
BMC Proceedings

Proceedings
A two-stage search strategy for detecting multiple
loci associated with rheumatoid arthritis
Pritam Chanda*1, Aidong Zhang1, Lara Sucheston2

and Murali Ramanathan3

Addresses: 1Departments of Computer Science and Engineering, State University of New York, Buffalo, New York 14260, USA,
2Department of Biostatistics, State University of New York, Buffalo, New York 14260, USA and 3Department of Pharmaceutical Sciences,
State University of New York, Buffalo, New York 14260, USA

E-mail: Pritam Chanda* - pchanda@cse.buffalo.edu; Aidong Zhang - azhang@cse.buffalo.edu; Lara Sucheston - lsuchest@buffalo.edu;
Murali Ramanathan - murali@buffalo.edu
*Corresponding author

from Genetic Analysis Workshop 16
St Louis, MO, USA 17-20 September 2009

Published: 15 December 2009

BMC Proceedings 2009, 3(Suppl 7):S72 doi: 10.1186/1753-6561-3-S7-S72

This article is available from: http://www.biomedcentral.com/1753-6561/3/S7/S72

© 2009 Chanda et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Gene × gene interactions play important roles in the etiology of complex multi-factorial diseases
like rheumatoid arthritis (RA). In this paper, we describe our use of a two-stage search strategy
consisting of information theoretic methods and logistic regression to detect gene × gene
interactions associated with RA using the data in Problem 1 of Genetic Analysis Workshop 16. Our
method detected interactions of several SNPs (single-SNP and SNP × SNP) that are located on
chromosomal regions linked to RA and related diseases in previous studies.

Background
The risk of developing many common and complex
diseases such as cancer and autoimmune disease involve
complex interactions between multiple genes and several
endogenous and exogenous environmental factors (or
covariates). Rheumatoid arthritis (RA) is a complex
genetic disease in which it is hypothesized that several
loci contribute to disease susceptibility. Information
theoretic methods are among the most promising
approaches for genetic association studies and have
been used for genetic analysis [1,2] and analysis of gene
× gene interactions [3,4]. In this paper, we describe our
use of a two-stage strategy consisting of an information
theoretic search followed by logistic regression to detect

gene × gene interactions associated with RA using
selected genomic regions from the genome-wide scan
data from the North American Rheumatoid Arthritis
Consortium, which comprises 868 cases and 1194
controls. Data were provided as Problem 1 of Genetic
Analysis Workshop 16.

Methods
Interaction information as measure of association
Let Xi denotes a genetic random variable representing the
genotypes at locus Li. We assume Li is biallelic (with
alleles A and a) with three possible genotypes (AA, Aa,
and aa). The uncertainty of Xi is given by Shannon’s
entropy [5] as
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Given a set of such genetic variables S = {X1; X2;...; Xk},
the interaction information among the k variables
(referred to as k-way interaction information or KWII)
is defined as the amount of information (redundancy or
synergy) present in the set of variables that is not present
in any subset of these variables [4]. For the variables in
set S, the KWII can be written succinctly as an alternating
sum over entropies (H) of all possible subsets τ of S
using the difference operator [6]:
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−
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τ
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Let C be the random variable representing the disease
status (phenotype variable) of RA. Then KWII(S;C) = KWII
(X1; X2;...; Xk;C) is a measure of the association of the set of
genetic variables in set S towards the disease phenotype
variable C (i.e., how well the set explains the disease
phenotype). The value of KWII(S;C) can be both positive
and negative. We shall use only positive KWII values as the
measure of association because larger positive values
indicate stronger interaction (hence, higher association).

Redundancy between combinations of variables
Let S1 = {X1; ...; Xm} and S2 = {Y1; ...; Ym} be two sets (or
combinations) of variables. Then the redundancy
between S1 and S2 is given by the maximized average
of pairwise linkage disequilibrium (LD) (r2) between
variables from S1 and S2:

red S S r X Y mi j

X S Y Si j

( , ) max(( ( , )) / ).
,

1 2
2

1 2

=
∈ ∈
∑ (3)

Such redundancies can arise because of LD between the
variables across each set. For example, for a disease C that is
caused by interactions between two untyped SNPs D1 and
D2, let four marker loci be designated X1, X2, X3, and X4

such that X1 and X3 are in strong LD with D1, while X2 and
X4 are in strong LD with D2. Then the KWII(X1;X2;C) and
KWII(X3;X4;C) measure the association of the sets {X1;X2}
and {X3;X4} for C, respectively. The redundancy between
the combinations {X1;X2} and {X3;X4} is given by say,
0.5*(r2(X1, X3)+r

2(X2, X4)) and existence of strong LD
between X1 and X3 and between X2 and X4 will result in
similar measures of KWII association for both sets, making
one of the sets statistically redundant.

