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Pan-cancer strategy, an integrative analysis of different cancer types, can be used to
explain oncogenesis and identify biomarkers using a larger statistical power and
robustness. Fine-mapping defines the casual loci, whereas genome-wide association
studies (GWASs) typically identify thousands of cancer-related loci and not necessarily
have a fine-mapping component. In this study, we develop a novel strategy to identify the
causal loci using a pan-cancer and fine-mapping assumption, constructing the CAusal
Pan-cancER gene (CAPER) score and validating its performance using internal and
external validation on 1,287 individuals and 985 cell lines. Summary statistics of 15
cancer types were used to define 54 causal loci in 15 potential genes. Using the
Cancer Genome Atlas (TCGA) training set, we constructed the CAPER score and
divided cancer patients into two groups. Using the three validation sets, we found that
19 cancer-related variables were statistically significant between the two CAPER score
groups and that 81 drugs had significantly different drug sensitivity between the two
CAPER score groups. We hope that our strategies for selecting causal genes and for
constructing CAPER score would provide valuable clues for guiding the management of
different types of cancers.
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INTRODUCTION

Cancer is a major cause of mortality in both developed and developing countries, resulting in more
than 8 million deaths each year worldwide (Tarver, 2012; Bray et al., 2013; Rodriguez-Martin et al.,
2020). Since the causal factors and regulatory mechanisms are complex and remain largely unknown,
there could be an increasing trend of morbidity and mortality attributed to cancer in the future
(Nakagawa and Fujita, 2018). Based on multi-omics technologies, it has been demonstrated that
cancers in different tissues and organs may share common features, whereas those in the same or
similar organ may have distinct characteristics (Ciriello et al., 2013; Kandoth et al., 2013; Peng et al.,
2021). These findings indicate that a pan-cancer strategy, which takes into account commonalities
across cancer types, can be used to identify molecular abnormalities that transcend particular
lineages, may explain oncogenesis, and make a large contribution towards the personal management
of cancer (Vargas and Harris, 2016). In addition, pan-cancer analysis improves the statistical power
used to identify cancer-related molecular dysregulation and avoids poor reproducibility in the
characterization of rare subtypes (Priestley et al., 2019). Programs, such as the Cancer Genome Atlas
(TCGA), which coordinate multi-omics sequencing and the clinical annotation of approximately
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10,000 samples across over 30 cancer types, provide a great
opportunity to identify pan-cancer biomarkers (Chang et al.,
2013; Nawy, 2018).

Although genome-wide association studies (GWASs) have
identified thousands of cancer-related loci (De Los Campos
et al., 2018), there are still some unsolved issues. First, the
majority of GWAS have identified variants located in non-
coding regions and with small effect sizes, making it difficult
to interpret functional and biological mechanisms that underlie
the associations (Maurano et al., 2012; Visscher et al., 2017; Zeng
et al., 2021). Second, complex linkage disequilibrium (LD) may
obscure causal variants that drive the associations. Therefore,
significant associations identified by GWASs are more about
disease-related genomic regions than individual variants
(Gallagher and Chen-Plotkin, 2018; Tam et al., 2019). Third,
the most statistically significant variants may not be causal.

In general, genetic variants cause complex diseases by
regulating gene expression, the abundance of one or multiple
downstream proteins (Lappalainen et al., 2013; Westra et al.,
2013; Albert and Kruglyak, 2015; Gusev et al., 2016). Gene
pathway analysis and enrichment analysis have been widely
applied to explore potential cancer-related mechanisms and

have supplied plenty of valuable clues for the development of
intervention targets (Shukla et al., 2016; Bao et al., 2019;
Demircioğlu et al., 2019; Peng et al., 2019; Kim et al., 2020).
Although previous studies have also leveraged data from TCGA
to identify specific genes and signaling pathways involved in
oncogenesis and development from a pan-cancer perspective
(Ballot et al., 2020; Frost et al., 2020; Liu et al., 2020), these
candidate genes or pathway-specific strategies are all based on
prior knowledge, resulting in the loss of potential causal
associations (Deng et al., 2014; Liu et al., 2014; Zhang et al.,
2018). In addition, many of the associated genes identified may be
the outcome rather than the cause of the disease (Gusev et al.,
2016). Consequently, transcriptome-wide association studies
(TWASs) were proposed to integrate GWASs with expression
quantitative trait locus (eQTL) reference panels constructed from
external genome-wide gene expression and genotype data to
identify predicted gene–trait associations (Xu et al., 2017;
Barbeira et al., 2018). Since a large sample size is used, the
performance and statistical power of a TWAS is superior to
that of traditional transcriptome analysis (Gusev et al., 2016; Xu
et al., 2017; Barbeira et al., 2018). However, TWASs tend to
identify multiple significant genes per region but fail to define the

FIGURE 1 | Workflow for CAPER score construction and its clinical translation.
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causal gene due to LD confounding (Mancuso et al., 2019;
Wainberg et al., 2019; Wu and Pan, 2020). To overcome this
drawback, fine-mapping methods were used to identify causal
variants responsible for complex traits by accounting for the
patterns of LD among the SNPs within a region associated with
the target disease and assuming that at least one causal variant
exists (Schaid et al., 2018).

