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Abstract
The phenotypic space encompasses the assemblage of trait combinations yielding 
well-suited integrated phenotypes. At the population level, understanding the phe-
notypic space structure requires the quantification of among- and within-population 
variations in traits and the correlation pattern among them. Here, we studied the 
phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. 
Given the advance of warming and aridity in vast regions occupied by drylands, 
D. acris can indicate the successful evolutionary trajectory that many other annual 
plant species may follow in expanding drylands. To this end, we conducted a green-
house experiment with 176 D. acris individuals from five Saudi populations to quantify 
the genetic component of variation in architectural and life history traits. We found 
low among-population divergence but high among-individual variation in all traits. 
In addition, all traits showed a high degree of genetic determination in our study ex-
perimental conditions. We did not find significant effects of recruitment and fecun-
dity on fitness. Finally, all architectural traits exhibited a strong correlation pattern 
among them, whereas for life history traits, only higher seed germination implied ear-
lier flowering. Seed weight appeared to be an important trait in D. acris as individuals 
with heavier seeds tended to advance flowering and have a more vigorous branching 
pattern, which led to higher fecundity. Population divergence in D. acris might be con-
strained by the severity of the hyperarid environment, but populations maintain high 
among-individual genetic variation in all traits. Furthermore, D. acris showed pheno-
typic integration for architectural traits and, to a lesser extent, for life history traits. 
Overall, we hypothesize that D. acris may be fine-tuned to its demanding extreme 
environments. Evolutionary speaking, annual plants facing increasing warming, arid-
ity, and environmental seasonality might modify their phenotypic spaces toward new 
phenotypic configurations strongly dominated by correlated architectural traits en-
hancing fecundity and seed-related traits advancing flowering time.
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1  | INTRODUC TION

Adaptive evolution is a pervasive process by which purifying se-
lection eliminates the vast majority of deleterious mutations in a 
population, filtering out disadvantageous genetic variants and, in 
the end, unsuitable phenotypes. Over generations, a population 
molds its genetic composition and builds its phenotypic space 
(Fraebel et al., 2017; Murren, 2012; Pigliucci, 2007; Schlichting & 
Pigliucci, 1995), which encompasses the assemblage of trait com-
binations of well-suited phenotypes. One way to understand how 
the phenotypic space is structured deals with the quantification 
of among- and within-population genetic variations in phenotypic 
traits as well as the intrapopulation correlation pattern among 
traits (Benavides et al., 2021; Messier et al., 2018). At the popu-
lation scale, correlations among traits mainly reflect genetic, de-
velopmental, or physiological processes (Armbruster et al., 2014; 
Messier et al., 2018). Broadly speaking, the interplay between ge-
netic constraints, for example, pleiotropic interactions with poten-
tial antagonistic selection on correlated traits (Auge et al., 2019; 
Keith & Mitchell-Olds, 2019), and natural selection represents the 
major force shaping the phenotypic space (Lande & Arnold, 1983; 
Messier et al., 2018; Pigliucci, 2007). Nevertheless, genetic con-
straints and natural selection may also act as a means to preserve 
successful trait combinations boosting the phenotypic space struc-
ture (Auge et al., 2019; Wagner et al., 2008).

Regardless of the several ways in which natural selection deter-
mines the distribution of phenotypes within a population, along with 
the omnipresent random effects of genetic drift, the severity of the 
environment eventually imposes the ecological limits of the phe-
notypic space. Field studies in plants revealed how environmental 
gradients (e.g., elevation and core–periphery clines) influenced mean 
trait values and also the pattern of trait covariation within popula-
tions (Benavides et al., 2021; Boucher et al., 2013; Dwyer & Laughlin, 
2017; Michelaki et al., 2019; Rosas et al., 2019; Umaña & Swenson, 
2019). Furthermore, some of these studies did show how the de-
gree of phenotypic integration, given by the strength of covariation 
among traits, intensified with increasing environmental harshness 
(Dwyer & Laughlin, 2017; Michelaki et al., 2019; Benavides et al., 
2021; but see Boucher et al., 2013). Although these field studies 
were not exclusively focused on life history traits and did not quan-
tify the underlying genetic component of phenotypic integration, 
they shed light on the consequences of intraspecific trait variability 
and phenotypic integration in natural populations for plant commu-
nity assembly and ecosystem functioning.

A deeper understanding of how organisms integrate their phe-
notypes in extreme environments may provide insights into the evo-
lutionary pathways required to endure the current scenario of rapid 
increasing climate-related risks and extreme events in several world 
regions. In this sense, desert annuals represent an appropriate sys-
tem to study phenotypic integration because they have developed 
a strategy to face the environmental unpredictability associated 
with harsh environments. In particular, desert annuals commonly 
exhibit delayed germination, which buffers variation in reproduction 

success due to greater environmental risk (i.e., bed hedging; Clauss 
& Venable, 2000; Pake & Venable, 1996; Venable, 2007). However, 
beyond the association between the germination fraction and repro-
ductive success, we know less about the phenotypic space in desert 
annuals in terms of among- and within-population variations and in-
trapopulation correlation among traits. Given the important demo-
graphic role of the seed stage (e.g., seed dormancy in the soil seed 
bank and germination timing; Clauss & Venable, 2000; Adondakis & 
Venable, 2004; Volis et al., 2004; Gomaa, 2020), we expect seed-
related traits, such as seed weight or germination behavior, to play 
a central role in structuring the phenotypic space in desert annuals.

