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Purpose: To investigate whether myopia development is associated with changes of scleral DNA methylation in cytosine-
phosphate-guanine (CpG) sites in the collagen 1A1 (COL1A1) promoter and messenger RNA (mRNA) levels following
murine form deprivation myopia.
Methods: Fifty-seven C57BL/6 mice (postnatal day 23) were randomly assigned to four groups: (1) monocular form
deprivation (MD) in which a diffuser lens was placed over one eye for 28 days; (2) normal controls without MD; (3) MD
recovery in which the diffuser lens was removed for seven days; and (4) MD recovery normal controls. The DNA
methylation pattern in COL1A1 promoter and exon 1 was determined by bisulfite DNA sequencing, and the COL1A1
mRNA level in sclera was determined by quantitative PCR.
Results: MD was found to induce myopia in the treated eyes. Six CpG sites in the promoter and exon 1 region of
COL1A1 were methylated with significantly higher frequency in the treated eyes than normal control eyes (p<0.05), with
CpG island methylation in MD-contralateral eyes being intermediate. Consistent with the CpG methylation, scleral
COL1A1 mRNA was reduced by 57% in the MD-treated eyes compared to normal controls (p<0.05). After seven days of
MD recovery, CpG methylation was significantly reduced (p=0.01). The methylation patterns returned to near normal
level in five CpG sites, but the sixth was hypomethylated compared to normal controls.
Conclusions: In parallel with the development of myopia and the reduced COL1A1 mRNA, the frequency of methylation
in CpG sites of the COL1A1 promoter/exon 1 increased during MD and returned to near normal during recovery. Thus,
hypermethylation of CpG sites in the promoter/exon 1 of COL1A1 may underlie reduced collagen synthesis at the
transcriptional level in myopic scleras.

Myopia is the most common eye disorder in the world,
and its prevalence is estimated to be 33% in some Western
countries [1,2]. It is especially high, 65 to 88%, in students
from Asian regions and countries, including Hong Kong
[3-5], Taiwan [6], and Singapore [7]. However, the
mechanism by which myopia develops has not been fully
clarified.

Several lines of experimental evidence strongly suggest
that the pathological changes in the sclera of myopic eyes can
be associated with reduced synthesis and increased
degradation of type I collagen [8]. Each monomeric unit of
type I collagen protein is a heterotrimer composed of two type
I alpha 1 (COL1A1) and one type I alpha 2 (COL1A2) chains.
The gene for the major component of type I collagen
(COL1A1) [9], is located on human chromosome 17
(17q21.33), within the high myopia candidate locus MYP5
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(17q21–22) [10-12]. Several studies have focused on its
expression during myopia [13-15]. In the tree shrew,
expression of collagen type I messenger RNA (mRNA) is
reduced in the sclera of myopic eyes and increases to normal
levels during myopia recovery [13-15]. However the
mechanism of COL1A1 modulation in myopia still remains
unclear.

One mechanism of gene expression regulation is
mediated by DNA methylation of cytosine-phosphate-
guanine (CpG) sites within promoters. This process can
generally lead to gene silencing, a feature found in several
human cancers in which expression of tumor suppressor genes
is inhibited [16,17]. In contrast, the hypomethylation of CpG
sites is associated with the overexpression of oncogenes
within cancer cells [18]. DNA methylation is controlled by an
array of DNA methylation transferases and demethylation
enzymes. The promoter region of COL1A1 contains CpG
islands [19], and methylation in this region, as well as in exon
1, depresses COL1A1 gene expression in cultured 3T3 mouse
embryo tissue fibroblasts and F9 embryonal carcinoma cells

Molecular Vision 2012; 18:1312-1324 <http://www.molvis.org/molvis/v18/a138>
Received 14 March 2012 | Accepted 25 May 2012 | Published 30 May 2012

© 2012 Molecular Vision

1312

http://www.molvis.org/molvis/v18/a138


[19]. Suppression of COL1A1 gene expression is associated
with increased DNA methylation after the transformation of
normal human lung fibroblasts by Simian vacuolating virus
40 (SV40) [20]. However, there have been no reports on
changes in COL1A1 methylation or that of other genes in the
development of myopia. In this study, we used the
experimental mouse model of myopia to evaluate the
methylation status of CpG sites in the promoter and exon 1
region of COL1A1 in the scleras of myopic and control eyes.
We also correlated the DNA methylation pattern with the
expression of COL1A1 mRNA during the onset of myopia.

