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Abstract: High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of
effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of
antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective
cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evalu-
ate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue
(MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick
MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system
(cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal
concentration (MBC) values (0.625–10 µM) against ATCC RN4220/pUL5054 and a whole panel
of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT
topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction).
Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-
PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils
compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound
infections, and further rigorous mechanistic studies are warranted.

Keywords: photodynamic therapy; methicillin-resistant Staphylococcus aureus; hypericin; wound
infection model

1. Introduction

Infections caused by antimicrobial resistant (AMR) bacteria are serious global health
concerns and are exacerbated with prior asymptomatic carriage [1–3]. Methicillin-resistant
Staphylococcus aureus (MRSA) is one of the commonest AMR bacteria that confers illnesses
ranging from localized skin infections to systemic diseases, including toxic shock syn-
drome [4]. The prevalence of hospital-associated MRSA (HA-MRSA) infection varies
geographically, and Hong Kong is one of the high-prevalence regions in Asia. According
to the Asian Network for Surveillance of Resistant Pathogens (ANSORP) study, 57% of all
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inpatient isolates of S. aureus from Hong Kong hospitals were confirmed as methicillin-
resistant [5]. Additionally, in Hong Kong, the prevalence of nasal carriage of S. aureus
and MRSA were 27.6% and 1.3%, respectively, among children in daycare centers and
kindergartens [6,7].

Microbes by their nature continually adapt to survive the antimicrobial treatments we
use to combat them, resulting in an ever increasing level of antimicrobial resistance [8], and
the development of nonantimicrobial treatments may be beneficial concerning resistance
development. Photodynamic therapy (PDT) consists of the administration of a nontoxic
drug or dye known as a photosensitizer (PS) either systemically, locally, or topically
applied to a patient, followed by illumination with visible or near-infrared (NIR) light in
the presence of oxygen, leading to the generation of cytotoxic reactive oxygen species (ROS)
in the proximate environment causing cell death/ tissue damage [9,10]. The advantages of
PDT over conventional therapies include rapid bacterial killing, applicability over a broad
spectrum (Gram-negative or Gram-positive) [11,12], and efficacy against biofilms [13,14],
fungi [15,16], parasites [17] and viruses [18]. To date, the clinical applications of PDT have
been confined mainly to localized infections in dermatology and dentistry [19,20], wound
healing [21,22], and for surface disinfection including medical devices [23].

It was reported that PDT for localized microbial infections exerts its therapeutic effect
both by direct bacterial killing and the activation of the host immune response, particularly
innate immunity [24]. Neutrophils are among the first line of defence recruited to the site
of infection to release enzymes for killing infectious organisms and to secrete cytokines
that promote inflammation. The importance of neutrophils against microbial infections
is reflected by the observation that Photofrin ®-PDT exhibited significant cytotoxicity for
cultured MRSA, but the therapy had a low efficacy in a murine model of MRSA arthritis,
even though Photofrin® accumulated well in the infected joint. It was discovered that
30% of intra-articular leukocytes, mainly neutrophils, were killed immediately during or
following Photofrin-PDT [25]. Therefore, we assume it is important to examine specific
PS-PDTs cytotoxicity towards human neutrophils.

Hypericin (Hy) is a naturally occurring polycyclic quinine (Figure 1a) extracted from
plant species of the genus Hypericium including the species Hypericum perforatum L. (St
John’s Wort) [26]. Recent reports showed that Hy has the potential to treat several types of
cancer and some benign skin disorders [27,28]. Interestingly, Yow et al. reported Hy could
induce a significant cytotoxic effect on clinically isolated methicillin-sensitive S. aureus
(MSSA) and MRSA [29]. In the aspect of wound healing, H. perforatum, which is a popular
folk remedy for the treatment of wounds in Turkey, has been shown to possess remarkable
in vivo wound healing activity, and Hy was found in the active fractions [30].
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Figure 1. Chemical structures of 3 PSs used in the current investigation.

Pheobhobide a (Pa) is also a natural compound, derived from the breakdown of
chlorophyll a [31]. The extended π-π conjugated system (Figure 1b) and stability of the
compound in various solvents make it suitable as a photosensitizing agent. Studies have
revealed that Pa-PDT is effective in eradicating a variety of tumors, including pigmented
melanoma, colonic cancer, Jurkat leukemia, and pancreatic carcinoma [32–35]. Besides the
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anticancer activity of Pa, it has also been tested for its photodynamic activity against MRSA
with modification to its structure (Na salt of Pa) [36].

