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Peritumoral radiomics features 
on preoperative thin‑slice CT 
images can predict the spread 
through air spaces of lung 
adenocarcinoma
Keiichi Takehana1, Ryo Sakamoto2, Koji Fujimoto2, Yukinori Matsuo1*, Naoki Nakajima3, 
Akihiko Yoshizawa3, Toshi Menju4, Mitsuhiro Nakamura5, Ryo Yamada6, Takashi Mizowaki1 & 
Yuji Nakamoto2

The spread through air spaces (STAS) is recognized as a negative prognostic factor in patients with 
early‑stage lung adenocarcinoma. The present study aimed to develop a machine learning model for 
the prediction of STAS using peritumoral radiomics features extracted from preoperative CT imaging. 
A total of 339 patients who underwent lobectomy or limited resection for lung adenocarcinoma 
were included. The patients were randomly divided (3:2) into training and test cohorts. Two 
prediction models were created using the training cohort: a conventional model based on the tumor 
consolidation/tumor (C/T) ratio and a machine learning model based on peritumoral radiomics 
features. The areas under the curve for the two models in the testing cohort were 0.70 and 0.76, 
respectively (P = 0.045). The cumulative incidence of recurrence (CIR) was significantly higher in the 
STAS high‑risk group when using the radiomics model than that in the low‑risk group (44% vs. 4% 
at 5 years; P = 0.002) in patients who underwent limited resection in the testing cohort. In contrast, 
the 5‑year CIR was not significantly different among patients who underwent lobectomy (17% vs. 
11%; P = 0.469). In conclusion, the machine learning model for STAS prediction based on peritumoral 
radiomics features performed better than the C/T ratio model.

Spread through air spaces (STAS) is an invasive pattern of lung cancer that was newly described in the 2015 
World Health Organization (WHO)  classification1. STAS is defined as micropapillary clusters, solid nests, or 
single cells beyond the edge of the tumor into air spaces in the surrounding lung parenchyma. It is known as a 
negative prognostic factor in patients with early-stage lung  adenocarcinoma2,3, especially in patients receiving 
limited  resection4,5. Thus, STAS could be a potential biomarker for clinical decision-making in selecting surgical 
methods, such as lobectomy or limited resection, if it can be predicted preoperatively.

STAS findings are not directly visible on CT images, but there are papers that indirectly show a correlation 
with CT findings. Several authors suggested that tumor density is an important factor in predicting STAS, and 
the probability of its presence could be estimated by the consolidation tumor ratio (C/T ratio) on preoperative 
 CT6–9. Kim et al. showed that among various qualitative and quantitative CT features, the percentage of solid 
component was an independent predictor for  STAS9. In addition, other morphological features, such as notches, 
surrounding ground-glass opacity (GGO), vascular convergence, pleural indentation, and spiculation, were 
related to the presence of  STAS10.
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Radiomics is a quantitative approach that makes use of statistical patterns in tumor CT images to predict 
tumor pathology, tumor treatment response, or cancer prognosis using a large number of features extracted from 
medical images. Numerous studies have shown that radiomics features could quantify tumor characteristics 
and can potentially be applied as clinical  biomarkers11–15. Several authors applied the radiomics approach to 
the prediction of STAS. Most previous studies have investigated the association between STAS and radiomics 
features inside the  tumor16,17. Since STAS is a pathological finding present at the tumor edge, radiomics features 
at the tumor margins on preoperative CT images may lead to a more accurate prediction of STAS. Zhuo et al. 
had evaluated peritumoral radiomics features from preoperative CT, which resulted in no significant improve-
ment in the prediction performance of STAS compared with a clinical model including maximal diameter of the 
solid component and mediastinal node  metastasis18. This may be because the radiomics features were obtained 
from regions of interest (ROIs) outside the tumor contour, which may not truly represent the tumor edge char-
acteristics associated with STAS, as described earlier, because of the limits of CT resolution. The peritumoral 
ring-shaped ROI, which contains both inside and outside the tumor edge, may overcome this limitation.

In the present study, we investigated the performance of machine learning models based on peritumoral 
radiomics features, aiming to improve the prediction performance of STAS in comparison with the conventional 
method using the C/T ratio.

Methods
Ethics. All study procedures complied with the 1964 Declaration of Helsinki and its later amendments. The 
study was approved by the Ethics Committee at Kyoto University Graduate School and Faculty of Medicine 
(approval no. R2272). As this study was performed retrospectively, the requirement for informed consent was 
waived.