The main goal of this study was to characterize among- and 
within-population genetic variations for phenotypic traits and for 
the correlation pattern among traits in the annual plant Diplotaxis 
acris (Forssk.) Boiss. (Brassicaceae). The species occurs in hyperarid 
deserts where natural selection exerts strong pressures on stand-
ing genetic variation and resulting phenotypic distribution. We 
undertook a greenhouse experiment to quantify among- and within-
population genetic variations in architectural and life history traits 
in 176 D.  acris individuals from five populations from the Arabian 
Desert. We computed broad-sense heritability values for all traits, 
which provides an estimation of all genetic contributions to within-
population phenotypic variation. We also evaluated the effects of 
selection on recruitment and flowering time, the two major fitness-
related developmental transitions in annuals, and computed correla-
tions among traits to estimate the degree of phenotypic integration 
in D. acris. Given the generalized trend for increasing temperatures 
and aridity is several world regions, particularly since the turn of the 
21st century across the approximately 41% of the terrestrial land 
surface characterized as drylands (Huang et al., 2016), hyperarid 
deserts can teach us important lessons on successful phenotypic 
space in plants in such unforgiving hot, dry, and markedly seasonal 
environments.

2  | MATERIAL S AND METHODS

2.1 | Study area, species, and source populations

The study area is located in the Al-Jouf region, NW Saudi Arabia 
(approx. 29°N–32°N, 37°E–42°E; Figure 1a). The region has a hy-
perarid climate with hot summers, cool winters, and scarce pre-
cipitation. Based on data from the Al-Jouf airport meteorological 
station (2016–2019; Figure S1), mean total annual precipitation was 
93.1  mm (range  =  39.6–156.3  mm), with the rainy period extend-
ing from November to May, followed by five consecutive months 
of severe drought (June–October). The average total monthly pre-
cipitation during the entire rainy period for these years was 13.5 mm 
(range = 1.1–83.4 mm). Mean monthly minimum temperatures (an-
nual mean ± SD = 18.7 ± 0.9°C) ranged from a low of 5°C (February 
2017) to a high of 31°C (July 2017). Mean monthly maximum tem-
peratures (annual mean  ±  SD  =  29.2  ±  0.6°C) ranged from a low 
of 14°C (January 2016) to a high of 43°C (July 2017). Finally, mean 



15710  |     GOMAA and PICÓ

monthly relative humidity (annual mean ± SD = 25.6 ± 1.0%) was 
rather low, varying between 12% (July and August 2017) and 50% 
(November 2018).

Diplotaxis acris (Forssk.) Boiss. (Brassicaceae) is an annual des-
ert herb (Figure 1b,c). The species is widespread in Saudi Arabia, 
in particular at the northern and western areas of the country. The 
core of species' distribution range includes deserts of Egypt, the 
Palestine region, and the Arabian Peninsula (Chaudhary, 1999), but 
the species can also be found in deserts of Chad, Kuwait, and Libya. 
Diplotaxis acris grows in sandy and rocky soils of wadis and runnels, 
which collect runoff water from surrounding, more elevated areas. 
In the study area, seed germination occurs mainly in November 
with, the first rains after the long severe drought. Diplotaxis acris 
blooms in January, and fruiting spans between February and March. 
Flowers (1 cm long) are purple and arranged in dense racemes. Plants 
can produce a single flowering stalk, but they can also lose apical 
dominance.

We sampled 30–40 individuals (or maternal families) from five 
haphazardly chosen D. acris populations (total N = 176 individuals). 
All populations, separated by 5–30 km from each other, were located 
around Sakaka city, Saudi Arabia (Figure 1a). In particular, popula-
tions A (29°52′58″N, 40°6′40.7″E) and B (29°52′13″N, 40°2′23″E) 
were located 10–15 km SW of the city. Populations C (30°6′33.1″N, 
40°10′6.6″E), D (30°7′11.6″N, 40°12′37″E), and E (30°4′33.6″N, 
40°12′22.9″E) were located 10–15  km  N of the city. Populations 
exhibited some environmental differences. For example, popu-
lations A, B, and D were located in shallow runnels; population C 
was located in a flat rocky area; and population E was located in a 
deep runnel. There were no major differences between shallow run-
nels, deep runnels, and flat rocky areas in terms of solar exposure 
and probably temperature. Nevertheless, they differed in potential 
water availability for plants, being higher in runnels than in flat rocky 
areas. Estimates of the soil moisture content during the flowering 
season showed that population C (flat rocky area) had the lowest soil 