METHODS
Development of form-deprivation myopia in mice: All animals
were obtained from the animal breeding unit at Wenzhou
Medical College and raised in standard mouse cages with a
12 h:12 h light-dark cycle. The study was approved by the
Animal Care and Ethics Committee at Wenzhou Medical
College (Wenzhou, China). The experiments were conducted
in accordance with the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research.

Four groups of 23-day-old C57BL/6 mice were included
in the study: (1) A monocular deprivation (MD) group (n=28)
was form deprived for four weeks, from 23 to 51 days of age.
This was achieved by the placement of a light-diffusing lens
over a randomly chosen eye as Schaeffel et al. [21] described.
(2) An age-matched normal control group (n=14) was
maintained free of form deprivation for the same four-week
period. (3) A separate MD group (n=10) was allowed to
recover by removal of the diffuser lens for seven days (days
51–58) after the four weeks of form deprivation. (4) Finally,
another age-matched normal group (n=5) was established for
the MD mice that were allowed to recover for seven days.
These mice were similar to the first normal control group in
that neither eye was form deprived.

Measurements for refraction and ocular dimensions at the
beginning and end of the treatment periods were taken as
described below.

Refraction—The refractive state was measured in a dark
room with an eccentric infrared photorefractor as previously
described, which was calibrated according to a published
procedure [22,23]. Briefly, the mouse was gently restrained
by holding its tail and positioning it on a small stage in front
of the photoretinoscope. On-axis measurements were
recorded when the Purkinje image was present in the center
of the pupil [21]. The data were then recorded using software
designed by Schaeffel et al. [21]. Measurements were repeated
at least three times for each eye.

Ocular dimensions—Ocular dimensions, including
anterior chamber depth, lens thickness, vitreous chamber
depth, and axial length were measured by real-time optical
coherence tomography using a custom-built optical coherence
tomography instrument [24]. Anterior chamber depth was

defined as the distance from the posterior surface of the cornea
to the anterior surface of the lens. Axial length was defined as
the distance between the anterior surface of the cornea and the
vitreous-retinal interface. Each eye was scanned three times.

Corneal curvature measurement—Corneal curvature
was measured with a keratometer (Topcon OM-4; Topcon
Corp., Tokyo, Japan) that was modified by mounting a +20.0-
diopter (D) aspherical lens as previously described [22,23].
Each eye was measured three times to obtain a mean value.

DNA isolation: Mice were sacrificed by an overdose of
pentobarbitone sodium. Immediately after removal of the
diffuser, the eyes were enucleated and dissected to obtain the
sclera free of other tissues. The separated sclera was
immediately stored in liquid nitrogen at −80 °C before total
DNA was isolated. Due to the small amount of DNA in the
scleral tissue, scleras from pairs of eyes were pooled to obtain
sufficient DNA for analysis. For the form-deprived eyes, two
scleras from the MD-treated (MD-T) eyes were pooled.
Scleras from the untreated contralateral eyes (MD-C) of the
MD-T mice were also pooled. Scleras from treated eyes that
were allowed to recover for seven days were pooled as the
MD-treated-recovery group (MD-R). The contralateral
control eyes of that group were pooled as the MD-treated-
recovery control (MD-RC) group. The final two groups
consisted of scleras from normal control mice at 51 and 58
days of age (NC51 and NC58, respectively). For these control
animals, the two eyes were treated in the same way, i.e., they
had no treatment; therefore, the scleras (left and right) were
pooled from the same animal rather than from separate
animals.

Total DNA was extracted with proteinase K treatment
and a phenol-extraction procedure according to standard
methods [25]. DNA concentration and purity were determined
by spectrophotometry at 260 nm and 280 nm. The A260/A280

absorbance ratio was consistent at approximately 1.8. An
average of 1.2 μg of total DNA was obtained from every
scleral pool.