Stage I: Single-nucleotide polymorphism
(SNP)-combination search strategy
Let S be the set of all genetic (SNPs) and environmental
(non-genetic) variables (e.g., sex) and C be the variable

denoting the disease phenotype. The information theo-
retic metric KWII(X1;...;Xk;C) is a measure of the
association of the set of variables with the disease
phenotype variable C (i.e., how well they explain the
disease phenotype). Using this metric and a redundancy
measure, we iteratively search for combinations of
variables up to a fixed number (say τ) of iterations.
Let the number of variables (except C) in a combination
be defined as the “order” of the combination. In our
method, we limit our search to up to second-order
(or two-variable) combinations (i.e., we consider only
{Xi;C} and {Xi;Xj;C} combinations). Let θ be the set of
variables and ξ be the set of associated combinations
output by our search method. Initially, both θ and ξ are
empty. In iteration = 1, the variable Xk having highest
KWII(Xk;C) is selected; thus θ = {Xk} and ξ = {(Xk;C)}.
Also Xk is removed from S. In a subsequent iteration = i
(i > 1), a new variable Xj Œ S is considered for selection
and its single variable and two-variable combinations
are formed and KWII computed (using, Eq. (2)) with
variables already selected in the previous iterations. At
the same time each of the combinations formed are checked
for redundancy with combinations already in ξ and of same
order (using Eq. (3) and redundancy exceeding a threshold
of 0.7). For example in iteration = 2, for Xj Œ S, the
combinations {Xj;C} and {Xk;Xj;C} are formed and {Xj;C} is
checked for redundancy with {Xk;C}. From all the new
variables, the variable that has maximum KWII and all non-
redundant combinations is selected. A variable with a
redundant combination is dropped from consideration
(i.e., removed from S) in subsequent iterations. Given the
computational burden of determining redundancy with
combinations of variables already selected, our selection
procedure stops after a maximum of τ = 50 iterations. Thus,
up to 50 variables with non-redundant combinations and
highest KWII are selected. This stage yields a number of
single and two-variable combinations and their KWII values,
which are input to the second stage.

Stage II
We conduct logistic regression analysis on the one- and
two-variable combinations obtained by our information
theoretic search using the methods outlined by Cordell
[7] and the significance of each combination is
determined. The full single-locus model is

log ( ) ,r r ax dz1 − = + +( ) μ (4)

where r is the probability of each individual being a case,
μ corresponds to the mean effect, the terms a and d
correspond to the additive and dominance coefficient
effects of the tested SNP variable, x and z are dummy
variables with x = 1, z = -0.5 for one homozygote
genotype (AA), x = 0, z = 0.5 for the heterozygote
genotypes (Aa), and x = -1, z = -0.5 for the other
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homozygote type (aa). The chi-square is used to compare
the full single-locus model with the null model given by
0 values for both a and d.

For SNP × SNP interactions, fully saturated model
following Cordell’s notation [7] is

log
r
r

a x d z a x d z i x x i x z i z xaa ad da1 1 1 1 1 2 2 2 2 1 2 1 2 1−
⎛
⎝⎜

⎞
⎠⎟

= + + + + + + +μ 22 1 2+ i z zdd ,

(5)

where r and μ are same as in Eq. (3), the terms a1, d1, a2,
and d2 are the dominance and additive effect coefficients
of the two SNPs, iaa, iad, ida, and idd represent their
interaction coefficients, and xi and zi are dummy
variables with xi = 1, zi = -0.5 for one homozygous
genotype (AA or BB), xi = 0, zi = 0.5 for the heterozygous
genotypes (Aa or Bb), and xi = -1, zi = -0.5 for the other
homozygous genotype (aa or bb). An interaction is tested
by the deviance of the full two-locus model from the
model minus the interaction terms with chi-square test.

Data
We have followed a candidate-gene-based approach and
selected SNPs belonging to the candidate genes/regions in
Table 1 for exploring both gene × RA and gene × gene × RA
interactions using our two-stage approach. The start and
end base-pair positions of each gene are obtained from
http://www.pharmgkb.org/.Using the genes/regions from
Table 1, we created the following three data sets for
analysis:

• 7087 SNPs selected for analysis using all genes/
regions (Data Set 1)
• 5385 SNPs selected using all genes/regions except
those that belong to only 6p21.3 and not to any
other gene (Data Set 2)
• 3263 SNPs selected using genes not on chromo-
some 6 (Data Set 3)

Additionally, sex of the subjects and RA status were
present in each data set as the environmental variable
and the phenotype variable (C).