Patients. From January 2007 to December 2015, 802 patients with pathologically confirmed lung adenocar-
cinoma were identified from our surgery database. Of these, 463 patients were excluded because of induction 
chemotherapy (n = 23), multiple lung cancer nodules (n = 69), absence of thin-slice plain CT (n = 367), tumor 
diameter greater than 5 cm (n = 2), and presence of lymph node metastasis (n = 2). The remaining 339 patients 
were included in the analyses (Fig. 1).

Histological evaluation. Two experienced pathologists reviewed the hematoxylin and eosin tissue sec-
tions with a Nikon Eclipse 80i optical microscope (Nikon Corporation, Tokyo, Japan) according to the WHO 
definitions of STAS. The edge of the main tumor was defined as a smooth surface that could be easily recognized 
by low-power visual field examination. STAS was defined as tumor aggregates floating in the air cavity at least 
one alveolus away.

Image acquisition. CT scans were performed using a 64-detector-row CT scanner (Aquillion 64, Canon 
Medical Systems, Otawara, Japan) or a 320-detector-row scanner (Aquillion ONE, Canon Medical Systems). 
Images were reconstructed with a soft-tissue kernel (FC11, 13) and a slice thickness of 1 mm for radiomics 
analysis and with lung kernel (FC51) and a slice thickness of 0.5 mm for evaluation of the C/T ratio, using a 
filtered back-projection algorithm. Table E1 enumerates the detailed scan parameters.

Radiological evaluation of the C/T ratio and the type of nodule. The largest diameter of the whole 
tumor, the largest diameter of consolidation (solid part), and types of nodules (solid, part-solid, and ground-

Figure 1.  Flowchart of the inclusion/exclusion criteria.
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glass nodule) were determined by an experienced radiation oncologist (K.T. with ten years of experience in 
radiotherapy for lung cancer and in lung cancer related-image interpretation). A board-certified radiologist 
(R.S. with 14 years of experience in lung image interpretation) independently confirmed the results and con-
sensus was reached by discussion in the event of disagreement. All cases were anonymized and both readers 
were blinded to the presence or absence of STAS and to clinical outcomes. The largest diameter of the tumor 
was measured on the axial, coronal, or sagittal planes of the CT in the lung window (window level, − 600 HU; 
window width, 1500 HU). The largest consolidation diameter was measured on the same plane where the largest 
tumor diameter was measured.

Tumor segmentation and feature extraction. Peritumoral ROI was defined as a ring-shaped ROI 
5 mm inward and 5 mm outward from the tumor surface, excluding surrounding soft tissues, such as the chest 
wall or mediastinum. A radiation oncologist (K.T.) segmented the peritumoral ROIs using 3D Slicer (version 
4.10.2), which is a free, open source and multi-platform software package for medical, biomedical, and related 
imaging research (https:// www. slicer. org/). Details on the segmentation procedures are given in Figure E1. Seg-
mentation in randomly selected patients was also performed by a radiologist (R.S.) to assess the reproducibility 
of radiomics features. Dice coefficients were calculated to compare the lesion segmentation and assess the inter-
observer variability.

The radiomics features were extracted from peritumoral ROIs using PyRadiomics (version 3.0), supported 
by the image biomarker standardization initiative (IBSI)19. All slices were resampled to 1 × 1  mm2 in the hori-
zontal and vertical directions before the feature extraction. The features included 14 shapes, 18 first-order, 
22 gray level co-occurrence matrices (GLCM), 14 gray level dependence matrices (GLDM), 16 gray level size 
zone matrices (GLSZM), 16 gray-level run-length matrices (GLRLM), and 5 neighboring gray-tone difference 
matrices (NGTDM). In addition to the original image, images processed with Laplacian of Gaussian (LoG) and 
coiflet wavelet filters were applied for six feature classes (first-order, GLCM, GLDM, GLSZM, GLRLM, and 
NGTDM). Consequently, 1288 features were extracted from each ROI. A complete list of radiomics features is 
provided in Table E2.

Model development. The patient cohort was randomly divided into training and testing cohorts (3:2) 
using the two stratification factors (the presence of STAS and nodule types). We developed two models for the 
prediction of STAS (Fig. 2) in the present study. One was a machine learning model based on peritumoral radi-
omics features (peritumoral radiomics model). The other was a logistic regression model based on the tumor 
C/T ratio (C/T ratio model).

Figure 2.  Workflow of the predictive model development.

https://www.slicer.org/
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Before developing the peritumoral radiomics model, we selected non-redundant, reproducible features. The 
intraclass correlation coefficients (ICCs) were calculated from ROIs independently by two researchers to quantify 
the interobserver reproducibility of the radiomics features. An ICC of > 0.75 was considered  reproducible20. The 
absolute pairwise Spearman’s correlation coefficient values were calculated to remove redundant features in the 
training set (|ρ| > 0.7).