Bisulfite modification of DNA: Bisulfite modification of DNA
was performed using the CpGenome DNA Modification Kit
(Millipore, Billerica, MA) following the manufacturer’s
directions: 1 μg DNA was denatured in 0.3 M NaOH for 10
min at 37 °C in a final volume of 107 μl. It was then mixed
with 550 μl of 3.6 M sodium bisulfite and incubated for 16 h
at 50 °C.

After alkaline desulfonation and final desalting, single-
stranded uracil-containing reaction products were eluted in
30 μl of buffer composed of 10 mM Tris-HCl and 1 mM
EDTA at pH 8.0. Sodium bisulfite was used to convert
unmethylated cytosine into uracil. Following PCR
amplification, all unmethylated cytosines within a sequence
were replaced with thymine (Table 1). Methylated cytosines
remained as cytosine following PCR amplification.
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Primer design and PCR amplification of bisulfite-treated
DNA: Bisulfite sequencing PCR was based on the
indiscriminant amplification of a section of methylated or
unmethylated DNA containing CpG sites within the amplicon
but not the primer sequence (Table 1). It requires only one set
of primers to amplify both methylated and unmethylated
DNA, which can then be distinguished by subsequent
sequencing. Using the Methyl Primer Express v1.0 (Applied
Biosystems, Foster City, CA), PCR primers were designed
according to the published DNA sequences of COL1A1:
Forward, 5′-GTT TAT GTA GAT TTG GGG GGT A-3′;
reverse, 5′-AAC TCC CCA AAA TTT AAA ACT T-3. The
primers were specially tested using methBLAST. The
amplified 447 base pair (bp) fragment was between −247 and
+200 in the COL1A1 promoter and exon 1 region. It contained
19 CpG dinucleotide sites.

PCR amplification of 100 ng bisulfate-treated DNA
template was performed in a reaction mixture containing
0.5 μl 20 pM forward and reverse primers, 4 μl of 25 mM
Mg2+, 10 μl of 5× buffer, 1 μl of 2.50 mM deoxynucleotide
triphosphates, 0.25 μl of Go Taq Hot Start Polymerase
(Promega, Madison, WI), and 34.25 μl distilled water for a
total volume of 50 µl. Amplification conditions included an
initial denaturation at 95 °C for 10 min, followed by 40 cycles
at 95 °C for 30 s, 55.7 °C for 30 s, and 72 °C for 1 min. The
final extension at 72 °C lasted 10 min. The purified PCR
products were cloned into plasmid vectors by means of a
TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA), and
around 30 positive clones were chosen for sequencing.
Successful ligations were detected by blue-white selection,
and positive clones were selected for PCR using the same
amplification conditions described above. Since there were 19
CpG sites in the 5′ promoter region of COL1A1, we analyzed
19 sites × 5 samples per group=95 CpG sites per experimental
group. The percentage of methylated CpGs was calculated by
the number of methylated CpGs divided by the total number
of CpGs analyzed.

Many transcription factors may bind to the DNA
sequence of the amplified fragment, the online software of P-
Match 1.0 was used to predict transcription factor binding
sites.
RNA isolation: Scleras were isolated and pooled as described
above. To avoid mRNA degradation, the scleras were placed
immediately into room-temperature RNA Later (Ambion,
Foster City, CA). The RNA Later was then removed after
remaining at 4 °C overnight, and the scleras were stored at
−80 °C for later use.

Total RNA was extracted using the RNeasy Fibrous
Tissue Mini Kit (Qiagen, GmbH, Hilden, Germany) at room
temperature. Tissue samples were pooled as described above
(pooled MD-T eyes, n=9; pooled MD-C eyes, n=9; pooled
normal control eyes, n=9). RNA concentration and purity
were determined by spectrophotometry at 260 nm and 280 nm.
The A260/A280 absorbance ratio was consistently about 1.9,
indicating high purity of RNA. An average of 1 μg of total
RNA was obtained from each of the pooled scleras. To remove
contaminating genomic DNA, 1 μg of total RNA was treated
with 1 U RNase free DNase I (Promega, Madison, WI) at 37
°C for 30 min and then heated with 1 μl stop solution
(Promega) at 65 °C for 10 min.
Quantitative PCR: Single-strand cDNA was synthesized from
400 ng RNA in 20 µl of reaction volume using the
preamplification system M-MLV Reverse Transcriptase
(Promega). After reverse transcription, the COL1A1 mRNA
level was measured by real-time reverse transcriptase (RT)-
PCR analysis (Power SYBR Green PCR Master Mix; Applied
Biosystems) [26]. Primers were designed using Primer
Express 3.0 software (Applied Biosystems) and amplified 100
bp to 150 bp cDNA fragments (Table 2). The mouse 18S
rRNA gene was used as an internal control based on its
constant level of expression among the different groups [27].