F I G U R E  1   Map of the study area and photographs of Diplotaxis acris. (a) Location of study populations and the greenhouse facility 
around Sakaka city in the Al-Jouf region in NW Saudi Arabia. The asterisk in the inner panel indicates the location of the study area in the 
Al-Jouf region. (b) General view of a natural population at the flowering peak. (c) Details of a flowering individual in the wild. (d) General view 
of the common garden experiment with individuals at different developmental stages. (e) Details of a flowering individual in the common 
garden experiment
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moisture content (mean ± SE = 1.63 ± 0.11%), whereas the others 
located in runnels (shallow and deep) exhibited higher and similar 
values (range of means ± SE = 3.33 ± 0.15%–3.87 ± 0.11% in popula-
tions D and E, respectively). All populations were located at a similar 
altitude (621–662 m.a.s.l.), occupied a similar area (1400–1800 m2), 
and exhibited similar D. acris densities (1.0–1.9 individuals/m2).

Vegetation in hyperarid deserts is composed of widely spaced 
perennial shrubs, whereas annuals occupy barren shrub interspaces. 
Except slight differences, all five D.  acris populations harbored a 
similar plant community. Major co-occurring perennial species were 
Haloxylon salicornicum (Moq.) Bunge ex Boiss. (Chenopodiaceae), 
Nauplius graveolens (Forssk.) Wiklund (Asteraceae), and Artemisia ju-
daica L. (Asteraceae). The annual plant community included Savignya 
parviflora (Delile) Webb (Brassicaceae), Erodium laciniatum var. pul-
verulentum (Cav.) Boiss. (Geraniaceae), Schismus barbatus (L.) Thell. 
(Poaceae), Plantago ciliata Desf. (Plantaginaceae), Plantago ovata 
Forssk. (Plantaginaceae), Trigonella stellata Forssk. (Fabaceae), and 
Spergularia bocconei (Scheele) Graebn. (Caryophyllaceae).

2.2 | Field sampling and greenhouse experiment

In March 2019, we collected ripe seeds from haphazardly chosen in-
dividuals, separated by 2–5 m from each other, across a similar area 
(approx. 300 m2) within each population. We kept seeds in 1.5-ml 
plastic tubes at room temperature (20–24°C) in darkness until the 
sowing day. We used mean seed weight as a covariate to control 
for environmental maternal effects in the statistical analyses (see 
below) because environmental maternal effects can be an issue 
when testing genetic differentiation in offspring traits (Bischoff & 
Müller-Schärer, 2010). To estimate mean seed weight for each in-
dividual from each population, we weighed to the nearest 0.1  mg 
three batches of 100 seeds each (176 individuals × 3 batches/indi-
vidual × 100 seeds/batch = 52,800 seeds) with a GR-200 digital bal-
ance (A&D Company, Tokyo, Japan).

To estimate quantitative genetic variation in architectural and life 
history traits in D. acris, we established an experiment in November 
2019 in a plastic unconditioned greenhouse (29°54′40.9″N, 
39°46′41″E; 670  m.a.s.l.; Figure S2) located 25–45  km away from 
the study populations (Figure 1a). The mean minimum and mean 
maximum temperatures recorded inside the greenhouse over the 
duration of the experiment were of 11 and 20°C, respectively. The 
relative humidity inside the greenhouse varied between 33% and 
48%. The experiment included 37, 40, 39, 30, and 30 individuals 
from populations A, B, C, D, and E, respectively. We sowed ten repli-
cates per individual in round plastic bags (23 × 13 cm; Figure 1d). The 
experimental layout comprised a complete randomization of repli-
cates from all individuals and populations within the greenhouse. In 
order to keep greenhouse effects under control (see below), we used 
a high number of replicates per individual because of the impossibil-
ity of periodic re-arrangement of round plastic bags throughout the 
experiment. We filled round plastic bags with soil collected from a 
site near the greenhouse, which was practically the same type of 

sandy soil that the one found in all study populations and because of 
the absolute lack of vegetation, particularly D. acris. Each replicate 
contained 150  sound seeds. Thus, this experiment included 1760 
experimental units (round plastic bags) and 264,000 seeds (176 in-
dividuals × 10 replicates/individual × 150 seeds/replicate). We wa-
tered plants as needed throughout the experiment to avoid hydric 
stress and to evaluate the full potential of D. acris plants growing in 
optimal conditions.

We estimated the proportion of germinated seeds 2 weeks after 
the sowing date (November 16, 2019) when we observed the max-
imum number of seedlings per replicate. Two weeks later, 1 month 
after sowing, we thinned out replicates to one juvenile plant per rep-
licate (Figure 1d) to avoid density-dependent and asymmetrical com-
petition effects. We estimated flowering date as the number of days 
between the sowing date and the opening of the first flower. When 
plants were completely fruited, we measured several architectural 
and life history traits. These traits included the length of the main 
flowering stalk, the number of secondary stalks on the main stalk, the 
mean length of all secondary stalks, the number of caulinar leaves of 
the main stalk, and the mean length of the fruits on the main stalk.