Results
We have obtained many single-variable and two-variable
interactions with the disease phenotype, only the
combinations with high values of KWII are presented
in Tables 2, 3, 4. The SNPs shown to be in genomic
regions 6p21.3 and 6q23 do not overlap with any other
gene. We found no interaction between the covariates sex
and RA. Table 2 shows the single-variable combinations
with KWII values greater than or equal to 95th percentile
of all the single-variable KWII obtained using our
method for the respective data sets. Tables 3 and 4

show the two-variable combinations with KWII values
greater than or equal to 95th percentile of all the two
variable KWII obtained using our method for the
respective data sets. The 95th percentile value for each
data set is reported with each table where KWII95 j

i

denote the 95th percentile KWII for combinations of
order i and data set j. Additionally, to assess the overall
strength of the KWII values we have obtained, we have
calculated the KWII values of each single-variable
combination for all 7088 variables, and 50,000 two-
variable combinations randomly chosen from the list of
25,116,328 pairs of variables. The 95th percentile of
these were found to be KWII951

overall = 0.01 (one-
variable combinations) and KWII952

overall = 0.004 (two-
variable combinations). All interactions reported in
Tables 2, 3, 4 have KWII higher than these values. We
have detected several one-variable associations in
6p21.3, HLA-DR, and RUNX1 (Table 2) and also in

Table 1: Candidate genes, associated genes/regions and number
of SNPs (#s) in each

Gene Chr No. SNPs

TNFRSF1B 1 17
PADI4 1 8
PTPN22 1 10
FCRL3 1 10
FCGR3A 1 3
FCGR3B 1 4
IL10 1 6
IL1A 2 3
IL1B 2 9
ITGAV 2 27
STAT4 2 2
CTLA4 2 5
BTLA 3 2
IL3 5 2
SLC22A4 5 15
IL13 5 4
IL4 5 5
HAVCR1 5 11
6p21.3 6 1702
MICA 6 230
HLA-C 6 20
NFKBIL1 6 11
LTA 6 6
TNF 6 5
HLA-DR 6 21
VEGFA 6 6
6q23 6 1841
OLIG3 6 2
TNFAIP3 6 5
IL6 7 2
IRF5 7 4
C5 9 8
DLG5 10 20
MS4A1 11 12
MHC2TA 16 7
CARD15 16 10
RUNX1 21 3044
MIF 22 12
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Table 2: {SNP;C} interactions with KWII values ≥ 95th percentile of the 1-variable KWII obtained for Data Set 1, Data Set 2, Data Set 3

SNP Gene/genome region KWII p-Valueb

Data Set 1: KWII951
1 = 0.015a

rs2395175 HLA-DR 0.195 0
rs660895 6p21.3 0.189 0
rs6910071 6p21.3 0.163 0
rs3763312 6p21.3 0.151 0

Data Set 2: KWII952
1 = 0.075

rs2395175 HLA-DR 0.195 0
rs7192 HLA-DR 0.094 0
rs3129871 HLA-DR 0.079 0
rs3129882 HLA-DR 0.075 0

Data Set 3: KWII953
1 = 0.02

rs731059 RUNX1 0.048 0
rs475142 RUNX1 0.024 1.3 × 10-11

aKWII95 j
i denotes the 95th percentile KWII for combinations of order i and Data Set j.

bp-Value obtained using logistic regression

Table 3: {SNP1;SNP2;C} interaction with KWII values ≥ 95th percentile of the two variable KWII obtained for Data Set 1 and consisting
of SNPs only in 6p21.3 (and not in any candidate gene), for Data Set 2, and for Data Set 3)

SNP1-SNP2 Gene/genome region 1 - Gene/genome region 2 KWII p-Valueb

Data Set 1: KWII951
2 = 0.07a

rs2647050-rs2858332 6p21.3-6p21.3 0.144 0
rs9357152-rs2858332 6p21.3-6p21.3 0.098 0
rs9275141-rs2858331 6p21.3-6p21.3 0.092 0
rs7774434-rs2856718 6p21.3-6p21.3 0.08 0
rs9275371-rs7765379 6p21.3-6p21.3 0.076 3.35 × 10-14

rs660895-rs7755224 6p21.3-6p21.3 0.073 1.73 × 10-7

rs9357152-rs9275555 6p21.3-6p21.3 0.07 9.98 × 10-8

Data Set 2: KWII952
2 = 0.02

rs9263871-rs9263969 MICA-MICA 0.03 1.35 × 10-8

rs11967684-rs2523608 MICA-MICA 0.025 2.22 × 10-14

rs9263871-rs2596501 MICA-MICA 0.022 1.81 × 10-5

rs11967684-rs7755852 MICA-MICA 0.02 2.45 × 10-8

rs3873380-rs7755852 MICA-MICA 0.02 1.39 × 10-9

Data Set 3: KWII953
2 = 0.01

rs1542876-rs1513737 RUNX1-RUNX1 0.015 1.85 × 10-6

aKWII95 j
i denotes the 95th percentile KWII for combinations of order i and Data Set j.

bp-Value obtained using logistic regression.