Quantitative PCR was performed with 2.5 nM primers
(ABI 7500; Applied Biosystems) and 1 μl of cDNA in a
15 μl reaction for 40 cycles under the following conditions:

TABLE 1. BISULFITE SEQUENCE PCR MEASUREMENT MECHANISM.

Sequence Unmethylated DNA Methylated DNA
Initial sequence AACTGACGTACTACG AACTGACmGTACTACmG
Converted sequence AAUTGAUGTAUTAUG AAUTGACGTAUTACG
PCR product sequence AATTGATGTATTATG AATTGACGTATTACG

TABLE 2. QUANTITATIVE PCR GENE PRIMER PAIRS.

Gene name Forward Primers (5′-3′) Reverse Primers (5′-3′) Length
(bp)

COL1A1 GAGAGCGAGGCCTTCCCGGA GGGAGCCAGCGGGACCTTGT 131
18S rRNA CGGACACGGACAGGATTGAC TGCCAGAGTCTCGTTCGTTATC 124

          COL1A1: collagen type Iα1; 18S rRNA was the housekeeping gene.
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50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles
of amplification at 95 °C for 15 s and 60 °C for 60 s. All
experiments were performed in duplicate.

The expression level of COL1A1 mRNA was normalized
to  that  of   an  internal   control  18S  rRNA  [27].   We  used
the relative expression level to indicate the fold change
between different groups of eyes by using the equation of
2−ΔΔCt, where:

ΔΔCt =  (CTCOL1A1 - CT18S rRNA) MD-T/MD-C/NC51 -
(CTCOL1A1 - CT18S rRNA) NC51

Statistical analysis: Statistical analyses were performed using
the Statistical Procedures for the Social Sciences (SPSS 13.0,
SPSS, Chicago, IL). Descriptive statistics were calculated as
means and standard error. Statistical differences between
groups were calculated by independent sample t test.
Differences of biometric parameter between the MD-T eyes
and the MD-C eyes in the same group were calculated by
paired sample t test and differences of biologic parameter
between the MD-T eyes and the MD-C eyes in the same group
were calculated by independent sample t test. A p value <0.05
was considered to be statistically significant.

RESULTS
Confirmation that form deprivation induces myopia: There
were no significant differences in refraction or axial length
among all groups before the experiment. Additionally, there
were no significant differences in refraction or axial length
between the two eyes of the same animal (p=0.24 and 0.62,
respectively, paired sample t test). After 28 days of form
deprivation, refractions for the MD-T eyes and MD-C eyes
were −2.81±0.63 D and 3.35±0.70 D, respectively (paired t
test, p<0.001, Figure 1A). Refraction in the MD-T eyes was
also significantly different from NC51 eyes, 5.39±0.63 D
(independent sample t test, p<0.001, Figure 1A). The axial
lengths for the MD-T eyes and MD-C eyes were
2.97±0.05 mm and 2.92±0.05 mm, respectively (paired t test,
p<0.001, Figure 1B); however, there were no significant
differences in the axial lengths between MD-T eyes and MD-
C eyes (2.94±0.08 mm). The vitreous chamber depth for the
MD-T eyes, MD-C eyes, and NC51 eyes were 0.69±0.01 mm,
0.66±0.01 mm, and 0.65±0.01 mm, respectively. The MD-T
vitreous depth was significantly greater than in the MD-C
(paired t test, p<0.01, Figure 1C) and NC51 eyes (independent
sample t test, p<0.05, Figure 1C). The corneal curvature,
anterior chamber depth, and lens thickness were not
significantly different when MD-T eyes were compared to
MD-C and NC51 eyes. Furthermore, there were no significant
differences in refraction, axial components, or corneal
curvature between MD-C eyes and NC51 eyes.
DNA methylation of the COL1A1 promoter in the monocular
form deprivation (MD) groups: DNA methylation profiles for
MD-T, MD-C, and NC51 eyes were determined after four
weeks of monocular form deprivation (Table 3). In MD-C and