In addition, we estimated fecundity by counting the number of 
seeds in 10 fruits per replicate (176 individuals × 10 replicates/indi-
vidual × 10 fruits/replicate = 17,600 fruits) and multiplying the aver-
age number of seeds per fruit by the total number of fruits per plant. 
We did not detect any significant ovule abortion or seed loss during 
the counting. We saw some bees inside the greenhouse when flow-
ering was quite advanced (N. H. Gomaa, pers. obs.). Nevertheless, we 
believe that the vast majority of seeds came from self-fertilization. 
To avoid redundancies, we excluded from the analyses some traits 
due to strong correlation with other traits or practically no among-
individual variability. These traits included the number of stalks 
emerging from the base (on average 1.08  ±  0.02  main stalks per 
plant), the mean length of all stalks (nearly identical to the length of 
the main stalk; on average 71.1 cm vs. 70.4 cm), and the number of 
fruits (strongly correlated with the number of seeds; r = .99).

We terminated the experiment when all plants were completely 
fruited (March 23, 2020). We dug up, rinsed, and dried out all plants 
(70°C for 48  h) in an FED 115 oven (BINDER GmbH, Tuttlingen, 
Germany). Then, we estimated the aboveground biomass, the be-
lowground biomass, and the root-to-shoot ratio. We used the root-
to-shoot ratio as a measure of individual fitness as biomass-related 
traits may represent a good estimate of fitness in plants (Younginger 
et al., 2017). We excluded fecundity to estimate fitness because it 
was significantly positively correlated with aboveground biomass 
(N = 176, r =  .93, p <  .0001) and belowground biomass (N = 176, 
r =  .89, p <  .0001), and significantly negatively correlated with the 
root-to-shoot ratio (N = 176, r = −.65, p < .0001).

2.3 | Statistical analyses

We tested the effect of population (random factor) and individ-
ual (random factor) nested within the population on variation in 
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architectural and life history traits of D. acris. Prior to analyses, we 
inspected the frequency distribution of variables, the variances of 
data, and the existence of outliers. Based on that, we did not detect 
greenhouse effects and did not have to exclude any replicate from 
the experiment. We fitted linear mixed models (LMM) for all traits, 
except for seed germination. For the latter, we fitted generalized 
linear mixed models (GLMM), using the gamma distribution as the 
inverse link function. We carried out these analyses with the R pack-
age lme4 (Bates et al., 2015). We included seed weight in all analy-
ses as a covariate to consider environmental maternal effects at all 
times. We also checked model residuals to make sure that the major 
assumptions of the analyses were acceptable. We tested signifi-
cances with likelihood-ratio tests. We obtained R2 values for each 
factor and variable using the “r2_nakagawa” function (Nakagawa 
et al., 2017).

To quantify the degree of genetic determination in our exper-
imental conditions (i.e., the proportion of phenotypic variance ac-
counted for by genotypic variance) for all traits, we estimated broad 
sense heritability (h2) values as h2 = VG/(VG + VE), where VG is the 
estimated among-individual variance component and VE is the re-
sidual variance (Le Corre, 2005). We computed all variance compo-
nents and their 95% confidence intervals using the “remlVCA” and 
“VCAinference” functions of the R package VCA v.1.4.3.

Finally, to determine the effects of selection upon D. acris, we 
estimated linear and quadratic selection gradients (β and γ) and se-
lection differentials (s and C) for the major fitness-related develop-
mental transitions in annuals (i.e., recruitment and flowering time), 
using a generalized additive model-based (GAM) characterization of 
the fitness function with the R package gsg (Morrissey & Sakrejda, 
2013). In our case, we used the seed germination fraction as the 
estimate of recruitment. We conducted all selection analyses with 

standardized variables. Selection gradients and selection differen-
tials were estimated from full models including linear and quadratic 
effects. We did not double quadratic regression coefficients and 
standard errors. Traditional least squares-based regressions yielded 
consistent results (analyses not shown).

3  | RESULTS

We estimated the amount of quantitative variation in architectural 
and life history traits of 176 D. acris individuals from five populations 
from the hyperarid Arabian Desert by undertaking a greenhouse 
experiment. Overall, D. acris individuals exhibited very low germina-
tion rates (on average 5%; Table 1). Plants produced the first flower 
in slightly more than 2  months since seed sowing, with flowering 
times spanning 25 days between the earliest and the latest individ-
ual (Table 1). Plants reached a considerable size in the greenhouse 
(Figure 1d,e) with tall main stalks (on average >70 cm; Table 1) and 
long secondary stalks (on average ca. 45  cm; Table 1). Individual 
plants produced hundreds of fruits (on average ca. 115 fruits) and 
thousands of seeds (on average ca. 18,000 seeds; Table 1).