In this study, we developed a novel strategy to define causal
genes with the assumption of pan-cancer, to construct the CAusal
Pan-cancER gene (CAPER) score, and to validate its performance
using internal and external validation (Figure 1). Based on the
workflow, we identified causal genes related to multiple cancers,
used the same gene panel to differentiate cancer patients, and
validated the efficiency of the gene panel in external validation
sets (Li et al., 2021).

MATERIALS AND METHODS

Genome-Wide Associate Studies Data
Process
We obtained 15 GWAS summary statistics of common cancers,
including bladder cancer (BLCA, Prev. � 23.0/100,000), breast
cancer (BRCA, Prev. � 125.2/100,000), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC, Prev. �
12.4/100,000), colorectal cancer (COADREAD, Prev. � 55.9/
100,000), esophageal or stomach adenocarcinoma
(ESCASTAD, Prev. � 15.1/100,000), kidney cancer (KC, Prev.
� 14.5/100,000), lung cancer (LC, Prev. � 35.7/100,000),
lymphocytic leukemia (LL, Prev. � 10.1/100,000), melanoma
(MM, Prev. � 18.3/100,000), oral cavity and pharyngeal cancer
(OCPC, Prev. � 3.3/100,000), ovarian cancer (OV, Prev. � 13.5/

100,000), pancreatic adenocarcinoma (PAAD, Prev. � 7.9/
100,000), prostate cancer (PRAD, Prev. � 120.1/100,000),
thyroid carcinoma (THCA, Prev. � 10.2/100,000), and uterine
corpus endometrial cancer (UCEC, Prev. � 29.4/100,000) (Li
et al., 2012; Leo et al., 2017; Phelan et al., 2017; O’Mara et al., 2018;
Schumacher et al., 2018; Zhou et al., 2018; Rashkin et al., 2020).
The average number of SNPs was 1,144,365 (median � 1,293,959,
ranging from 269,795 to 1,298,901) and the average sample size
was 273,861 (median � 399,215, ranging from 7,785 to 417,127).
In addition, we used Linkage Disequilibrium SCore regression
(LDSC) (Bulik-Sullivan et al., 2015) to estimate the observed and
liability heritability of each cancer and the genetic correlation
between each pair of cancer types. We identified 28 significant
pairs of cancer types (p < 0.05), among which OV and UCEC
presented the lowest p-value (p � 3.69E-7) (Supplementary
Figure S1). Since all the GWASs had been performed on
patients with European ancestry, we used the LD scores of the
European population of the 1000 Genome Project (1 KGP) to
estimate the heritability of each cancer (Consortium, 2015).
Details on the 15 summary statistics are provided in Table 1.

Furthermore, we used the GENCODE database (v25) to map
the SNPs to gene positions. In total, we retained 19,201 protein-
coding genes selected from 60,252 transcripts in autosomes.
Then, the SNPs located 100 kb upstream and downstream of a
specific gene were selected to perform fine-mapping. After
mapping to the gene and intersecting using the reference
panel, 1,403,668 SNPs remained. We used PLINK (v1.9b6.22)
to estimate the LD matrix of each gene.

Potential Causal Gene Set Identification
We used SuSiE, a fine-mapping method, to identify the causal
SNPs in the 15 GWAS summary datasets with the aid of the
susieR package (v0.11.42) (Wang et al., 2020a) in R software. We
also used 1 KGP EUR samples as the LD reference panel.
According to SuSiE manual, we set the maximum number of
causal variants in the region to 10. Based on the results of previous
studies (Fadista et al., 2016; Schaid et al., 2018), we set the
significant level to 1E-5. A specific gene with causal SNPs was
defined as a potential causal gene. We repeated the fine-mapping
procedure for each type of cancer. Finally, the potential causal
gene set consisted of genes regarded as casual genes of at least
three types of cancers.

We also used the Molecular Signatures Database (MSD) to
evaluate the overlapping of our candidate genes with regard to
common processes, pathways, and underlying biological themes,
while considering an FDR q-value of less than 0.05 and a
minimum gene set size of two as statistically significant
(Subramanian et al., 2005; Liberzon et al., 2011; Liberzon
et al., 2015).

The Cancer Genome Atlas Data Process
To verify the clinical translation of the potential causal gene set,
we downloaded two types of TCGA data: (1) molecular data,
which included gene expression (HTSeq-FPKM)
(log2(FPKM+1)) and DNA methylation data; and (2) clinical
data, which included age, sex, and survival time. These data were
downloaded from the University of California Santa Cruz

TABLE 1 | Summary of GWAS summary statistics in 15 types of cancer.