NC51 eyes, most of the CpG sites exhibited very low levels of
DNA methylation, whereas in MD-T eyes, the levels were
elevated at most of the sites (Figure 2A). The amount of
methylation in MD-T eyes was higher than in MD-C eyes
(Figure 3). The methylation percentages of six CpG sites (1,
3, 9, 14, 18, and 19) in MD-T eyes were significantly increased
compared to the NC51 eyes (Figure 4). In MD-C eyes, the CpG
sites were methylated at a level intermediate between the MD-
T and NC51 eyes (Figure 3). The methylation percentages of
four CpG sites (3, 8, 14, and 18) in MD-C eyes tended to
increase compared to the NC51 eyes, although only site 14 was
significantly increased (Figure 4).
DNA methylation of the COL1A1 promoter in the monocular
form deprivation (MD) recovery groups: A similar analysis
was performed for the MD-R eyes and MD-RC eyes. For each
sample, about 30 to 34 DNA clones were analyzed. DNA
methylation profiles for MD-R, MD-RC, and NC58 eyes were
determined after seven days of recovery following four weeks
of monocular form deprivation (Table 4 and Figure 2B). In
MD-R eyes, the levels of DNA methylation were lower than
those seen in MD-T eyes (p<0.01, Figure 3). However, DNA
methylation in MD-RC and NC58 eyes was not significantly
different from that of the MD recovery eyes (Figure 3).

In the MD-R eyes, the methylation percentages of the six
CpG sites that were previously elevated (1, 3, 9, 14, 18, and
19) were similar to those of the MD-RC and NC58 eyes (Figure
5). Thus, the recovery from myopia was associated with a loss
of DNA methylation at the CpG sites. The methylation
percentage of CpG site 11 in the MD-R eyes was reduced
significantly compared to the NC58 eyes (Figure 5).
Downregulation of scleral COL1A1 mRNA level during
myopia: Scleral COL1A1 mRNA levels were lower by 57%
in the MD-T eyes than the MD-C eyes (p<0.05, Figure 6).
Moreover, the COL1A1 mRNA levels were 42% lower in the
MD-T eyes compared to the normal control eyes (p<0.05,
Figure 6).

DISCUSSION
Because of the large number of gene knockout and transgenic
mouse models and the molecular tools available for studying
them, murine models of induced myopia have advantages over
other traditional species in some respects. Thus, mouse
models have been increasingly used to study the molecular
basis of myopia [21-23,28,29]. In our study, the MD-T eyes
were significantly more myopic compared to the MD-C eyes
and the normal control eyes (NC51). Similarly, the vitreous
chamber depth was significantly increased at the MD-T eyes
compared to the MD-C and NC51 eyes, results which were not
different from other studies [29-32]. The axial length in MD-
T eyes was significantly greater than in MD-C eyes, but not
significantly greater than in NC51 eyes. There is a possible
explanation for this apparent difference between the MD-C
and NC51 eyes. There were great individual differences in
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Figure 1. Ocular refraction parameters of mice for quantitative PCR in monocular deprived and control eyes. A: Eyes treated by monocular
deprivation (MD-T, n=18) for 28 days were significantly more myopic than were contralateral control (MD-C, n=18) and age-matched normal
control (NC51, n=9) eyes. B: The MD-T eyes also exhibited significantly greater axial length than did the MD-C eyes, but not the NC51 eyes.
C: Differences in the vitreous chamber depths among the treated eyes and contralateral control eyes compared to age-matched normal control
eyes (NC51) were significant, *, p<0.05, **, p<0.01. All error bars in figures show the standard error (SE).
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axial length among the mice in each of the groups. This
resulted in the detection of axial length differences between
only the MD-T eyes and MD-C eyes of the same animals.