We used linear models to test the random effects of population 
and individual nested within populations, using seed weight as a co-
variate, on architectural and life history traits. We found that seed 
weight had little effect on variation in all traits, except for flowering 
time (Table 1), indicating that seed weight affected flowering time 
differently among populations. In fact, the relationship between 
seed weight and flowering time was negative (range of r = −.37 to 
−.06; i.e., plants with heavier seeds flowered earlier) but only sig-
nificant in one population (N  =  30, r  =  −.37, p  =  .047; population 
D). Overall, linear models indicated that variation among individuals 

TA B L E  1   Linear mixed models or generalized linear mixed models testing the effect of population and individual nested within population 
on architectural and life history traits of Diplotaxis acris

Traits

Covariate Population Individual

Mean ± SE
Range among 
individualst-value χ2 R2 χ2 R2

Length apical flowering stalk −0.25 ns 5.31* .11 466.01*** .62 71.05 ± 1.28 36.50–109.30 cm

No. secondary stalks 1.36 ns 13.96*** .17 284.45*** .47 2.61 ± 0.07 1.10–6.22 stalks

Mean length secondary stalks 0.47 ns 6.38* .13 464.75*** .65 44.47 ± 1.19 11.45–80.08 cm

No. leaves apical flowering stalk 0.73 ns 0.01 ns .00 358.22*** .69 8.57 ± 0.28 3.30–21.40 leaves

Mean fruit length −0.28 ns 7.57** .12 429.83*** .61 4.38 ± 0.04 3.06–5.90 cm

Aboveground biomass 1.35 ns 7.12** .14 458.35*** .63 6.49 ± 0.25 1.52–21.72 g

Belowground biomass 1.48 ns 19.61*** .19 388.54*** .59 0.65 ± 0.02 0.02–0.13 g

Root-to-shoot ratio −0.43 ns 0.01 ns .00 127.01*** .23 0.11 ± 0.001 0.001–0.07

Seed weight – 9.90** .09 1333.10*** .90 1.30 ± 0.02 × 10−2 0.70–2.50 ×10−2 g

Seed germination 1.08 ns 21.29*** .08 533.68*** .43 0.05 ± 0.003 0.01–0.24 (proportion)

Flowering time −2.27* 10.46** .05 15.58*** .36 70.02 ± 0.33 57.80–82.78 days

Fecundity 1.51 ns 11.01*** .14 580.12*** .70 17.98 ± 0.92 × 103 3.96–58.93 ×103 seeds

Note: Seed weight was used as a covariate in all analyses. Factors were tested through likelihood-ratio tests. The proportion of variance explained 
by each factor and variable are given. The mean (±SE) and the range of values among individuals (N = 176) for each trait are also provided. Asterisks 
indicate significance: ***p < .001, **p < .01, *p < .05, ns; nonsignificant.
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mostly accounted for variation in both architectural and life history 
traits (Table 1). Although population was also significant for most 
traits (Table 1 and Figure 2), except for the number of leaves on the 
main flowering stalk and belowground biomass, the variation ex-
plained by populations was substantially lower (range R2 = .00–.19) 
than that explained by individuals (range R2 = .23–.90; Table 1).

We also explored trait–trait correlations to illustrate the config-
uration of architectural and life history traits in D. acris. Given the 
low amount of variation explained by population, we focused on the 
results from the correlation pooling all individuals from all popula-
tions. All architectural traits exhibited strong positive correlations 
among them (Table 2). Architectural traits also showed strong pos-
itive correlations with fecundity (i.e., larger plants produced more 
seeds; Table 2). The negative correlation of architectural traits with 

the root-to-shoot ratio was the result of the way in which this vari-
able was estimated. Interestingly, one architectural trait and one life 
history trait (the number of secondary stalks and seed weight) were 
significantly positively correlated (r = .16, p = .032; Table 2), showing 
a trend for plants with heavier seeds having a more vigorous branch-
ing pattern. Finally, two life history traits (seed germination and 
flowering time) were significantly negatively correlated (r  =  −.35, 
p < .0001; Table 2), indicating that plants with higher germinability 
flowered earlier.

To evaluate the degree of genetic determination of architectural 
and life history traits in D. acris, we estimated broad sense herita-
bility (h2) values for all traits. All h2  values were high (Table 3), as 
expected by the variation in traits explained by individuals in linear 
models (Table 1). Seed weight and fecundity, two life history traits, 

F I G U R E  2   Summary statistics 
for architectural (orange) and life 
history (green) traits of Diplotaxis acris 
populations. Boxes show the lower and 
upper quartiles; whiskers indicate the 
minimum and maximum values; and the 
line is the median of observations and 
dots indicate atypical values
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exhibited the highest h2 values (Table 3). All architectural traits, ex-
cept the root-to-shoot ratio, showed very similar h2 values (range of 
h2 = 0.64–0.78 for the number of secondary stalks and the mean 
length of secondary stalks, respectively). The lowest h2 values were 
for the root-to-shoot ratio and flowering time (Table 3). We recorded 
almost all the lowest h2 values in population E, whereas populations 
A and D exhibited the largest h2 values for many traits (Table 3).

Finally, we estimated linear and quadratic selection gradients (β 
and γ) and selection differentials (s and C) for recruitment (given by 
the seed germination fraction) and flowering time with a GAM-based 
approach to evaluate how natural selection acted upon D. acris in-
dividuals. Despite some marginal significances, the results showed 

that neither recruitment nor flowering time significantly contributed 
to fitness, estimated by the root-to-shoot ratio (Table 4) in our ex-
perimental conditions. We found the same results when using fecun-
dity, aboveground biomass or belowground biomass as estimates of 
fitness (results not shown).