Cancer type No. SNP h2 Samples size Prev. (/100,000)

BLCA 1,293,985 0.08 412,592 23
BRCA 1,016,724 0.14 194,153 125.2
CESC 269,795 0.36 9,347 12.4
COADREAD 1,298,901 0.23 387,318 55.9
ESCASTAD 1,293,959 0.14 411,441 15.1
KC 1,293,994 0.09 411,688 14.5
LC 1,293,976 0.15 412,835 35.7
LL 1,293,985 0.14 411,202 10.1
MM 1,293,929 0.08 417,127 18.3
OCPC 1,293,988 0.04 411,573 3.3
OV 1,227,160 0.0042 85,426 13.5
PAAD 518,381 0.06 7,785 7.9
PRAD 1,202,176 0.16 140,254 120.1
THCA 1,293,992 0.21 411,112 10.2
UCEC 1,280,529 0.03 121,885 29.4

h2: Heritability estimated.
Prev. (/100,000): Estimated number of prevalent cases in 2020 (proportions per
100,000).
BLCA: bladder cancer, BRCA: breast cancer, CESC: cervical squamous cell carcinoma
and endocervical adenocarcinoma, COADREAD: colorectal cancer, ESCASTAD:
esophageal or stomach adenocarcinoma, KC: kidney cancer, LC: lung cancer, LL:
lymphocytic leukemia, MM: melanoma, OCPC: oral cavity and pharyngeal cancer, OV:
ovarian cancer, PAAD: pancreatic adenocarcinoma, PRAD: prostate cancer, THCA:
thyroid carcinoma, and UCEC: uterine corpus endometrial cancer.
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(UCSC) Xena browser (Goldman et al., 2018).We used data on all
11,057 samples and 60,483 transcripts available on 33 different
types of cancer. We transformed the Ensembl IDs to symbols,
using the biomaRt package (v.2.46.3) (Durinck et al., 2009).
Specifically, we used the average level to represent the gene
with multiple Ensembl ID mapping with a single symbol. We
obtained the sum of the genes from the 33 datasets and calculated
the average expression level for genes that contained more than
one transcript. We also filtered out the samples that were (1) non-
European ancestry and (2) missing tumor stage data. Genes that
were not expressed (FPKM � 0) in more than 50% of samples
were excluded from the expression data of our causal gene set.
After quality control, we obtained 38,596 genes, including 12
CAPER genes, and 4,842 individuals with 21 different types of
cancer.

CAusal Pan-cancER Gene Score Estimation
First, we divided the TCGA sample into two parts: the training set
(80%), used to construct the CAPER score, and the test set (20%),
used to perform internal validation. Of the 4,842 individuals,
3,873 were allocated to the training set and 969 were allocated to
the test set (Supplementary Table S1). The 21 types of cancer
included were adrenocortical carcinoma (ACC), BLCA, BRCA,
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),
esophageal carcinoma (ESCA), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), mesothelioma (MESO), PAAD, rectum
adenocarcinoma (READ), skin cutaneous melanoma (SKCM),
stomach adenocarcinoma (STAD), testicular germ cell tumors
(TGCT), THCA, and uveal melanoma (UVM). The training set
was used to perform Cox regression on each gene after adjusting
for age, sex, and tumor stage. We used the survival package
(v3.2–11) to fit the Cox regression data, and the survminer
package (v0.4.9) was used to perform survival analysis and
visualization. We obtained the association between each gene
and the disease-specific overall survival rate.

Second, we used a causal gene set to fit the multivariable Cox
regression adjusted for age, sex, and tumor stage. The model used
was as follows:

CAPER Score � β̂CAPERXCAPER (1)

where β̂CAPER was a vector of the coefficients of CAPER genes
obtained from the multivariable regression and XCAPER was a
matrix of expression levels of CAPER genes. Using Eq. 1, we
constructed the CAPER score for each individual in the test set
and regarded the 12 potential causal genes identified as CAPER
genes. Using the median CAPER score, we classified the
individuals into two groups: (1) the high-CAPER group and
(2) the low-CAPER group.

In addition, we used the TCGA test set to perform three types
of sensitivity analyses. (1) To show the performance of the
CAPER score for a shorter survival time, we selected all
samples with survival <5 years. (2) To show the performance

of the CAPER score in a smaller sample size, we randomly
selected 80 samples. (3) To show the effectiveness and
accuracy of the CAPER score, we randomly selected 12 genes,
namely, DGFRL, GLRX5, KCNJ14, SMARCAL1, FTH1P16,
CDK5, WDFY1, TMEM266, RAD21, NAA16, AGPS, and
FBXO39, to construct the random CAPER score. We used the
log-rank test for all three analyses.

Clinical Translation
We performed a series of analyses to investigate the clinical
translation of the CAPER score, using the TCGA test set,
IMvigor210 cohort, and Genomics of Drug Sensitivity in
Cancer (GDSC) (Yang et al., 2012; Tomczak et al., 2015;
Mariathasan et al., 2018).

First, using the TCGA test set, we defined the association
between CAPER score and TNM staging, tumor histological
grade, and vascular tumor cell types. Specifically, the
pathological stages of the primary tumor (T) were divided into
two groups: (1) Tis (tumor in situ) and T1, and (2) T2 or larger.
The staging of distant metastasis (M) is defined as M0 and M1. In
addition, we detected the association between the CAPER score
and immune subtypes, including C1 (wound healing), C2 (IFN-γ
dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5
(immunologically quiet), and C6 (TGF-β dominant), which were
filtered because the sample size was below 40. These immune
subtypes were proven to be associated with prognosis, genetic,
and immune-modulatory alterations. These factors may shape
the specific types of immune environments that we observed and
indicate response to therapy or prognosis (Thorsson et al., 2018).
We also showed the association between the high-CAPER group
and the low-CAPER group, as well as the immune subtype of
each gene.