DNA methylation is known to inhibit gene expression in
human cancer [16,17], murine cultured 3T3 cells, and F9
embryonal carcinoma cells [19]. The hypomethylation of CpG
sites is also associated with overexpression of certain genes
in cancer cells [18]. It is now known that the expression of
COL1A1 is controlled by many factors, including a change of
DNA methylation status [33,34]. For instance, transformation
of normal human lung fibroblasts by SV40, which is

associated with increased DNA methylation, suppresses
COL1A1 gene expression [20].

Compared to the normal control eyes (NC51), the total
methylation level in the CpG promoter sites for COL1A1
increased significantly after four weeks of monocular form
deprivation. Seven days after returning to normal vision, this
level of methylation returned to the same levels as in the
control eyes (NC58). The total methylation level in the MD-T
eyes was significantly greater than in the NC51 eyes, but not
the MD-C eyes, because the methylation level of some CpG
sites of COL1A1 in MD-C eyes also changed during myopia

Figure 2. Proportion of sites that were
methylated in the proximal promoter
and a portion of exon 1. A: Form-
deprived, contralateral control, and
normal control eyes after four weeks of
monocular form deprivation. B: Form-
deprived, contralateral control, and
normal control eyes after one week of
recovery following four weeks of
monocular deprivation (MD). Detailed
maps of cytosine-phosphate-guanine
(CpG) sites in the proximal promoter
and first exon are shown. The beads in
the horizontal lines illustrate the CpG
sites, and the color of each indicates the
corresponding degree of methylation:
gray, 0–0.1; blue, 0.1–0.2; green, 0.2–
0.3, red, >0.3. MD-T: monocular
deprivation-treated eyes, MD-C:
contralateral control eyes, NC: age-
matched normal control eyes, Numbers:
sample IDs.

Figure 3. Total DNA methylation in the monocular deprivation, monocular deprivation recovery, and control groups. Methylation of the
cytosine-phosphate-guanine (CpG) sites in the monocular deprivation–treated (MD-T) eyes was significantly greater than in normal control
and recovery eyes. MD-C: MD contralateral control eyes, NC51: age-matched normal control eyes; MD-R: after seven days of recovery
following four weeks of monocular deprivation, MD-RC: contralateral control eyes after recovery period, NC58: age-matched normal control
eyes for MD recovery, *, p<0.05.
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induction. Indeed, the methylation of sites 3, 8, 14, and 18 of
COL1A1 in the MD-C eyes tended to increase compared to
the normal control eyes (NC51). This shows that form
deprivation myopia in mice may also affect methylation of
COL1A1 in MD-C eyes, resulting in the absence of significant
differences in total methylation between the MD-T and MD-
C eyes.

Notably, methylation changes among MD-T, MD-C, and
NC51 eyes were consistent with refraction changes of myopic
eyes. During the period of form deprivation, the MD-C eyes
also showed a myopic shift compared to the normal control
eyes (NC51), albeit not significantly less than in the MD-T
eyes. Barathi et al. [29] also found this phenomenon in form
deprivation myopia in mice. The standard error of COL1A1
gene expression in MD-C eyes was clearly larger than in the
normal control eyes (NC51), indicating that some changes in
gene expression may have occurred. These results suggest that
in mice, unilateral form deprivation induces yoking effects in
contralateral MD-C eyes. This phenomenon has also been
observed in other animal models of myopia, such as the guinea
pig [35], tree shrew [15,36], and rhesus monkey [37].

CpG methylation site number 9 is within the binding site
of transcription factor Adf-1, and CpG methylation site
number 14 is within the binding site for transcription factor
Sp1 (Figure 7). In Drosophila, Adf-1 activates the
transcription of many genes [38-40]. In normal human dermal
fibroblasts, Sp1 can activate the transcription of COL1A1
[41] During MD, methylation of the 9th and 14th CpG sites

may suppress COL1A1 gene expression by altering Adf-1 and
Sp1 binding. After MD recovery, those locations are
demethylated, and allow the binding of Adf-1 and Sp1. The
other four CpG sites, 1, 3, 18, and 19, which also became
methylated during MD and were demethylated during
recovery, are not located in transcription factor binding sites.
The functions of these CpG sites are not currently known. The
methylation of the CpG sites may have affected the structure
of chromatin [42-44] or the binding of methyl-C-binding
proteins [19] in the treated eyes of the MD group.
Interestingly, the 11th CpG site, which underwent significant
methylation and demethylation during treatment and
recovery, is located near the transcription start site of
COL1A1. The loss of CpG methylation at this site in the MD
recovery eyes may promote the transcription of COL1A1,
which suggests renewed transcription of COL1A1 under these
conditions.