Finally, the peritumoral radiomics model was developed using the least absolute shrinkage and selection 
operator (LASSO) classification algorithm (Python scikit-learn environment, version 0.22.1) as a peritumoral 
radiomics model. The regularization parameters for LASSO were tuned using fivefold cross-validation on the 
training dataset. The regularization parameters of the model with the highest AUC in the fivefold cross valida-
tion were used to create the final model.

Evaluation of predictive performance. The predictive performance of the models was compared using 
the area under the curve (AUC) of the receiver operating characteristic curve. The 95% confidence interval (CI) 
for the AUC was calculated by bootstrapping with 2,000 iterations. For comparison, the P value was calculated 
by the DeLong method using the pROC package in R (version 1.16.1). The cut-off value dividing the cohort into 
STAS high-risk and STAS low-risk groups was selected to maximize Youden’s index for each model.

The follow-up and survival periods were calculated from the surgery day. The cumulative incidence of recur-
rence (CIR) was calculated using competing risk analysis, with death without recurrence regarded as a competing 
event. The differences in CIR between the groups were tested by the Gray’s test using the cmprsk package in R 
(version 2.2-9). The level of significance was set at P < 0.05.

Results
Patients. The patient cohort was divided into the training (n = 203) and testing (n = 136) cohorts. STAS was 
positive in 57 patients (28%) in the training cohort and 38 patients (28%) in the testing cohort. The demographic 
and clinical characteristics of the patients are shown in Table 1. There were no statistically significant differences 
in the patient characteristics between the training and testing cohorts.

Table 1.  Patient characteristics. Values are presented in median (interquartile range) or number (percentage). 
C/T ratio consolidation/tumor ratio.

Characteristics Overall (N = 339) Training cohort (n = 203) Testing cohort (n = 136) P value

Age 67 (61, 73) 67 (60, 74) 67 (61, 73) 0.89

Sex

0.61 Male 160 (47%) 93 (46%) 67 (49%)

 Female 179 (53%) 110 (54%) 69 (51%)

Smoking status

0.60
 Current 56 (17%) 34 (17%) 22 (16%)

 Ex 119 (35%) 67 (33%) 52 (38%)

 Never 164 (48%) 102 (50%) 62 (46%)

Location

0.09

 Left lower lobe 49 (14%) 22 (11%) 27 (20%)

 Left upper lobe 88 (26%) 49 (24%) 39 (29%)

 Right lower lobe 65 (19%) 43 (21%) 22 (16%)

 Right middle lobe 27 (8%) 19 (9%) 8 (6%)

 Right upper lobe 110 (32%) 70 (34%) 40 (29%)

T-stage

0.96

 Tis 52 (15%) 31 (15%) 21 (15%)

 T1mi 23 (7%) 14 (7%) 9 (7%)

 T1a 45 (13%) 24 (12%) 21 (15%)

 T1b 111 (33%) 70 (34%) 41 (30%)

 T1c 70 (21%) 41 (20%) 29 (21%)

 T2a 29 (9%) 18 (9%) 11 (8%)

 T2b 9 (3%) 5 (2%) 4 (3%)

Surgery

0.23
 Lobectomy 204 (60%) 129 (64%) 75 (55%)

 Partial resection 26 (8%) 13 (6%) 13 (10%)

 Segmentectomy 109 (32%) 61 (30%) 48 (35%)

Diameter of consolidation (mm) 14 (6, 23) 15 (6, 22) 13 (6, 23) 0.77

Diameter of tumor (mm) 19 (15, 27) 19 (14, 27) 20 (15, 27) 0.73

C/T ratio 0.80 (0.38, 1.00) 0.81 (0.38, 1.00) 0.77 (0.38, 1.00) 0.79
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Tumor segmentation, feature extraction, and model development. The mean dice coefficient of 
segmentation in 102 patients (50.2%) randomly selected from the training cohort was 0.82 (range 0.47–0.99). A 
total of 1132 (88%) features with an ICC of ≥ 0.75 were considered to be reproducible against the interobserver 
variability. The ICC values for the features are shown in the supplementary material (intraclass_correlation.
csv). Of these reproducible features, 88 (8%) features with an absolute value of pairwise |ρ| of ≤ 0.7 were used to 
develop the LASSO model. The AUCs in the fivefold cross validation of the training cohort were 0.78, 0.72, 0.71, 
0.88, and 0.76 (mean, 0.77). The selected coefficients of the features in the LASSO model are shown in Fig. 3. The 
AUCs of the peritumoral radiomics model and the C/T ratio model in the entire training cohort were 0.79 (95% 
CI 0.72–0.86), and 0.72 (95% CI 0.65–0.78, Table 2), respectively. The cut-off values between the STAS high- and 
low-risk groups were determined to be 0.53 and 0.54 for the peritumoral radiomics and the C/T ratio models, 
respectively.