Second, we used the TCGA test set to define the association
between the CAPER score and the tumor microenvironment. On
the one hand, we estimated the immune score, stromal score, and
tumor purity using the limma (v3.46.0) (Ritchie et al., 2015) and
the estimate (v1.0.13) packages (Yoshihara et al., 2013).
ESTIMATE is a method that uses gene expression signatures
to infer the fraction of stromal and immune cells in the tumor
samples. We estimated the correlation between the CAPER score,
the three metrics, and identified differences between the two
scores and tumor purity of the high- and low-CAPER group.
After filtering out data on 3 cancer types (CHOL, KICH, and
UVM) with a sample size below 10 (low sample size cancers), we
also estimated the Spearman correlation between single CAPER
gene expression and three metrics in each cancer. On the other
hand, we used the support vector regression (SVR) on
CIBERSORTx (Steen et al., 2020) to deconvolve RNA
admixtures to the abundance of 22 types of immune cells in
TCGA samples to further observe the tumor microenvironment
(TME) (Chen et al., 2018). Following the CIBERSORTx manual,
we set the number of permutations to 100. We uploaded RNA-
seq FPKM data and set quantile normalization to discern the
recommended setting (Craven et al., 2021). We filtered out
immune cell types with an average proportion lower than 2%,
and 14 types of immune cells were included into the final analysis.
We identified differences in the immune cell abundance between
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the high- and low-CAPER groups. After filtering out 3 types of
cancers with a small sample size, we estimated the Spearman
correlation between the CAPER score and the abundance of 14
immune cells in 18 types of cancers.

Third, we used the stemness score based on DNAmethylation
(DNAss) and RNA expression (RNAss) obtained from UCSC.
The stemness score is defined as the quantification of stemness
and is associated with tumor progression, therapeutic resistance,
and recurrence. DNAss indicates epigenetic features while RNAss
indicates gene expression (Malta et al., 2018; Pei et al., 2020). We
estimated the Spearman correlation between single CAPER gene
expression and the stemness score in 18 types of cancer. For the
CAPER score, we estimated the Spearman correlation between
the CAPER score and the stemness score and conducted a
Wilcoxon rank-sum test to compare the statistical significance
of the stemness score between high- and low-CAPER groups.

Fourth, we used the IMvigor210 cohort to verify the
robustness and efficiency of the CAPER score. Data were
downloaded using the Imvigor210CoreBiologies package
(v1.0.0). The cohort data included immune phenotypes
(immune inflamed, immune excluded, and immune desert),
Lund molecular subtypes, IC-Level (level of
immunohistochemistry-assessed PD-L1 staining on immune
cells), and TC-Level (level of immunohistochemistry-assessed
PD-L1 staining on tumor cells). We used the coefficient
estimated using the training set in TCGA to construct the
CAPER score for the Imvigor210 cohort and investigated the
difference in variables in the high- and low-CAPER groups.

Finally, using GDSC, the largest free public database of
information on drug sensitivity in cancer cells and molecular
markers of drug response (Yang et al., 2012), we identified the
association between the CAPER score and drug sensitivity. We
constructed the CAPER score for each cell line sample and
conducted a Spearman correlation analysis between the
CAPER score and IC50 value, the half maximal inhibitory
concentration, which is an established measurement of drug
efficacy (Aykul and Martinez-Hackert, 2016).

RESULTS

Identification of Potential Causal Genes
Using SuSiE (Wang et al., 2020a), we identified 54 causal SNPs in
15 genes (ATP6V1G2, ATP6V1G2-DDX39B, CLPTM1L,
DDX39B, MCCD1, MICA, MICB, MYC, MYEOV, NFKBIL1,
POU5F1B, SLC6A18, SLC6A19, SLC6A3, and TERT). Detailed
information of the causal SNPs and potential causal genes is
shown in Table 2 and Figure 2, and Supplementary Table S2.
MDB showed that 13 were significantly enriched in breast tumor,
hepatocellular carcinoma, substance transport-related, and
certain other pathways, while 12 were located in the cytogenic
region of 6p21 or 5p15 (FDR q-value < 0.05, Supplementary
Table S3).

Construction of the Causal Pan-cancER
Gene Score
The training data of TCGA was used to select 12 CAPER genes,
investigate their pan-cancer association, and construct the
CAPER score. Through univariate Cox regression, we defined
6 significant causal genes with an average p-value of 0.01 (median
� 1.87E-06, ranging from 4.62E-09 to 0.04) by adjusting for age,
sex, and tumor size. For example, from among the 12 CAPER
genes, MYEOV was the gene with the greatest risk (HR � 1.09,
95% CI: 1.06–1.13), while ATP6V1G2 was the gene that offered
the largest protection effect (HR � 0.68, 95% CI: 0.59–0.78).
Details of the univariate analysis are presented in Table 3 and
Figure 3A.