Table 4: The two-variable interactions with KWII values ≥ 95th percentile (0.01) obtained using SNPs on gene × gene pairs on Data Set 1

SNP1-SNP2 Gene/genome region 1 - Gene/genome region 2 KWII p-Valuea

rs9275596-rs1542876 6p21.3-RUNX1 0.01914 2.05 × 10-6

rs2856725-rs1542876 6p21.3-RUNX1 0.01743 3.61 × 10-5

rs9275596-rs1041778 6p21.3-RUNX1 0.01471 8.25 × 10-7

rs7770216-rs563495 6p21.3-6q23 0.01444 4.15 × 10-7

rs7755852-rs2745443 6p21.3-6q23 0.01275 6.22 × 10-7

rs9275698-rs1883468 6p21.3-6q23 0.01262 4.51 × 10-7

rs4673260-rs12190331 CTLA4-6q23 0.01385 7.86 × 10-8

rs1206684-rs651084 6q23-RUNX1 0.01261 6.12 × 10-5

rs2844729-rs16984549 6p21.3-RUNX1 0.01255 5.71 × 10-7

rs2856725-rs1041778 6p21.3-RUNX1 0.01247 6.54 × 10-6

ap-Value obtained using logistic regression.
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6q23 and HLA-C (with KWII951
overall <KWII<95th per-

centile for respective data sets, not shown in tables). The
strongest of the two-variable interactions are from the
SNPs in region 6p21.3 (Table 3) obtained using Data
Set 1. We have created the other two data sets because it
was felt that several relatively weaker interactions are
difficult to detect in the presence of the strongest
interactions in 6p21.3. Using Data Sets 2 and 3, we
found several two-variable KWII in genes MICA and
RUNX1 (Table 3). Also several two-variable interactions
are detected among SNPs in HLA-C, HLA-DR, MICA, and
6p21.3 (with KWII952

overall <KWII<95
th

percentile for
respective data sets, not shown in tables). Also we
observed an interaction between rs11811771 (PTPN22)
with rs2828104 (RUNX1) with p-value 2.7 × 10-5 and
KWII = 0.095. Separately we also calculated KWII for
two-SNP combinations for Data Set 1 wherein the SNPs
belong to different genes/genomic regions (Table 4).

The KWII values of two-variable combinations greater
than KWII952

overall = 0.004 are used to construct the
gene × gene interaction diagram (Figure 1). We have
categorized these interactions as: 1) strong (KWII ≥ 0.1)
in green, 2) moderate (0.1 > KWII ≥ 0.05 in light green,
and 3) weak in orange. Also, bold lines indicate p-values
< 10-15 while dotted lines denote 10-15 ≤ p-value ≤ 10-4.

Discussion
We have used a two-stage strategy to search for single
SNPs and SNP × SNP interactions associated with RA.
Using our analysis on the candidate genes, we have
found several strong interactions on 6p21.3 and inter-
actions among SNPs on genes previously reported to be
related with RA and other autoimmune diseases. For
example, RUNX1 has been reported to be associated with
systemic lupus erythematosus and psoriasis (two auto-
immune diseases) [8,9] while associations of region

6q23 and MICA with RA has been reported by Thomson
et al. [10] and Martinez et al. [11], respectively. Detecting
genes and environmental factors interacting to increase
the susceptibility to disease risk is a very challenging task
for many reasons, particularly for the large size of the
data and presence of confounding factors such as LD,
presence of phenocopies, locus heterogeneity, and
population stratification. Information theoretic methods
have high power in detecting gene × gene interactions
and have the advantage of being simpler and computa-
tionally faster; KWII-based interaction analysis has been
employed in [3,4]. Also, our method can be used when
the genetic and environmental variables have different
numbers of classes or when the phenotype has more
than two classes. Although we initially planned for a
genome-wide analysis, given the large size of the data,
we were able to execute only a few iterations using our
computational resources. Therefore, we decided to
follow a candidate-gene-based approach. We believe
that with the help of additional hardware, it is possible
to implement our search strategy in a distributed
computing environment employing multiple processors
and to explore many more interactions with moderate to
low magnitudes that are potentially associated with RA.
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Rheumatoid arthritis; SNP: Single-nucleotide poly-
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