Photophysical properties are of paramount importance when selecting a photosen-
sitizer. The absorption spectrum of the compound plays a pivotal role during in vivo
applications, and it has to be within the therapeutic window (550–950 nm) [37]. The key
photophysical properties of Hy and Pa are summarized in Table 1 along with the gold
standard of PDT studies (Methylene blue, MB, Figure 1c).

Table 1. Electronic absorption and basic photophysical data for 3 photosensitizers used.

Compound λmax/nm λem/nm ΦF
a Φ∆

b Ref

Methylene Blue 664 (monomer in aqueous medium) 709 0.04 0.5 [38,39]
Hypericin 598 (DMSO) 651 0.2 0.73 [40,41]

Pheophobide a 667 (DMSO) 677 0.26 0.62 [42,43]
a Fluorescence quantum yield; b Singlet oxygen quantum yield.

The compelling evidence of Hy and Pa led us to investigate their PDT effects in vitro
and in vivo against a broad spectrum of clinically relevant MRSA panels along with their
toxicity towards neutrophils, in view of depicting their overall anti-MRSA efficacy.

2. Materials and Methods
2.1. General

Pheophorbide a was purchased from Frontier Scientific Inc. (Logan, UT, USA) and
hypericin and methylene blue were purchased from Sigma-Aldrich Co. (St Louis, MA,
USA). The PS solution for in vitro PDT study was prepared freshly by dissolving Pa and
Hy in DMSO to make a 10 mM stock solution. It was then diluted in Tween 80 and MHB to
set the desired stock solution. A serial two-fold dilution procedure was employed to obtain
final working concentrations. Tween 80 and DMSO concentrations were maintained≤ 0.1%
and ≤1% (v/v), respectively, in each test group.

The bacterial strains MRSA, ATCC 43300, ATCC BAA-42, ATCC BAA-43, ATCC
BAA-44, two mutant strains [AAC(6)′ APH(2)′ ′ and RN4220/pUL5054], five community-
acquired (CA-MRSA) and five hospital-acquired MRSA (HA-MRSA) clinical strains were
obtained from the Department of Microbiology, Faculty of Medicine, The Chinese Univer-
sity of Hong Kong.

2.2. In Vitro Photodynamic Minimal Bactericidal Concentration (PD-MBC) Studies

Minimal bactericidal concentrations (MBCs) of Pa-PDT, Hy-PDT and MB-PDT for
sixteen MRSA strains were determined according to the modified method adopted by Clin-
ical and Laboratory Standards Institute (CLSI) guidelines [12,44,45]. Briefly, an overnight
bacterial culture suspension was adjusted to McFarland Standard 0.5 and suspended in
Mueller Hinton Broth (MHB) to make a final concentration of 1.0×106 colony forming unit
(CFU)/mL. Photosensitizers at different concentrations (100 µL) and MRSA suspension
(100 µL) were added into 96-well plate and incubated at 37◦C for 2 h under dark condition
as a pre-irradiation step. After incubation, the mixed solutions were irradiated from above
at a light intensity of 40 mW/cm2 using a 300 W quartz-halogen lamp attenuated by a
5 cm layer of water as a heat buffer and a color filter cut-on at 610 nm (for MB and Pa,
λ ≥ 610 nm) or 590 nm (for Hy, λ ≥ 590 nm) for 20 min, i.e., 48 J/cm2. Dark control group
and a solvent control group were included. All experiments were repeated three times. The
MBCs were determined as the minimum concentration of the photosensitizers required for
complete inhibition of bacterial growth on a blood agar plate.
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2.3. Animal Studies-Mouse Model of MRSA-Infected Wound
2.3.1. Animal Model

Previously published murine skin infection models [44–47] were used to validate
the in vivo efficacy of the PS-PDT treatment against MRSA. All animal experiments were
conformed to the university guidelines and approved by the Animal Experimentation
Ethics Committee (Ref. no.12/076/MIS, 8 February 2013) of The Chinese University of
Hong Kong. Female Balb/c mice (25–30 g) were supplied by Laboratory Animal Services
Centre (LASEC), The Chinese University of Hong Kong. They were housed in individually
ventilated cages (IVC) under the conditions of 22–25 ◦C and a 12-h light-dark cycle, with
free access to chow and tap water.