Furthermore, we performed a multivariate Cox regression to
construct the CAPER score using the TCGA training set
(Table 4). We estimated the time-dependent ROC curves for
multivariate Cox regression for 1-, 3-, and 5-year survival (AUC �
0.704, 0.717, and 0.710, respectively) using TCGA test data
(Figure 3B). The time-dependent ROC curves in the TCGA
training set are provided in Supplementary Figure S2. The
formula used to construct the CAPER score is as follows:

TABLE 2 | Summary of the 15 potential causal genes.

Gene CHR Start End p (min) Cancer No. SNP

SLC6A19 5 1,201,710 1,225,232 1.39E-12 MM, OV, LC, PAAD, UCEC 13
SLC6A18 5 1,225,470 1,246,304 5.32E-13 MM, OV, LC, PAAD, UCEC 23
TERT 5 1,253,262 1,295,184 5.32E-13 MM, OV, LC, PAAD, UCEC 23
CLPTM1L 5 1,317,859 1,345,214 5.32E-13 MM, OV, LC, PAAD, UCEC 23
SLC6A3 5 1,392,905 1,445,545 5.32E-13 MM, LC, PAAD 21
MICA 6 31,367,561 31,383,092 2.30E-11 CESC, PRAD, UCEC 6
MICB 6 31,462,658 31,478,901 2.30E-11 CESC, PRAD, UCEC 7
MCCD1 6 31,496,494 31,498,009 2.30E-11 CESC, PRAD, UCEC 10
DDX39B 6 31,497,996 31,510,225 2.30E-11 CESC, PRAD, UCEC 12
ATP6V1G2-DDX39B 6 31,497,996 31,514,385 2.30E-11 CESC, PRAD, UCEC 12
ATP6V1G2 6 31,512,239 31,516,204 2.30E-11 CESC, PRAD, UCEC 12
NFKBIL1 6 31,514,647 31,526,606 2.30E-11 CESC, PRAD, UCEC 12
MYC 8 128,747,680 128,753,680 1.77E-09 BLCA, PRAD, PAAD 4
POU5F1B 8 128,426,535 128,432,314 5.73E-186 PRAD, BRCA, COADREAD 11
MYEOV 11 69,061,605 69,182,494 3.84E-97 PRAD, BRCA, KC 11
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CAPER score � −0.308pATP6V1G2 + 0.058pDDX39B

+ 0.044pMICA − 0.040pMICB

+ 0.083pMYC + 0.076pMYEOV

− 0.077pNFKBIL1 − 0.459pPOU5F1B

− 0.021pSLC6A3 + 0.074pCLPTM1L

+ 0.018pTERT − 0.064pSLC6A19 (2)

The HR for the CAPER score is 3.75 (95% CI: 2.65–5.32). In
addition, Kaplan–Meier curves were used to detect differences in

survival between the high- and low-CAPER groups, which was
found to be significant (log-rank test, p < 0.0001), with the
median survival time of the high-CAPER group being shorter
(Figure 3C).

In addition, sensitivity analyses indicated the effective
construction procedure and accurate prognosis performance.
When we used 5 years as the cutoff, the difference in survival
between high- and low-CAPER groups was found to be
significant (log-rank test; p < 0.0001) (Supplementary
Figure S3A). When a small sample size was used (i.e., 80
individuals), the difference in survival between the high- and
low-CAPER groups was also significant (log-rank test; p �
0.011) (Supplementary Figure S3B). A random gene set was
used, and although three genes showed significant differences,
the difference between high- and low-CAPER groups was not
significant (log-rank test, p � 0.54) (Supplementary Figure S4
and Supplementary Table S4).

Internal Validation of the CAusal
Pan-cancER Gene Score Using The Cancer
Genome Atlas Test Set
TCGA test data were used to explore the clinical translation of the
CAPER score and its potential application for therapeutic and
prognostic purposes in cancer management. We used the CAPER
score to classify patients into high- and low-CAPER groups and
tested differences in clinical metrics, TME, and the stemness score
between the two groups.

FIGURE 2 | Summary of the CAPER genes. (A) Ideogram of the 15 CAPER genes (the color of each chromosome indicates gene density across the human
genome). (B) The bubble plot shows the minimum p-value of each causal gene in each cancer dataset.

TABLE 3 | Summary of the univariable Cox regression analysis conducted on 12
CAPER genes in the TCGA training set *.

Gene Coef. SE (coef.) Z p HR (95%CI)

ATP6V1G2 −0.38 0.07 −5.57 2.59E-8 0.68 (0.59, 0.78)
DDX39B 0.00 0.03 0.06 0.96 1.00 (0.95, 1.06)
MICA 0.03 0.04 0.87 0.39 1.03 (0.96, 1.11)
MICB 0.06 0.03 2.01 0.045 1.06 (1.00, 1.12)
MYC 0.09 0.02 4.77 1.87E-6 1.09 (1.05, 1.13)
MYEOV 0.09 0.02 5.86 4.62E-9 1.09 (1.06, 0.78)
NFKBIL1 −0.07 0.04 −1.81 0.070 0.93 (0.87, 1.01)
POU5F1B −0.36 0.08 −4.57 4.81E-6 0.70 (0.60, 0.82)
SLC6A3 −0.03 0.02 −1.85 0.065 0.97 (0.94, 1.00)
CLPTM1L 0.07 0.04 1.67 0.095 1.07 (0.99, 1.16)
TERT 0.03 0.05 0.62 0.53 1.03 (0.93, 1.15)
SLC6A19 −0.07 0.03 −2.75 6.03E-3 0.93 (0.89, 0.98)

