protein)/radiolabeled protein concentration in the incubation

buffer (in cpm/uL)).

Various concentrations of mannose (1–30 mM), mannan (1–

5 mg/mL), mannose-6-phosphate (0.1–10 mM), N-acetyl-D-glu-

cosamine (GlcNAc, 0.1–50 mM) was incubated with 131I-HIV-1.

Effects of BAPTA (intracellular Ca2+ chelator, 5–20 mM), A23187

(calcium ionophore, 1–10 mM), and verapamil (calcium channel

blocker, 20 uM) on 131I-HIV-1 uptake were determined by

pretreatment of BMECs for 30 min prior to the uptake

experiment. Wheat germ agglutinin (WGA, 1 mg/mL) and

protamine sulfate (1 mg/mL) were incubated with 131I-HIV-1

and 125I-albumin in the presence of various concentrations of

mannan (1–5 mg/mL). All test compounds were obtained from

Sigma.

Statistics
Statistical analysis was performed with the use of the Prism 5.0

program (GraphPad Software, Inc., San Diego, CA). Means are

shown with their standard error terms. Regression lines were

calculated by the least-squares method and are reported with their

correlation coefficient, r, n, and p values. Regression lines were

compared statistically with the Prism 5.0 program. One-way

analysis of variance (ANOVA) with Newman-Keuls multiple

comparison test and Dunnett’s multiple comparison test were

calculated by using Prism 5.0 Means are reported with their

standard error terms and n. Two means were compared by t test

analysis.

Results

Figure 1 (upper panel) shows the results for the uptake as

determined with the brain perfusion method. The Ki was 1.03 +/

2 0.42 ul/g-min and the Vi was 1.11 +/2 2.77 ul/g for whole

brain. The Ki for brain regions is shown in figure 1 (lower panel)

and ranged from 2.51 +/2 1.04 ul/g-min for hypothalamus to

0.44 +/20.19 ul/g-min for parietal cortex. ANOVA found no

statistical difference among the Ki values. The Vi ranged from

(21.19) +/2 6.71 ul/g for hypothalamus to 3.98 +/2 3.6 ul/g for

olfactory bulb (data not shown); ANOVA found no statistical

differences among the Vi values. This uniformity of uptake is

consistent with widespread distribution of binding sites at the BBB.

Ultrastructural examination revealed virus particles in the

capillaries and endothelial cells of the cerebral cortex (Figure 2,

panels A and B) and in the brain parenchyma (Figure 2, panel C)

5 min after its injection into the jugular vein, indicating that virus

had traversed the blood-brain barrier. HIV particles are 150 nm

in diameter and contain cone-shaped cores in tissue sections [34].

These observations were confirmed by immuno-gold localization

on thin sections of PFA-fixed but non-osmicated tissue embedded

in LR White using antibodies to HIV-1’s gp120 coat glycoprotein

and protein A-10 nm colloidal gold (Figure 2, panels D–H. The

abundance of labeled HIV particles decreased with distance from

capillaries as expected from the relatively short perfusion time in

these experiments. Virus is preferentially associated with the

myelin sheaths of myelinated nerves in the brain parenchyma

(Figure 2, panels G–H).

Uptake of I-HIV by BMEC during a 120 min study is shown in

panel A of figure 3 (n = 4/time point). The results were fitted to a

one-site hyperbolic model with a Bmax of 135 +/2 9 ul/g and a

Kd of 19.1 +/2 4.0 min (r = 0.935, n = 20). The relation was

linear for the first 30 min (r = 0.942, n = 12, p,0.001) and

subsequent tests for BMEC uptake were done at 30 min.

Increasing concentrations of I-HIV resulted in a linear increase

in binding to the cell membranes (Figure 3, panel B) and a

decreasing cell/medium ratio (figure 3, panel C) consistent with I-

HIV-1 binding to a receptor site on BECs. The effects of

temperature on I-HIV (t = 16.1, df = 10, p,0.001) and I-Alb

(t = 7.3, df = 10, p,0.0001) on transport across the BMEC

monolayers are shown in figure 3 panels D and E, respectively

(n = 6/group). Raw values at 37uC were (9.1 +/2 0.6)1026 cm/

Figure 1. Uptake of HIV radioactively labeled with iodine (I-
HIV) by brain. Upper panel shows statistically significant relation
between brain/perfusion ratios and time for whole brain with a
unidirectional influx rate (Ki) of 1.03 +/2 0.42 ul/g-min. Lower panel
shows Ki for brain regions for which ANOVA showed no statistical
differences.
doi:10.1371/journal.pone.0039565.g001

BBB and HIV

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39565



BBB and HIV

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e39565



sec for I-HIV and (7.4 +/2 1.9)1026 cm/sec for I-Alb and at 4uC
were (4.5 +/2 0.2)1026 cm/sec for I-HIV and (4.6 +/2

1.0)1026 cm/sec for I-Alb. Thus, in comparison to 37uC, at

4uC, transport of I-HIV was inhibited by about half and transport

of I-Alb was inhibited by about one-third.