Predictive performance. The AUCs in the testing cohort of the peritumoral radiomics model and the 
C/T ratio model were 0.76 (95% CI 0.67–0.84) and 0.70 (95% CI 0.61–0.78), respectively (Fig. 4). The predic-
tive performance of the peritumoral radiomics model was significantly higher than that of the C/T ratio model 
(P = 0.045, Table 2). The distribution of feature values used in the peritumoral radiomics model in the training 
and testing cohorts is shown in Fig. 5. In the testing cohort, patients at STAS-high risk according to the radiom-
ics model were significantly associated with greater age, lobectomy, larger tumor diameter with higher C/T ratio 
compared with those at low risk (Table 3).

The median follow-up duration of the test group was 58 months (range 1–130 months). In the test group, 
61 patients (45%) underwent limited resection (partial resection [n = 13] and segmentectomy [n = 48]), and 75 
(55%) underwent lobectomy. In the limited resection group, 6 (10%) patients developed recurrence (locoregional 
[n = 4] and distant [n = 5]), and two (3%) died without recurrence. In contrast, 10 (13%) patients developed 
recurrence (locoregional [n = 4] and distant [n = 8]), and 5 (7%) died without recurrence in the lobectomy group.

In the testing cohort, the patients were divided into STAS high-risk and STAS low-risk groups based on the 
predicted probability calculated from the peritumoral radiomics model. In the limited resection group, the risk 
of recurrence was significantly higher in the STAS high-risk group than that in the STAS low-risk group (5-year 
CIR, 44% vs. 4%; P = 0.002) in the limited resection group (Fig. 6a). In contrast, in the lobectomy group, the risk 
of recurrence was not significantly different between the STAS high-risk and STAS low-risk groups (5-year CIR, 
17% vs. 11%; P = 0.469) (Fig. 6b).

Discussion
We demonstrated that the model using radiomics features extracted from the peritumoral ROI could significantly 
improve the prediction performance of STAS as compared to the conventional model using C/T ratio and could 
also predict the prognosis after limited surgery in lung adenocarcinoma. To the best of our knowledge, no studies 

Figure 3.  Coefficients of the peritumoral radiomics model.

Table 2.  Predictive performance of consolidation/tumor model and peritumoral radiomics model. C/T ratio 
consolidation/tumor ratio, AUC  area under the curve, CI confidence interval.

Patient cohort Model AUC (95%CI) Sensitivity Specificity

Training
C/T ratio model 0.72 (0.65–0.78) 0.82 0.62

Peritumoral radiomics model 0.79 (0.72–0.86) 0.82 0.69

Testing
C/T ratio model 0.70 (0.61–0.78) 0.71 0.61

Peritumoral radiomics model 0.76 (0.67–0.84) 0.74 0.66
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so far have used STAS prediction models to predict the prognosis after limited resection. Our prediction model 
had the potential to diagnose patients who benefit from limited resection.

We focused on the radiomics features at the tumor margins (peritumoral radiomics) to predict the presence 
of STAS since STAS is a pathological finding found at the tumor margins. Toyokawa et al. reported that imaging 
findings of nodule margins, such as peritumoral notch and surrounding GGO, are independent predictive factors 
for the presence of  STAS10. In the study by Zhuo et al., radiomics analysis was performed focusing on the outer 
region of the tumor, but no improvement in prediction was  observed18. In their report, fine characteristics of 
the tumor margins might not have been adequately included. In our study, the marginal nature of the tumor was 
captured in detail by adding 5-mm margins for both inside and outside the tumor. According to Kadota et al., 
the median distance of STAS was 1.5 mm (range 0.2–8.5) from the tumor edge, and a 5-mm margin outside the 

Figure 4.  ROC curve of the C/T ratio model and the peritumoral radiomics model.

Figure 5.  Values of features used in peritumoral radiomics model in training/test dataset.
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tumor can cover about 90% of the cases where STAS was  present5. The tumor edge defined by preoperative CT 
was not always accurate on CT owing to technical limitations. Chan et al. reported that CT segmentation might 
overestimate the edge of the  tumor21.