*The effect sizes of genes are adjusted by age, sex, and tumor stage.
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First, we analyzed the association between CAPER score and
immune subtypes and TNM stage (Figure 4 and Table 5). The
Kruskal–Wallis test found the difference in each immune subtype
to be significant (χ2 � 164.21, p < 2.2E-16) with an average
CAPER score of 0.73, 0.82, 0.47, and 0.52, respectively. As
expected, the frequencies of each immune subtype were
different between the high- and low-CAPER groups
(χ2 � 130.05, p < 2.2E-16). Then, the average CAPER score in
the different primary tumors (T stage) in the high- and low-
CAPER groups were 0.55 and 0.7. Again, the Kruskal–Wallis test
showed that the difference in each subtype was significant (p �
6.22E-09). As expected, the frequencies of each primary subtype
were different between the high- and low-CAPER groups

(χ2 � 20.35, p � 6.44E-06). The average CAPER score in the
different primary tumors (N stage) was 0.67, 0.67, 0.84, and 0.73,
respectively. The Kruskal–Wallis test showed that the difference
in each subtype was significant (χ2 � 22.94, p � 4.15E-05). As
expected, a significant difference in the frequencies of each
subtype was found between the groups (χ2 � 17.68, p � 5.12E-
04). The average CAPER score for distant metastasis (M stage)
was 0.66 and 0.70 for M0 and M1, respectively. The Wilcoxon
rank-sum test showed that the difference in each subtype was
non-significant (p � 0.40). The association between M stage and
CAPER groups also shows no statistical significance (χ2 � 0.40,
p � 0.53). Second, we analyzed the association between the
CAPER score and TME (Figure 5 and Supplementary Figure

FIGURE 3 | Summary of the CAPER score. (A) Heatmap showing the p-value of each CAPER gene in the univariate Cox regression performed on each type of
cancer. (B)ROC of the multivariate Cox regression conducted on the TCGA test set. We estimated the AUC of 1-year (green), 3-year (Red), and 5-year (Blue) survival. (C)
K-M curve of the high- and low-CAPER score groups. The HR of the CAPER score was statistically significant to the survival time with a p-value of <0.001 and was
adjusted for age, sex, and tumor stage.
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S5). We estimated the immune score, stromal score, and tumor
purity. The immune score was positively related to the CAPER
score (Spearman correlation test, ρ � 0.15, p � 3.02E-06), while
the low-CAPER group had a lower immune score than the high-
CAPER group (Wilcoxon rank-sum test, p � 3.02E-04).
Consistent with the results of the survival analysis, patients
with a low CAPER score may have fewer immune cells. The
association between stromal score and CAPER score between the
high- and low-CAPER groups showed no statistical significance
(Spearman correlation test, ρ � 0.0059, p � 0.8543, Wilcoxon
rank-sum test, p � 0.8506). The tumor purity was negatively
related to the CAPER score (Spearman correlation test, ρ � −0.08,
p � 0.0107). The low-CAPER group showed higher tumor purity
than the high-CAPER group (Wilcoxon rank-sum test, p �
0.0492). On the other hand, we estimated the cellular
abundance of 22 types of immune cells obtained from
CIBERSORTx and filtered immune cell types with an average
proportion that was lower than 2%. We selected 14 types of
immune cells and explored their associations with the CAPER
score (Supplementary Figure S6). Consistent with the results of
the survival analysis and ESTIMATE, we found that infiltration of
naïve B cells (Wilcoxon rank-sum test, p � 0.027), macrophages
M0 (p � 0.001), plasma cells (p � 1.93E-05), and CD4 memory
activated T cells (p � 3.49E-22) was higher in the high-CAPER
group, while the infiltration of M2 macrophages (p � 1.24E-08),
resting mast cells (p � 5.27E-11), monocytes (p � 5.92E-10),
activated NK cells (p � 1.72E-10), and CD4 memory resting
T cells (p � 0.035) was higher in the low-CAPER group.

Finally, we analyzed the correlation between the CAPER score
and the stemness score constructed using gene expression and
DNA methylation data (Supplementary Figure S7). The RNA
stemness score (Spearman correlation test, ρ � 0.29, p < 2.2E-16)
and the DNA stemness score were both positively correlated to
the CAPER score (Spearman correlation test, ρ � 0.32, p < 2.2E-
16). The high-CAPER group had a higher DNA (Wilcoxon rank-
sum test, p � 6.9E-15) and RNA (Wilcoxon rank-sum test, p �
1.5E-13) stemness score, indicating stronger tumor stem cell
activity and a lower degree of tumor differentiation.