Mannose and mannan, blockers of M6PR and other mannose

binding sites, were effective blockers of I-HIV uptake and

transport. Figure 4, panel A shows that mannose inhibited I-

HIV uptake [F(4,28) = 4.39, p,0.01] and figure 4, panel C shows

that mannose inhibited I-HIV transport [F(4,40) = 4.04, p,0.01].

Figure 4, panel B shows that mannan inhibited I-HIV uptake

Figure 2. Panels A and B: HIV particles (arrows) in the lumen (panel A) and in an endothelial cell (panel B) of blood vessels in mouse
cerebral cortex. The boxed regions show higher magnification images. Panel C: HIV (arrows) have traversed the endothelium of a blood vessel in
mouse brain cerebral cortex and gained access the perivascular space. Panels D–F: Colloidal gold labeled HIV in the lumen (arrowhead in panel E, and
panel F) and in endothelial cells (arrows in panels D and E) of mouse cerebral cortex capillaries. Panels G and H: HIV associated with myelin sheaths
(arrows) of nerve axons in mouse cerebral cortex. Thin sections were incubated with HIV-1SF2 gp120 antiserum diluted 1:100 and followed, after
washing, by incubation in protein A-10 nm gold diluted 1:100. B – brain parenchyma, E – endothelium, L – capillary lumen, RBC – red blood cell.
doi:10.1371/journal.pone.0039565.g002

Figure 3. Panel A shows kinetics of uptake of radioactively labeled HIV-1 (I-HIV) over time by BMEC. Panels B and C show linearity with
increases concentrations of I-HIV. Temperature decreased permeation of I-HIV (panel D) and of I-Albumin (panel E) in BMEC.
doi:10.1371/journal.pone.0039565.g003
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[F(3,33) = 20.6, p,0.01] and Figure 4, panel D shows that

mannan inhibited I-HIV transport [F(3,23) = 7.23, p,0.01].

These results show that a mannose binding site such as M6PR is

involved in HIV-1 transport across the BBB.

WGA and protamine sulfate greatly increase the permeation of

HIV-1 across the BBB and it is assumed that they potentiate the

endogenous mechanism by which HIV-1 crosses the BBB.

Mannan blocked both the WGA-induced and the protamine-

induced increases in I-HIV uptake. Figure 5, panel A shows the

results for WGA on I-HIV uptake: F(4,46) = 30.8, p,0.001.

Tukey’s comparison test showed that WGA significantly increased

I-HIV uptake by 8 fold in comparison to control (p,0.01) and that

mannan at each concentration reduced I-HIV uptake in

comparison to the WGA only group (each comparison at

p,0.01). Neither WGA nor WGA + mannan had an effect on

I-Alb uptake (Figure 5, panel C). Figure 5, panel B shows the

results for protamine sulfate on I-HIV-1 uptake: F(4,38) = 88.6,

p,0.01. Tukey’s comparison test showed that protamine in-

creased I-HIV uptake by over 13 fold in comparison to control

(p,0.01) and that mannan at each concentration reduced I-HIV

uptake in comparison to the protamine only group (each

comparison at p,0.01). Protamine also had an effect on I-Alb

uptake (Figure 5, panel D): F(4,38) = 10.4, p,0.01. Tukey’s

comparison test showed that protamine increased I-Alb uptake by

almost 3 fold in comparison to control (p,0.01) and that mannan

at the 3 (p,0.05) and 5 (p,0.01) mg/ml concentrations reduced I-

Alb uptake in comparison to the protamine only group. For the

protamine experiments, the control value for I-HIV was 24.4 +/2

3.9 ul/mg-protein and for I-Alb was 3.3 +/2 0.7 ul/mg-protein

and the protamine-stimulated values were 310 +/2 48.9 ul/mg-

protein for I-HIV and 10 +/2 2.9 ul/mg-protein for I-Alb.

GlcNAc had no effect on I-HIV uptake. Overall, these results

show that the WGA and protamine sulfate enhanced permeation

of HIV-1 across the BBB is mediated through mannose binding

sites.