It is apparent from the in vitro results that, MRSA ATCC RN4220/pUL5054 strain
was susceptible for all three PSs with comparatively lower MBC values. Hence, this
selected to establish infection on a full-thick wound in mice. Mice were anesthetized by
an intraperitoneal (i.p.) injection of ketamine (40 mg/kg) and xylazine (8 mg/kg), with
the hair of the back shaved and the skin cleansed with 10% povidone-iodine solution. A
circular full-thickness wound (4 mm in diameter) was established through a disposable
skin puncher on the back subcutaneous tissue of each animal. The lesion, overlaid with
gauze, was dressed with an adhesive bandage.

For the in vivo studies, Pa and Hy were prepared according to our previously pub-
lished protocol [48]. Briefly, 1% DMSO, 4% ethanol and 95% PBS constituted the final
test solution.

2.3.2. Intravenous Treatment

Our research group previously investigated Pa-PDT-mediated anticancer activity
(against MCF-7 tumors) in vivo [48]. So, the dosage and optimum therapeutic window for
these kinds of compounds were established (2.5 mg/Kg) for intravenous injection. Three
days after wound induction, mice were anesthetized with a ketamine/ xylazine cocktail,
and 50 µL of MRSA (1 × 108 CFU/ mL) was inoculated onto the wound. One day later,
20 µL of photosensitizers (Pa or Hy) at 2.5 mg/kg were intravenously injected into the
mice via the tail vein as for the stratified groups. Ten minutes after the application of
photosensitizers, PDT illumination at 1 W was performed for either 30 s or 10 min for all
PDT groups, corresponding to 30 J/wound and 600 J/wound, respectively. A continuous-
wave laser was generated from the Ceralas medical laser system with excitation at 670 nm
(Biolitec group, Bonn, Germany). The treatments were repeated every other day and lasted
until Day 8 (three treatment cycles, Figure 2). Wound sizes were recorded before and after
treatment. At the end of the experiment, animals were euthanized with an overdose of
terminal pentobarbital solution. The wound (5 × 10 mm) was then excised aseptically.
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2.3.3. Topical Treatment

Three days after wound induction, mice were anesthetized with a ketamine/ xy-
lazine cocktail and the adhesive bandage was removed. A 50 µL of MRSA suspension
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(1 × 108 CFU/ mL) was dropped onto each wound. A dressing (Tegaderm™ film, 3M,
Company, St. Louis, MA, USA) was applied to cover the wound immediately to maintain
wound moisture. Thirty minutes after bacterial inoculation, 50 µL of 800 µM PS solutions
or Fucidin® cream was injected under the dressing by syringe and allowed to spread over
the wound. Photoactivation (Biolitec group, Bonn, Germany) was initiated immediately. A
single dosage of laser at 0.5 W for 60 s was delivered by an optical fiber 2 mm in diameter,
corresponding to 30 J/wound. The dark control (PS alone) groups and the Fucidin® cream
(2% fucidic acid) group (positive control) did not receive any laser irradiation but were
sham-irradiated under visible light. The animals were returned to individually ventilated
cages (IVC) after treatment and thoroughly examined daily. To avoid any possible pho-
totoxicity, all mice were kept in a dark room for 4 h after PDT/sham irradiation. After
2 days of treatment, once daily (Figure 3), the dressings were removed and the wounds
were exposed. The wound sizes were recorded every two days. On Day 10, animals were
euthanized with an overdose of dorminal pentobarbital solution. The wound (5 × 10 mm)
was then excised aseptically.
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Each skin sample was divided into two portions. One-piece was used for histological
examination to determine the maturity of wound repair, and the second was weighed
and homogenized in 0.5 mL of PBS solution for bacterial viability counts. Quantification
of viable bacteria was performed by culturing serial dilutions (10 µL) of the bacterial
suspension on blood agar plates. For this purpose, all plates were incubated at 37 ◦C
for 24 h and evaluated for the presence of the staphylococcal strain. The bacteria were
quantified by counting the number of CFU per plate.

2.3.4. Histological Evaluation

Wound tissues collected from the animal study were initially fixed in 10% buffered
formalin, followed by dehydration and paraffin-embedding. Paraffin blocks were cut
into 5 µm tissue sections including the epidermis, the dermis, and the subcutaneous
panniculus. The sections were stained with hematoxylin and eosin (H&E) and assessed by
light microscopy for wound healing.