External Validation of the CAusal
Pan-cancER Gene Score Using IMvigor210
The IMvigor210 cohort was analyzed to verify the robustness
and efficiency of the CAPER score; we observed that the
CAPER score was significantly associated with the three
types of clinical metrics in IMvigor210 (Table 6 and
Figure 6). For the clinical phenotypes, differences in the
CAPER score between patients with different TC levels were
statistically significant (Kruskal–Wallis test, p � 5.2E-05). The
CAPER score of TC2+ patients was higher than that of TC0
patients (Wilcoxon rank-sum test, p � 1.1E-05). The
differences in CAPER score between patients with different
IC levels were statistically significant (Kruskal–Wallis test, p �
0.015). The CAPER score of IC2+ patients was higher than that
in IC0 patients (Wilcoxon rank-sum test, p � 3.9E-03). In
addition, we analyzed CAPER score differences between
immune phenotypes using IMvigor210. The differences in
CAPER score between patients with different immune
phenotypes were statistically significant (Kruskal–Wallis
test, p � 0.003). We observed that the “immune inflamed”
type had a higher CAPER score than the “desert” type
(Wilcoxon rank-sum test, p � 1.2E-03). The difference in
Lund molecular subtypes was significant in different
CAPER groups (Kruskal–Wallis test, p � 3.2E-14). The
CAPER score of the “Basal/SCC-like” type was higher than
that of the “Infiltrated” (Wilcoxon rank-sum test, p � 1.5E-11),
and “UroA” (Wilcoxon rank-sum test, p � 7.2E-13) types. As
expected, differences between the high- and low-CAPER
groups were also significant for the three tumor immunity-
related variables indicated above (TC levels, p � 2.53E-03,
immune subtypes, p � 0.01, and Lund molecular subtypes, p �
7.28E-09, respectively).

Potential Therapeutic Value of the CAusal
Pan-cancER Gene Score
We analyzed the correlation between the CAPER score and
drug sensitivity in the GDSC using Spearman correlation and
identified 81 significantly correlated drugs between the CAPER
score and drug sensitivity (Supplementary Table S5). For
example, the CAPER score was negatively correlated with
the sensitivity of Afatinib (ρ � −0.28, p � 6.71E-17),
Trametinib (ρ � −0.23, p � 2.12E-12), Selumetinib (ρ �
−0.22, p � 1.36E-11), and Refametinib (ρ � −0.21, p �
2.22E-10), which indicated a lower CAPER score against
their higher level of drug sensitivity. The CAPER score was
positively correlated to the sensitivity of Axitinib (ρ � 0.14, p �
2.56E-05), SB52334 (ρ � 0.13, p � 5.61E-05), GSK269962A (ρ �
0.12, p � 4.2E-04), and Quizartinib (ρ � 0.10, p � 3.0E-03).
Furthermore, we found that drugs with sensitivity that was
negatively correlated with the CAPER score mostly targeted
EGFR signaling and the ERK MAPK signaling pathway, while
drugs with sensitivity that was positively correlated with the
CAPER score mostly targeted RTK signaling and cytoskeleton
pathways.

TABLE 4 | Summary of the multivariable Cox regression conducted on 12 CAPER
genes in the TCGA training set *.

Gene Coef SE (coef.) Z p HR
(95%CI)

ATP6V1G2 −0.28 0.08 −3.44 5.79E-0 0.75 (0.64, 0.89)
DDX39B 0.06 0.04 1.67 0.095 1.06 (0.99, 1.14)
MICA 0.06 0.05 1.23 0.22 1.06 (0.97, 1.15)
MICB −0.03 0.04 −0.89 0.37 0.97 (0.90, 1.04)
MYC 0.12 0.02 5.20 1.97E-7 1.13 (1.08, 1.18)
MYEOV 0.08 0.02 4.14 3.45E-5 1.08 (1.04, 1.12)
NFKBIL1 −0.09 0.05 −1.88 0.060 0.92 (0.84, 1.00)
POU5F1B −0.41 0.08 −4.87 1.11E-6 0.66 (0.56, 0.78)
SLC6A3 −0.02 0.02 −0.72 0.47 0.98 (0.94, 1.03)
CLPTM1L 0.06 0.05 1.32 0.19 1.07 (0.97, 1.17)
TERT 0.02 0.07 0.23 0.82 1.02 (0.89, 1.16)
SLC6A19 −0.06 0.03 −1.80 0.071 0.94 (0.88, 1.01)

*The effect sizes of genes are adjusted by age, sex, and tumor stage.
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DISCUSSION

In our study, using GWAS summary statistics of 15 cancers and
the SuSiE package, we identified causal SNPs and 12 CAPER
genes. SuSiE is a newly developed approach for genetic fine-
mapping that quantifies the uncertainty of causal variables (Wang
et al., 2020a). Compared with existing fine-mapping methods,
such as CAVIAR (Hormozdiari et al., 2014), FINEMAP (Benner
et al., 2016), and DAP-G (Wen et al., 2016; Lee et al., 2018), SuSiE
has been demonstrated to have a fair degree of accuracy for
computing PIPs and a much higher computation speed and
higher power in distinguishing between causal variables and

non-causal variables (Wang et al., 2020a). Then, we used the
expression level of the CAPER genes in the TCGA training set to
construct the CAPER score. We performed internal and external
validation of the CAPER score using three validation sets,
including the TCGA test set, IMvigor210, and GDSC. The
results demonstrated the potential application of the CAPER
score for therapeutic and prognostic purposes in cancer
management.