Figure 6 (panel A) shows that treating HIV-1 with endoglyco-

sidase F1, an enzyme which cleaves high mannose oligosaccha-

rides, reduced its transport by about 1/3 (t = 7.08, df = 18,

p,0.001). Neither permeation of the internal control I-Alb

(Figure 6, panel B) nor TEER (data not shown) were affected.

This shows that high mannose oligosaccharides are key to the

transport of HIV-1 across the BBB.

Whereas the above shows that mannose binding sites are

involved in HIV-1 transport, mannose-6-phosphate was used to

determine whether M6PR was specifically involved. Mannose-6-

phosphate inhibited both I-HIV uptake and transport. Uptake

(Figure 6, panel C) was inhibited as shown by ANOVA

[F(4,22) = 17.3, p,0.001, n = 3–6/group] and Dunnets showed

that concentrations of 1, 5, and 10 mM, but not 0.1 mM,

inhibited uptake (p,0.001). Transport (Figure 6, panel D) was

inhibited by as shown by ANOVA [F(3,38) = 7.4, p,0.001, n = 6–

12/group] and Dunnets showed that the concentration of 10 mM

(p,0.001), but not of 1 or 3 mM, inhibited transport. These

results show that M6PR was specifically involved in HIV-1

transport across the BBB.

We tested the importance of calcium on HIV-1 transport with a

calcium ionophore (A23187), a calcium chelator (BAPTA), and a

calcium channel blocker (verapamil). The intracellular calcium

chelator BAPTA affected cell uptake of I-HIV as shown in

Figure 7, panel A [F(3,35) = 12.6, p,0.001; n = 9/group].

Dunnett’s multiple comparison test showed that only 20 uM of

BAPTA produced a statistically significant effect (p,0.01) in

comparison to controls. BAPTA (10 uM) increased transport of I-

HIV across monolayers (Figure 7, panel B): t = 3.06, df = 10,

n = 6/group, whereas verapamil (20 uM) was without effect.

BAPTA had no effect on TEER.

The calcium ionophore A23187 increased I-HIV transport

[F(3,29) = 7.3, p,0.001, n = 6–9/group] at the 10 uM dose

(p,0.001 by Dunnett’s); Figure 7, panel C. This compound also

decreased TEER [F(3,29) = 41.6, p,0.001, n = 6–9/group)] at

Figure 4. Uptake (panels A and B) and transport (panels C and D) were inhibited by mannose (panels A and C) and by mannan
(panels B and D).
doi:10.1371/journal.pone.0039565.g004
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Figure 5. Mannan blocked the increase in I-HIV uptake induced by WGA (panel A) and by protamine (panel B) in BMEC cells. Neither
WGA nor WGA + mannan had an effect on I-Albumin uptake (panel C). Protamine increased uptake of I-Albumin by BMEC although much less
robustly than the uptake of I-HIV; mannan blocked this effect, although at higher doses than for the protamine/HIV-1 effect (panel D).
doi:10.1371/journal.pone.0039565.g005

Figure 6. Panel A: Cleavage of high mannose oligosaccharides from HIV with endoglycosidase F1 (eF1) reduced the transport of I-
HIV across BMEC. Panel B: The internal control of I-Albumin was unaffected. Mannose-6 phosphate, a ligand for and competitive inhibitor of the
mannose-6 phosphate receptor, inhibited the uptake (panel C) and permeation (panel D) of I-HIV across BMECs.
doi:10.1371/journal.pone.0039565.g006
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each of the three doses tested (each with p,0.001 by Dunnett’s):

Figure 7, panel D.

We tested the importance of cAMP in HIV-1 transport by using

a cAMP analog (8-bromo-cAMP) and a adenylate cyclase activator

(forskolin). Figure 8, panel A shows that the cAMP analog 8-

bromo-cAMP partially inhibited I-HIV transport across BMEC:

F(3,21) = 5.77, p,0.01 (n = 5–6/group). TEER was increased at

the intermediate dose by 8-bromo-cAMP (Figure 8, panel B):

F(3,23) = 2.84, p = 0.06 (n = 6/group). The adenylate cyclase

activator forskolin (Figure 8, panel C), also inhibited I-HIV

transport at its high dose: F(3,17) = 3.41, p,0.05 (n = 3–6/group).

Discussion

These studies show that HIV-1 uses the mannose-6 phosphate

receptor to cross the BBB as free virus. In brief, we used in vivo

pharmacokinetic methods, ultrastructural studies, and an in vitro

polarized monolayer model of the BBB in our studies.