2.4. In Vitro Cytotoxic MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide)
Assay on Human Neutrophils

Human neutrophils were purified from the fresh buffy coat fraction of blood from
adult volunteers at the Hong Kong Red Cross Blood Transfusion Service, Hong Kong and
separated by the Percoll method which was routinely performed in our laboratory [49].

Our studies showed that human neutrophils exhibited a short lifespan after isolating
from buffy coats. Most human neutrophils did not survive 48 h after isolation. Therefore,
freshly isolated human neutrophils were used in the present study, and the experiments
were done within 24 h after isolation. Freshly isolated human neutrophils were plated in
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96-well plates at 105 cells/well. Serial dilutions of three photosensitizers, Pa, MB, and Hy
were added to the wells. After 24 h at 37 ◦C incubation, MTT solution (50 µL, 5 mg/mL)
were added to each well. Then, the plates were incubated at 37 ◦C for 3 h. After incubation,
150 µL of DMSO was added to each well. The OD of the wells was determined by a
spectrophotometer at 590 nm. Toxicity was represented by the ratio of OD of a well in
the presence of compounds with the OD of control wells in the presence of a medium
containing DMSO.

3. Results
3.1. Bactericidal Activity Assay on MRSA Strains

It is apparent from Table 1 that the Pa-PDT group showed significantly higher (p < 0.05)
anti-MRSA activity against MRSA ATCC RN4220/pUL5054, W44, and W46-47 (MBC;
3.125–12.5 µM) than the positive control MB (MBC; 120->160 µM). Similarly, the Hy-PDT
group demonstrated significantly higher (p < 0.05) anti-MRSA activity against MRSA ATCC
RN4220/pUL5054 and a whole panel of CA-MRSA strains (MBC; 0.625–10 µM) compared
to MB. However, HA-MRSA was more resistant towards HY-PDT, except HA-232 (MBC;
2.5 µM). Interestingly, Hy-PDT showed the lowest MBC values compared to Pa-PDT or
MB-PDT, indicating the importance of further investigations. The dark toxicities of all three
PSs were 4-8 times lower than their PDT counterparts (Table 2). Out of these sixteen MRSA
strains tested, RN4220/pUL5054 was sensitive to three photosensitizers, especially to Hy
and Pa. Therefore, it was selected to establish the in vivo model.

Table 2. The Minimal Bactericidal Concentrations (MBCs) of Pa, Hy and MB against sixteen MRSA strains.

MRSA
Type Strain

MBC Values

Hy-PDT Hy Dark
Control Pa-PDT Pa Dark

Control MB-PDT MB Dark
Control

µM µg/mL µM µg/mL µM µg/mL µM µg/mL µM µg/mL µM µg/mL

ATCC 43300 >35 >16 >35 >16 >300 >128 >300 >128 160 32 >160 >32
ATCC BAA 42 >35 >16 >35 >16 >300 >128 >300 >128 >160 >32 >160 >32
ATCC BAA 43 >35 >16 >35 >16 >300 >128 >300 >128 80 32 >160 >32
ATCC BAA 44 >35 >16 >35 >16 >300 >128 >300 >128 >160 >32 >160 >32
Mutant APH2AAC 6 >35 >16 >35 >16 >300 >128 >300 >128 >160 >32 >160 >32

Mutant RN4220
/pUL5054 0.625 0.5 5 4 6.25 4 50 32 120 >32 >160 >32

CA a W44 0.625 0.5 3.125 2.5 12.5 8 75 48 140 >32 >160 >32
CA W45 10 8 >35 >16 >300 >128 >300 >128 >160 >32 >160 >32
CA W46 1.25 1 7.5 6 6.25 4 31.25 20 >160 >32 >160 >32
CA W47 5 4 >35 >16 3.125 2 18.75 12 >160 >32 >160 >32
CA W48 1.25 1 5 4 >300 >128 >300 >128 140 >32 >160 >32

HA b W231 >35 >16 >35 >16 >300 >128 >300 >128 >160 >32 >160 >32
HA W232 2.5 2 15 12 >300 >128 >300 >128 >160 >32 >160 >32
HA W233 >35 >16 >35 >16 >300 >128 >300 >128 120 >32 >160 >32
HA W234 >35 >16 >35 >16 >300 >128 >300 >128 80 32 >160 >32
HA W235 >35 >16 >35 >16 >300 >128 >300 >128 >160 >32 >160 >32

a CA: community associated; b HA: hospital associated.