Several authors reported the application of peritumoral radiomics to research in lung cancer treatment other 
than STAS. Wang et al. developed a nomogram for predicting lymph node metastasis after lung cancer surgery 
by using radiomics features extracted from tumor ROI and peritumoral  ROI22. Akinci D’Antonoli et al. reported 
that the addition of radiomics features extracted from tumor ROIs and peritumoral ROIs to the TNM stage 
improved the prediction accuracy of recurrence rate after lung cancer  surgery23.

Table 3.  Patient characteristics of the testing cohort according to the peritumoral radiomics risk model. 
Values are presented in median (interquartile range) or number (percentage). C/T ratio consolidation/tumor 
ratio, STAS spread through air spaces.

Characteristics STAS high risk (n = 55) STAS low risk (n = 81) P value

Age 69 (62, 75) 66 (60, 72) 0.09

Sex

0.62 Male 29 (53%) 38 (47%)

 Female 26 (47%) 43 (53%)

Smoking status

0.10
 Current 11 (20%) 11 (14%)

 Ex 25 (45%) 27 (33%)

 Never 19 (35%) 43 (53%)

Location

0.32

 Left lower lobe 9 (16%) 18 (22%)

 Left upper lobe 16 (29%) 23 (28%)

 Right lower lobe 9 (16%) 13 (16%)

 Right middle lobe 6 (11%) 2 (3%)

 Right upper lobe 15 (27%) 25 (31%)

Surgery

0.001
 Lobectomy 44 (80%) 31 (38%)

 Partial resection 2 (4%) 11 (14%)

 Segmentectomy 9 (16%) 39 (48%)

Diameter of consolidation (mm) 22 (17, 28) 7 (0, 13) < 0.001

Diameter of tumor (mm) 23 (18, 31) 17 (12, 25) < 0.001

C/T ratio 1.00 (1.00, 1.00) 0.43 (0.00, 0.70) < 0.001

STAS 28 (51%) 10 (12%) < 0.001

Figure 6.  Cumulative incidence of recurrence by the cutoff value of peritumoral radiomics model in the limited 
resection group (a) and the lobectomy group (b).
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As with pathological STAS, the risk of postoperative recurrence was significantly higher in the high-risk STAS 
group than that in the low-risk STAS group only in the limited resection group. This implies that our model 
could be used for additional decision-making information when selecting the surgical technique. Indeed, in 
the STAS low-risk group, more patients underwent limited resection compared with the STAS high. That might 
reflect that surgeons chose a less invasive surgery for low-risk patients according to the tumor size and C/T 
ratio. Masai et al. reported that the presence of STAS and tumor margins < 10 mm are significant risk factors for 
local recurrence in early-stage lung cancer after limited resection, and preoperative prediction of this may allow 
optimization of the resection  margin24.

Our prediction model would be applied to medically inoperable patients with early-stage lung cancer, where 
stereotactic body radiation therapy (SBRT) is delivered. In the SBRT cases, evaluation of the presence of STAS in 
pathological specimens is not possible. The clinical target volume (CTV), which is the extent of tumor microin-
vasion, is usually defined as the same as gross tumor volume in the planning of  SBRT25,26. An appropriate CTV 
margin may help local control if an accurate prediction of STAS is possible.

There are several limitations to this study. First, this was a single-center retrospective study, and prospective 
external model validation is needed. Second, patients who underwent limited resection included those who 
could not undergo lobectomy because of complications or elderly age and were subject to death due to causes 
other than lung cancer. The usefulness of this model in predicting the probability of STAS as a basis for clinical 
decision-making needs to be verified in a randomized study. Third, the radiomics features used in this model were 
not compared with imaging findings interpreted by radiologists; therefore, further studies are needed to identify 
the significance of those features. Fourth, our prediction model was solely based on imaging features because our 
main hypothesis was that the imaging features could reflect the information of the existence of STAS. However, 
clinical factors such as age, gender, and serum carcinoembryonic antigen are also reported to be predictors of 
STAS, and the addition of these factors may lead to a more predictive  model27. Lastly, there is room to further 
reduce data sampling bias by applying sophisticated methods to building a prediction model, such as nested cross 
validation; however, we needed to leave a test cohort aside in advance for the following survival outcome analysis.

In conclusion, we developed a machine learning model based on peritumoral radiomics features. Its predic-
tion performance is superior compared to that of the conventional model using the C/T ratio. Our model could 
further predict prognosis after limited surgery, as well as pathological STAS.
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