We used as a basis for these studies key findings and models

previously used to study HIV-1 transport across the BBB. We used

a virus that was rendered non-infective by aldrithiol-2, a substance

that binds the zinc fingers of HIV-1 RNA. This treatment leaves

the viral coat unaltered and indeed was developed for use as a

vaccine [21,22]. Being non-infective conveys the advantage that

any virus we detect is known to be material which we injected into

the circulation; this is an important point as otherwise virus found

in brain could be assumed to have arisen from sites of infection

rather than immediately from blood. We previously showed that

the species barrier for HIV-1 does not extend to BBB penetration;

that is, HIV-1 is just as rapidly and efficiently taken up by mouse

brain endothelial cells as by human brain endothelial cells [35].

We first confirmed and extended previous in vivo studies

showing that free HIV-1 can cross the BBB of the mouse [4]. In

previous work, we used 4B-200 Sepharose chromatography to

demonstrate that radioactivity taken up by brain represents intact

virus and not viral coat proteins or degradation products [8]. Free

virus also crosses much faster than its surface coat protein gp120.

Here, we found that uptake of HIV-1 by the brain was rapid and

occurred throughout the CNS (Figure 1), consistent with the

widespread distribution of M6PR within the CNS [36]. Based on

specific activity of our I-HIV and published estimates of protein

molecules per virion, we roughly estimate that we infused 105–6

virions/ml [37]. This is well within the range of free virus

concentrations in patients with AIDS which typically is between

103 and 108 virions/ml [38,39]. The rate of 1 ul/g-min is as fast as

some small peptides that are transported by saturable systems and

about 500 times faster than the rate at which vascular markers

such as albumin leak into the brain.

Ultrastructural studies confirmed both the BBB penetration of

HIV-1 free virus and its rapid uptake (Figure 2). Five minutes after

iv injection of HIV-1, we found virus in the lumen, internalized in

brain endothelial cells, and in brain tissue. These results were seen

both with standard transmission electron microscopy and with

immuno-Gold staining. HIV-1 was located within the cytoplasm of

the brain endothelial cells rather than associated with intercellular

structures. This is consistent with HIV-1 crossing the BBB by the

transcytotic route, although passage by the paracellular route as

well was not ruled out. The dissociation of TEER and HIV-1

permeability in the dose-response curves for the calcium

ionophore A23187 (Figure 7) and the cAMP analog 8-bromo-

cAMP (Figure 8) also argues against HIV-1 crossing exclusively by

way of the paracellular route. However, calcium is also important

Figure 7. The intracellular calcium chelator BAPTA decreased cell retention of I-HIV at 20 uM (panel A) and increased transport rate
of I-HIV at 10 uM (panel B). This is consistent with an increased rate of transport across the BMEC. The calcium channel blocker verapamil had no
affect on transport. The calcium ionophore A23187 increased I-HIV permeability (panel C) and decreased TEER (panel D) in BMEC.
doi:10.1371/journal.pone.0039565.g007
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in tight junction regulation and it is possible that paracellular

transport of HIV-1 was enhanced as well [40]. Immunogold

staining showed that HIV-like immunoactivity had a propensity

for myelinated neurons (Figure 2 G–H). Loss of myelin is a

hallmark of the HIV-1 infected brain and is thought to be

mediated through viral proteins, cytokines, neurotoxins, and

antibodies or enzymes directed against myelin [41,42,43]. The

association of HIV-1 with myelin so immediately after its crossing

reinforces these ideas and suggests that viral effects on myelin

could be direct and occur early.

We then used the in vitro monolayer model of the BBB to

further characterize and identify the transporter used by HIV-1 to

cross the BBB. We used primary cultures of mouse brain

microvascular endothelial cells (BMECs) grown as monolayers

on transwell inserts [44]. The in vivo BBB is polarized; that is, the

lipids, proteins, and transporters present on its luminal (blood side)

surface differ from those on its abluminal (brain side) surface. The

monolayer model used here polarizes after the fashion of the in

vivo BBB with the cell membrane facing into the buffer expressing

luminal properties and the cell membrane attached to the collagen

expressing abluminal properties. Thus, these monolayers are ideal

for studying BBB transport. Previous work has shown that

transport of HIV-1 across BMECs is a multi-stage process with

different properties for adherence, internalization, and transport

[8,45]. We, therefore, studied uptake (cell/medium ratios) and

permeation (permeability coefficients). Uptake involves adherence

and internalization of HIV-1 by brain endothelial cells, whereas

permeation reflects the complete transport of HIV-1 across the

brain endothelial cell from the donor (luminal) chamber into the

acceptor (abluminal) chamber. As expected, uptake was time

dependent and transport was temperature sensitive (Figure 3),

consistent with the vesicular- and energy-dependent processes

previously shown for HIV-1 transport across the BBB. At 37uC,

HIV-1 transport was 23% faster than that of I-Alb, despite the

much greater size of HIV-1. This demonstrates a selectivity to

HIV-1 transport across the monolayer as compared to I-Alb.