3.2. Animal Studies-Mouse Model of MRSA-Infected Wound
3.2.1. Effect of PDT of Pa and Hy with Intravenous Injection in MRSA-Infected
Wound Model

Neither of the PDTs (30 s or 10 min) upon Pa and Hy intravenous (i.v.) injection
(2.5 mg/kg) significantly (p < 0.05) reduced bacterial load at Day 8 (Figure 4). It was
observed that mice receiving 30 s of Pa-PDT and Hy-PDT treatments resulted in slight but
insignificant promotion of wound closure. However, this trend could not be observed in
the 10 min PDT-treated groups (Figure 5). There was no body weight loss in treatment
groups when compared with the control group, implying that the treatments did not cause
distress in the mice (Figure 6).
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3.2.2. Effect of PDT of Topically Applied MB, Pa or Hy in MRSA-Infected Wound Model

Topical application of Fucidin cream eradicated MRSA in the wound. Pa-PDT and
Hy-PDT treatment groups showed significant antibacterial effects against MRSA when
compared with the no treatment group (1 log decrease of CFU, p < 0.05) (Figure 7). The size
of Fucidin cream-treated wounds was slightly larger and there was no great difference in
wound sizes among all other groups after treatment (Figure 8). There was no body weight
loss in the treatment groups when compared with the control group (Figure 9), implying
that the treatments did not cause distress in the mice.
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3.2.3. Histological Evaluation

Histopathological assessment of untreated wounds on day 8 (Figure 10) indicated
incomplete epithelialization, loose granulation tissue with areas of poorly stained extracel-
lular matrix where collagen fibers were either immature or lacking as a sign of obvious
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ulcer formation. It is apparent from Figure 10, Hy and Hy-PDT mediated groups showed
rather good wound healing compared to the treatment naïve group by showing epithelial
cells and fibrous tissue proliferation. MB-PDT had a minor healing effect in granulation
and collagen formation and its re-epithelialization was worse than that of the no treatment
group. Wound healing of the Fucidin cream-treated group was worse than the no treatment
group (Figure 10).

3.3. Cytotoxicity Effect of Pa-PDT, Hy-PDT or MB-PDT on Human Neutrophils

Three photosensitizers, Pa, MB and Hy, were incubated with human neutrophils
for 24 h. No light irradiation was applied to the photosensitizers. Viability of human
neutrophils was determined by MTT assay. As shown in Figure 11, Pa and MB were more
cytotoxic to human neutrophils at 24-h incubation with LC50 at ~10.16 µM and ~11.22 µM,
respectively, whereas Hy showed a LC50 higher than 50 µM.
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Cytotoxicity of the three photosensitizers with light irradiation for 20 min (48 J/cm2)
on human neutrophils was also examined. As shown in Figure 12, Hy-PDT possessed the
strongest cytotoxicity with LC50 less than 3 µM, whereas LC50 of Pa-PDT and MB-PDT
were ~4.44 µM and ~4.23 µM, respectively. As predicted, drugs with light irradiation
exhibited significantly higher cytotoxicity than drugs without light irradiation. Given the
high cytotoxic properties of photosensitizers with light irradiation, we expected that no
cytokines would be produced in human neutrophils, as well as in the photosensitizer-
administered wound sites when light irradiation was applied.
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4. Discussion

PDT with MB is widely tested to be effective against Gram-positive bacteria, including
MRSA, and acts as the gold standard for efficacy comparison for PDTs with Pa and Hy.
In vitro results showed that Hy-PDT and Pa-PDT against some MRSA strains had better
bactericidal activity than MB-PDT. Among the sixteen MRSA strains tested, the lowest MBC
for PDTs with Hy, Pa, and MB were 0.625 µM (0.5 µg/mL), 3.125 µM (2 µg/mL), and 80 µM
(32 µg/mL) respectively. Therefore, Hy-PDT and Pa-PDT exhibited potent bactericidal
activity on MRSA strains. Hy possesses appropriate photochemical and photobiological
properties, such as a high singlet oxygen quantum yield and cytoplasmic membrane
localization, which makes it suitable for use as a PS in PDT [29,50]. Furthermore, its
absorption maxima (λmax) 570 nm at longer wavelength [51] makes Hy suitable for PDT
because of its high penetration ability. The obtained in vitro results for Hy are comparable
with the previously published data in Yow et al. [29] for two CA-MRSA strains (W45
and W47, Table 2) where a > 6 log10 CFU reduction of MRSA was obtained at an 8 µM
concentration and 30 Jcm−2 light dose. However, MBC values for RN4220/pUL5054,
W44, W46 and W48 showed significantly lower (p < 0.05) MBC values compared to the
published report.