4  | DISCUSSION

Depicting the phenotypic space enables us to comprehend the evo-
lutionary pathways that organisms can take to increase performance 
and long-term survival in their changing environments. In this study, 

TA B L E  2   Trait–trait correlations for Diplotaxis acris individuals from all populations (N = 176)

LAFS NSS MLSS NLAFS MFL AB BB RSR SW SG FT FEC

LAFS – *** *** *** *** *** *** *** ns ns ns ***

NSS 0.60 – *** *** *** *** *** *** * ns ns ***

MLSS 0.91 0.68 – *** *** *** *** *** ns ns ns ***

NLAFS 0.56 0.62 0.65 – *** *** *** *** ns ns ns ***

MFL 0.55 0.48 0.60 0.46 – *** *** *** ns ns ns ***

AB 0.81 0.89 0.90 0.70 0.56 – *** *** ns ns ns ***

BB 0.81 0.89 0.89 0.67 0.55 0.97 – *** ns ns ns ***

RSR −0.64 −0.57 −0.69 −0.54 −0.46 −0.69 −0.55 – ns ns ns ***

SW −0.01 0.16 0.05 0.04 0.07 0.12 0.14 0.01 – ns ns ns

SG 0.04 −0.09 −0.01 0.07 −0.02 −0.08 −0.10 −0.06 −0.04 – *** ns

FT −0.13 0.02 −0.14 0.02 0.06 −0.06 −0.07 0.08 −0.02 −0.35 – ns

FEC 0.73 0.81 0.84 0.77 0.61 0.93 0.89 −0.65 0.13 −0.05 −0.04 –

Note: Architectural traits are length apical flowering stalk (LAFS), no. secondary stalks (NSS), mean length secondary stalks (MLSS), no. leaves apical 
flowering stalk (NLAFS), mean fruit length (MFL), aboveground biomass (AB), belowground biomass (BB), and root-to-shoot ratio (RSR). Life history 
traits are seed weight (SW), seed germination (SG), flowering time (FT), and fecundity (FEC). All significant correlations are in bold. Asterisks indicate 
significance: ***p < .001, **p < .01, *p < .05, ns; nonsignificant.

Traits

All populations
Range among 
populations

h2 h2

Length apical flowering stalk 0.715 (0.678–0.740) 0.459 (E)–0.799 (C)

No. secondary stalks 0.639 (0.596–0.668) 0.162 (E)–0.821 (A)

Mean length secondary stalks 0.778 (0.747–0.799) 0.415 (E)–0.846 (C)

No. leaves apical flowering stalk 0.690 (0.650–0.716) 0.139 (E)–0.794 (A)

Mean fruit length 0.731 (0.695–0.755) 0.380 (E)–0.811 (B)

Aboveground biomass 0.767 (0.734–0.788) 0.322 (E)–0.811 (C)

Belowground biomass 0.770 (0.737–0.791) 0.402 (E)–0.803 (A)

Root-to-shoot ratio 0.367 (0.318–0.402) 0.070 (E)–0.468 (A)

Seed weight 0.989 (0.987–0.989) 0.980 (A)–0.993 (D)

Seed germination 0.773 (0.722–0.769) 0.556 (E)–0.750 (C)

Flowering time 0.416 (0.367–0.451) 0.223 (E)–0.548 (A)

Fecundity 0.834 (0.798–0.851) 0.571 (E)–0.858 (D)

Note: Mean (95% CI) values are given for estimates using all populations. The range of h2 values 
among populations are also given, indicating the population in parenthesis.

TA B L E  3   Broad sense heritability (h2) 
for architectural and life history traits of 
Diplotaxis acris
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we focused on phenotypic space structure of the annual desert 
plant D. acris thriving in hyperarid deserts, which are the harshest 
end of the environmental gradient found in drylands. Given the cur-
rent accelerated environmental changes at a global unprecedented 
scale (Loarie et al., 2009; Neukom et al., 2019) and the expected 
expansion of drylands with global warming (Feng & Fu, 2013), sev-
eral annual plant species might already be experiencing harsher 
environmental conditions and perhaps displacements of their phe-
notypic spaces toward new phenotypic configurations. Thus, D. acris 
exemplifies a successful evolutionary history of adaptation to hot, 
dry and markedly seasonal environments, which points to one of the 
possible evolutionary pathways to follow as the vast terrestrial land 
surface occupied by drylands becomes warmer and drier.