A series of experiments showed that HIV-1 transport was

dependent in part on binding to the mannose-6-phosphate

receptor (M6PR). Mannose, the mannose polymer mannan, and

mannose-6 phosphate each inhibited the uptake and transport of

HIV-1, demonstrating that transport was dependent on a mannose

binding site (Figure 4 and 6). WGA and protamine sulfate, agents

known to enhance the in vivo uptake of HIV-1 and gp120 [4,6,7],

were demonstrated here to enhance uptake of HIV-1 in our in

vitro model. It has been assumed that these substances are

enhancing the endogenous transport mechanism used by HIV-1 to

cross the BBB. Finding that these enhanced uptakes were blocked

by mannan was consistent with this assumption, demonstrating

that WGA and protamine sulfate act at least in part through a

mannose binding site (Figure 5). The importance of the mannose

binding site was further illustrated by treating HIV-1 with eF1, an

enzyme that cleaves high mannose oligosacharrides. This

decreased the ability of HIV-1 to cross the monolayer, demon-

strating the importance of these sugars in transport (Figure 6).

Finally, we showed that HIV-1 uptake and transport were

inhibited by mannose-6 phosphate, thus demonstrating the

mannose binding site was M6PR.

Overall, these studies show the importance of mannose binding

sites, especially the M6PR, in HIV-1 transport across brain

endothelial cells. They do not show that M6PR is exclusively used

Figure 8. The cyclic AMP analog 8-bromo-cAMP decreased transport of HIV-1 across BMEC (panel A) and at the 0.3 mM dose
increased TEER (panel B). The adenylate cylcase activator forskolin decreased transport of HIV-1 across BMEC (panel C).
doi:10.1371/journal.pone.0039565.g008
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by HIV-1 nor do they show that all of the mannose sensitive

transport is due to M6PR. They do show that M6PR is a major

transporter used by HIV-1.

Two versions of M6PR are known: a cation-dependent (CD-

M6PR) and a cation-independent (CI-M6PR) version [46]. The

work with the calcium chelator BAPTA and the calcium

ionophore A23187 shows an affect of calcium and so strongly

suggests that the CD-M6PR is involved in HIV-1 transport. The

smaller (46 kDa) CD-M6PR has one binding site for mannose-6-

phosphate and the larger (300 kDa) CI-M6PR has three binding

sites for mannose-6 phosphate, one of which also binds GlcNAc

[47]. We showed that GlcNAc had no effect on HIV-1 uptake,

suggesting that the CI-M6PR is not involved, although it may be

that GlcNAc binding does not sterically interfere with HIV-1

binding. The intracellular calcium chelator BAPTA decreased

uptake but increased transport of HIV-1 across the BMEC

monolayer (Figure 7). These seemingly contradictory findings can

be reconciled by the conclusion that BAPTA enhanced transit

time of HIV-1 across the monolayer. The calcium ionophore

A23187 had the opposite effect of calcium chelation in that it

enhanced HIV-1 transport; this could be a result of effects on tight

junctions or on transcytotic processes. Verapamil, a calcium

channel blocker, was without effect, suggesting that calcium

channels are not involved in HIV-1 transport. Overall, these

effects suggest that HIV-1 uses the calcium dependent M6PR to

cross the BBB.

Previous work has shown that cAMP inhibits the activity of

IGF-2, an action mediated through M6PR [48,49]. We postulated

that this down regulation could be evidence that cAMP induces

the internalization of the M6PR. If so, the cAMP would be

predicted to enhance HIV-1 transport. A role for cAMP in HIV-1

transport across the brain endothelial cell was shown in that both

the cAMP analog 8-bromo-cAMP and the cAMP activator

forskolin both enhanced transport (Figure 8). Thus, cAMP is an

important part of the intracellular machinery controlling HIV-1

transport across the BBB.

In conclusion, we showed with both pharmacokinetic and

ultrastructural studies that intravenous HIV-1 rapidly crosses the

BBB. We used an in vitro model of the BBB to show that the

mannose-6-phosphate receptor mediates this transport.
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