In addition, it was found that Pa-PDT inhibited P-glycoprotein-mediated multidrug
resistance via c-Jun N-terminal kinase (JNK) activation in human hepatocellular carci-
noma [52]. As P-glycoprotein is an important class of efflux pumps that is always associated
with a high prevalence of antibiotic resistance, it is hypothesized that Pa can circumvent
drug resistance in MRSA as well.

To evaluate the efficacies of photodynamic therapy mediated by Pa and Hy, an MRSA-
infected wound-bearing mice model was used. We found that MRSA was far more resistant
to PDT in the more complicated environment of the murine dorsal wound than in transpar-
ent Petri dishes in vitro. It is possible because the wound tissue provided more layers of
organic material to scatter light and to host the bacteria. The open wound of skin tissue, as
the natural colony of Staphylococci, might provide a more nutritious matrix for bacterial
survival and prosperity, and the aqua dependency of the cytotoxicity of photosensitiz-
ers might also partly be impeded in the relatively lower moistures microenvironment of
the wounds.

However, the bodyweight of all mice was weighed before and after 8 days of treatment
and there was no difference between groups and there was also no significant behavioral
change in the mice, indicating that wound induction, MRSA infection, and our treatments
had little effect on the general health status of the mice.

It was observed that intravenous injection of photosensitizers with PDT treatments
had no antibacterial effect. This may be because none of the photosensitizers had an affinity
to wound tissue, so the circulating photosensitizers had little opportunity to aggregate at
the wound to generate an adequate amount of ROS by light illumination to kill MRSA. We
found that 10 min of PDT resulted in burnt scab formation shortly after light illumination
in some cases, while 30 s of PDT did not. The 30 s of PDT treatment also resulted in better
wound healing.

The in vivo antibacterial effect of Hy-PDT and Pa-PDT was found to be significant
and also stronger than MB-PDT at the same concentration, suggesting encouraging antibac-
terial effects of them against MRSA wound infection. However, it is interesting that the
complete elimination of MRSA by Fucidin cream treatment was accompanied by worse
wound healing as reflected by large open wound areas. It was also surprising that the
histological appearance of wound healing in MRSA-infected wounds receiving only water
and light illumination was significantly higher than that of No treatment group. We also
observed more abundant vessel formation in the dermis of some samples than in any
other group without significant improvement in open wound area. It has been reported
that red light illumination promoted wound healing by promoting ATP release from mito-
chondria, activating the lymphatic system, increasing blood circulation and forming new
capillaries [53]. Since we did not do further cellular nor molecular analyses, we are not in
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a position to explain the exact reason behind the varied wound closures among different
treatment groups.

We tested the wound healing effects of several commercially available antibacterial-
agent-free moisturizer skin creams and none of them promoted nor inhibited skin wound
healing (data not shown). Pa-PDT, MB-PDT, and Hy-PDT were all toxic to neutrophils
in vitro but the neutrophils were more resistant to Pa, MB, and Hy treatments without light
illumination. Hy and MB were less toxic, while Pa showed some toxicity even without light
illumination. Since our treatments did not include whole body illumination, the topically
applied photosensitizers and locally irradiated light illumination could hardly have any
toxic effects on the immune system inside the body. In addition, insignificant body weight
differences among all groups also indicated the minimum effect of our treatments on the
general health of animals.

5. Conclusions

Hy-PDT, Pa-PDT and MB-PDT were all capable of killing MRSA in vitro, and Hy-PDT
showed highest efficacy against panel of MRSAs. Both Hy-PDT and Pa-PDT showed
better efficacy than MB-PDT in antibacterial and wound healing effects against MRSA-
infected wounds in our murine model, and the efficacy of Hy-PDT was the best among all
treatments tested.
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