To determine the extent of the phenotypic space in D. acris, we 
conducted a greenhouse experiment and quantified the genetic 
component of phenotypic variation in architectural and life history 
traits of 176 D. acris individuals from five Saudi populations. The re-
sults showed that most of the variance was explained by individuals 
within populations, whereas populations accounted for up to 83% 
less variance for both architectural and life history traits (Table 1). 
These results suggest that the hyperarid environmental conditions 
in which D. acris completes the life cycle constraint population diver-
gence, a process that seems to be more intense in life history traits 
than in architectural traits (Table 1). We believe that regional-scale 
hyperarid environmental conditions tend to minimize large-scale 
spatial heterogeneity, which is known to intensify spatial patterns by 
enhancing population dynamics (Getzin et al., 2008) and promoting 
phenotypic plasticity (Lázaro-Nogal et al., 2015) in plants. Although 
we cannot delimit the extent of such regional environmental homo-
geneity affecting population divergence in D. acris, significant vari-
ation in water availability and annual precipitation are likely to be 
the main factors, accounting for among-population variation in key 

biological processes, such as flowering phenology and seed bank 
dynamics, as shown for other plant species from hyperarid deserts 
(Gomaa, 2019).

Our experiment did not allow the identification of the ecologi-
cal sources accounting for among-individual variation. Nevertheless, 
we hypothesize that D.  acris could be experiencing the effects of 
fine-scale environmental heterogeneity on genetic differentiation 
of phenotypic traits, as commonly observed in several plant species 
(Argyres & Schmitt, 1991; Galloway, 1995; Kalisz, 1986; Mitchell-
Olds & Bergelson, 1990; Prati & Schmid, 2000; Schemske, 1984; 
Stratton, 1994; Stratton & Bennington, 1996). Given the rigor of 
hyperarid environments, one might expect strong directional se-
lection to decrease genetic variance in phenotypic traits (Blows 
& Hoffmann, 2005). However, this seems not to be happening in 
D.  acris. Several processes may account for the among-individual 
genetic variation in architectural and life history traits in D. acris as 
well as for the apparent viability of study populations. For example, 
it has been shown that even in annuals with a high selfing ability, 
one admixture event suffices to yield rapid changes in phenotypic 
variation (Palacio-Lopez & Molofsky, 2021). Hence, the potential 
of generating novel genetic variants is more than relevant in every 
generation. Furthermore, environmental heterogeneity, regardless 
of its scale, can also dramatically influence selection on fitness-
related traits (Exposito-Alonso et al., 2018; Palacio-Lopez et al., 
2020) in a relatively short time frame. In fact, fast genetically based 
evolutionary changes imposed by environmental changes (i.e., rapid 
evolution) has been quantified in annuals over just a few genera-
tions (Etterson et al., 2016; Frachon et al., 2017; Franks & Hoffmann, 
2012; Franks et al., 2007; Gómez et al., 2018; Maron et al., 2004; 
Rhoné et al., 2010; Sultan et al., 2013). This phenomenon strongly 
promotes within-population genetic variation in demographically 
viable populations.

TA B L E  4   Linear and quadratic selection gradients (β and γ) and selection differentials (s and C) for recruitment and flowering time using a 
GAM-based approach for Diplotaxis acris for each population

Population

Linear Quadratic

Recruitment Flowering time Recruitment Flowering time Interaction

A (N = 37) β 2.850 (1.676) ns −0.005 (0.149) ns γ −3.987 (2.58) ns −0.027 (0.265) ns −1.570 (1.883) ns

s −0.007 (0.071) ns −0.067 (0.080) ns C 0.085 (0.149) ns 0.105 (0.147) ns 0.040 (0.072) ns

B (N = 40) β 0.107 (0.190) ns −0.115 (0.083) ns γ 0.445 (0.977) ns −0.152 (0.168) ns −0.105 (0.224) ns

s 0.144 (0.085) ns −0.106 (0.085) ns C 0.229 (0.165) ns −0.114 (0.059) ns −0.081 (0.055) ns

C (N = 39) β −0.132 (0.203) ns 0.064 (0.117) ns γ 0.153 (0.601) ns 0.359 (0.364) ns 0.252 (0.325) ns

s −0.110 (0.055)* 0.040 (0.061) ns C −0.096 (0.096) ns −0.032 (0.082) ns 0.093 (0.058) ns

D (N = 30) β 0.270 (0.206) ns 0.264 (0.209) ns γ −0.222 (0.815) ns −0.052 (0.715) ns 0.280 (0.405) ns

s 0.096 (0.076) ns 0.047 (0.083) ns C −0.036 (0.082) ns 0.019 (0.086) ns 0.038 (0.058) ns

E (N = 30) β −0.026 (0.291) ns −0.007 (0.130) ns γ 0.000 (1.758) ns −0.004 (0.393) ns 0.179 (0.474) ns

s −0.053 (0.081) ns −0.029 (0.074) ns C −0.148 (0.142) ns −0.060 (0.078) ns 0.143 (0.062)*

All (N = 176) β −0.013 (0.127) ns −0.025 (0.044) ns γ 0.000 (0.508) ns 0.007 (0.049) ns 0.066 (0.098) ns

s −0.033 (0.036) ns −0.020 (0.039) ns C −0.057 (0.057) ns 0.035 (0.062) ns 0.072 (0.036)*