Because of the small amount of DNA and mRNA present
in the sclera, we used a pooling strategy for biologic analysis.
For normal control animals, both eyes from each animal were
pooled. For the MD-T group, the eyes from two animals were
pooled. Thus, the normal control tissue samples were more
homogenous than were the MD-T samples. This sample
pooling and preparation method may have exaggerated the
apparent statistical differences between these two groups.
However, we also included the pooled MD-C eyes, which
were the untreated contralateral controls to the MD-T eyes.
Because these two groups were from the same animals, this

Figure 4. Methylation percentages of cytosine-phosphate-guanine (CpG) sites in the collagen type Iα1 promoter region in scleras of monocular
deprivation and control eyes after four weeks of monocular deprivation. Numbers in parentheses on the x-axis are the locations of the cytosine-
phosphate-guanine (CpG) sites. Methylation percentages at sites 1, 3, 9, 14, 18, and 19 were significantly greater in monocular deprivation–
treated (MD-T) eyes than age-matched normal control (NC51) eyes. MD-T: monocular deprivation-treated eyes, MD-C: contralateral control
eyes. *, p<0.05, **, p<0.01.
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comparison (MD-T eye versus MD-C eye) would fully
address any possible exaggerated statistical differences
between the MD-T and nontreated control eyes.

The COL1A1 gene is speculated to be a susceptibility
gene for high myopia, as it is located in MYP5 (17q21–22) of
high myopia candidate locus and is downregulated during
myopia in animal models [15-17]. However, until now, there
has been no consensus with regard to its role in the

development of myopia. One report links COL1A1
polymorphisms with high myopia in Japanese subjects [11],
but others do not confirm this [12,45-47]. Therefore, the
association between COL1A1 and human high myopia may
not be completely attributed to the DNA sequences. Rather,
epigenetic factors such as DNA methylation should also be
considered. It is widely considered that the interplay of
heredity and environmental factors is important in low and

Figure 5. Methylation percentages of cytosine-phosphate-guanine (CpG) sites in the collagen type Iα1 promoter region in scleras of monocular
deprivation and control eyes after four weeks of monocular deprivation and one week of recovery. Numbers in parentheses on the x-axis are
the locations of the cytosine-phosphate-guanine (CpG) sites. Methylation at site 11 was significantly less in the monocular deprivation–
recovery (MD-R) eyes than in the NC58 eyes. MD-R: after 7 days of recovery following 4 weeks of monocular deprivation, MD-RC:
contralateral control eyes, NC58: age-matched normal control eyes for MD recovery, *, p<0.05.

Figure 6. Scleral collagen type Iα1
mRNA levels in monocular deprivation
and normal control eyes. There was
significantly less collagen type Iα1
(COL1A1)    mRNA     in          scleras
from monocular deprivation–treated
(MD-T) eyes compared to the MD-
control (MD-C) eyes and the normal
control (NC51) eyes. MD-C:
contralateral control eyes, NC51: age-
matched normal control eyes. *, p<0.05.
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moderate myopia. Thus, epigenetic changes such as CpG
methylation of COL1A1 may play a more meaningful role in
low and moderate myopia.

In summary, the frequency of methylation in CpG islands
of the COL1A1 promoter increased in the scleras of mouse
MD eyes compared to control eyes. Associated with this DNA
methylation, transcription of scleral COL1A1 was suppressed.
In eyes allowed to recover from MD, CpG methylation
decreased and returned to a normal level, while the
transcription of COL1A1 increased. This finding suggests that
DNA methylation of the COL1A1 promoter/exon 1 may be
linked with the inhibition of scleral collagen synthesis, which
contributes to the development of myopia.
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