Note: Results for all populations are also given. The number of individuals per year is indicated within parentheses next to the population code. 
Asterisks indicate significance: ***p < .001, **p < .01, *p < .05, ns; nonsignificant.
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Interestingly, our selection analysis did not detect any significant 
effect of the two most important developmental stages in annual 
plants, that is, recruitment and flowering time, on fitness (Table 4). 
This may have two interpretations. On the one hand, the first ex-
planation may be methodological. Given that we thinned out pots 
to one single plant per replicate, we could neither estimate actual 
survival (e.g., the proportion of seedlings becoming reproductive 
plants) nor fitness as the product between survival and fecundity 
(Exposito-Alonso et al., 2018). Instead, we used the root-to-shoot 
ratio based on the known value of biomass-related traits as fitness 
estimates (Younginger et al., 2017). Clearly, we need further exper-
iments undertaken in natural settings to estimate among-individual 
variation in survival rates in D. acris and to determine the role of de-
velopmental transitions in fitness. Such experiments should consider 
the among-individual genetic relatedness, which is always a strong 
predictor of plant performance (Stachowicz et al., 2013) and a fac-
tor accounting for plant population divergence (Castilla et al., 2020; 
Marcer et al., 2016).

On the other hand, the other nonexclusive explanation may be 
biological. Given the severity of hyperarid environments, and the 
fact that the study region falls in the species' distribution core, we 
might be dealing with fine-tuned phenotypes to their environments. 
Environmentally induced phenotypic fine-tuning has been quantified 
in other annuals, such as Arabidopsis thaliana, which increases seed 
dormancy and advances flowering time as the environment becomes 
drier and more seasonal (Debieu et al., 2013; Marcer et al., 2018; 
Vidigal et al., 2016). Hence, if D. acris were well-adapted to their de-
manding hyperarid environments, the extent of maladaptation, and 
its subsequent reductions in fitness (Brady et al., 2019) would be 
limited, as suggested by our selection analysis. Thus, D. acris popula-
tions would mostly be subject to inherent demographic oscillations, 
probably determined by the timing and amount of annual rainfall. 
Nevertheless, it is hard to believe that D.  acris individuals do not 
exhibit variation in performance and fitness in their natural envi-
ronments, but such variation might be constrained by the extreme 
environmental conditions in which D.  acris individuals complete 
the life cycle. In this hypothetical scenario, phenotypic plasticity 
would acquire a relevant role to increase plant performance among 
individuals experiencing small-scale environmental heterogeneity 
(Lázaro-Nogal et al., 2015). Other studies in the annual A. thaliana 
also indicated that populations from warmer environments exhib-
ited higher plasticity that those from cooler environments (Exposito-
Alonso et al., 2018). Given the dramatic differences in size between 
plants growing in natural populations and greenhouse conditions 
(Figure 1c,e), it is clear that the plastic ability of D. acris is more than 
relevant. Further experiments are also required to quantify among-
individual variation in phenotypic plasticity and its neutral or adap-
tive nature in D. acris.

Finally, we can state that D.  acris exhibited an integrated phe-
notype, particularly for architectural traits, which showed strong 
correlations among them and were strong predictors of fecundity 
(Table 2). In contrast, as far as life history traits are concerned, only 
seed germination tended to be negatively correlated with flowering 

time, stressing the evolutionary importance of completing the life 
cycle as fast as possible in those D.  acris individuals with higher 
germinability. Interestingly, fecundity did not show significant cor-
relations with any life history trait (Table 2). In other words, within 
the window of opportunity for completing the life cycle success-
fully, D. acris individuals invest all the resources to produce as many 
seeds as possible enhanced by the architectural trait integration. 
Nevertheless, seed quality also matters in D. acris because heavier 
seeds showed a trend for earlier flowering and a more vigorous 
branching pattern, which led to higher fecundity.

Overall, we conclude that D. acris, a specialist in hyperarid des-
erts, can provide useful hints of the effects of increasing warming 
and aridity on the phenotypic space structure in several annual 
plants species is broad terrestrial regions. We are well-aware of the 
important value of standing genetic variation to persist in chang-
ing environments (Barrett & Schluter, 2008; Exposito-Alonso et al., 
2018; Jump et al., 2009; Matuszewski et al., 2015). Furthermore, we 
also know how fast annual plant populations can change their ge-
netic composition in just a few years due to selection and/or demog-
raphy (Gómez et al., 2018; Kuester et al., 2016; Nevo et al., 2012; 
Van Dijk & Hautekèete, 2014; Vigouroux et al., 2011). On top of that, 
harsher environments might promote higher phenotypic plasticity 
(Exposito-Alonso et al., 2018; Lázaro-Nogal et al., 2015; Matesanz 
et al., 2020) and tighter phenotypic integration (Benavides et al., 
2021; Dwyer & Laughlin, 2017; Michelaki et al., 2019). For all these 
reasons, we believe that most annuals will have a chance to thrive 
in a warmer, more arid, and more seasonal environments by shifting 
their phenotypic spaces toward new scenarios in which phenotypic 
integration and seed-related traits will acquire a higher relevance. 
The pace and heterogeneity of increasing warming and aridity across 
the vast land surface occupied by drylands will determine the even-
tual outcome for several annual plant species in the coming decades.
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