Among the 54 causal SNPs obtained through fine-mapping, 29
were shown to have a significant eQTL effect on 8 potential causal
genes across different tissues. A total of 324 eQTL pairs were
extracted from GTEx and are listed in Supplementary Table S6.

FIGURE 4 | Summary of the differences between the three tumor-related variables in the different CAPER groups using the TCGA test set. (A) immune subtypes;
(B) the pathological stage of the primary tumor (T); (C) the pathological stage of the lymph nodes (N).
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As expected, the association between all 12 CAPER genes and
cancers have been demonstrated using a series of basic
experimental and population-based studies. For example,
ATP6V1G2 is a ferroptosis-related gene that plays a primary
role in metabolism and oxidative stress and is defined as a
colorectal cancer prognosis biomarker (Huang et al., 2021;
Shao et al., 2021). DDX39B is involved in the regulation of
pre-mRNA splicing, nuclear export of mRNAs, and pre-
ribosomal RNA translation, and may promote the genesis,
development, and metastasis of multiple cancer types by
regulating cell proliferation (Awasthi et al., 2018; Gu et al.,
2020; Xu et al., 2020; He et al., 2021). MYC and MYEOV are
two well-known oncogenes (Specht et al., 2004; Paglia et al.,
2020). MYC can contribute to oncogenesis and immune evasion
through various mechanisms, including the promotion of
autonomous cell growth and proliferation, modulation of
tumor–stroma interactions, and regulation of the host immune
system (Dang, 2012; Paglia et al., 2020; Dhanasekaran et al., 2021;
Lourenco et al., 2021), while the mechanism of action that
underlies the function of MYEOV in cancer development and
metastasis may enhance SOX9 transcriptional activity (Lawlor
et al., 2010; Fang et al., 2019; Liang et al., 2020). Thus, bothMYC
and MYEOV have also been identified as potential
immunotherapy targets (Fang et al., 2019; Duffy et al., 2021).
POU5F1B can promote cancer oncogenesis by cooperating with
MYC and is associated with poor prognosis in pancreatic ductal
adenocarcinoma patients (Hayashi et al., 2015; Amantini et al.,
2019). It may also promote HCC proliferation by activating AKT
(Pan et al., 2018). SLC6A19 has also been reported to be a
potential biomarker that has a significantly low level of
expression in patients with renal cancer (Zamora-Fuentes
et al., 2020). In addition, a series of genetic variants in MICA,
MICB, NFKBIL1, SLC6A3, CLPTM1L, and TERT have been
found to be associated with the susceptibility and prognosis of
different cancer types (Rafnar et al., 2009; Wang et al., 2009;
Turnbull et al., 2010; Miki et al., 2011; Baek et al., 2018; Toledo-
Stuardo et al., 2021). Meanwhile, using summary statistics of
GETx data, we performed a colocalization analysis using the coloc

package (v.5.1.0) (Giambartolomei et al., 2014). Using default
settings, we found that the posterior probabilities of hypothesis 4
(PPH4: both the expression of CLPTM1L and MM are associated
and share a single causal variant) are 0.986 and 0.985 for skin
exposed to the Sun (lower leg) and skin not exposed to the Sun
(suprapubic), respectively, while rs31490 had the largest PPH4
values of 0.541 and 0.624, respectively.

However, some well-known cancer-related genes, such as
TP53, are not among the CAPER genes. For example, all108
SNPs of TP53 were not significant in the 15 cancer summary
statistics of the 15 types of cancer. There may be two probable
reasons for this. First, the dysfunction of familiar genes may not
have been caused by genetic variation. For example, the
methylation of TP53 has been regarded as a causal factor of
leukemia (Saeed et al., 2019). Second, the limitation of sample size
in the GWASs and its weak signal may result in SNPs from which
common genes have been filtered out.

Furthermore, to verify the robustness and efficiency of the
CAPER score, we applied it to TCGA test samples and the
IMvigor210 cohort. As expected, patients in the high-risk
group tended to have shorter survival and a worse TN stage,
which together indicate a poor prognosis. The results also showed
that samples in the high-risk group had a higher degree of
immune infiltration and a lower differentiation ability, with a
higher immune score and stemness score. The stemness score
usually indicates the differentiation potential, and a loss of a
differentiation ability and gain of stem-cell-like were reported to
be the main signs of tumor progression (Seguin et al., 2015;
Prasetyanti and Medema, 2017; Zhang et al., 2020); while
immune infiltration was also reported to be correlated with
the malignancy and prognosis of different types of cancer
(Wang et al., 2020b; Wu et al., 2020; Zhang et al., 2020). In
addition to the degree of infiltration, the composition of the
infiltrating immune cell types in the high-risk and low-risk
groups were also different, indicating a more complex
difference in the tumor microenvironment between the two
groups. Taken together, validation using the TCGA test
samples and the IMvigor210 cohort indicated consistency of

TABLE 5 | Summary of the association between clinical categorical variables and the CAPER score in TCGA.

Variables High-CAPER n (%) Low-CAPER n (%) χ2 p

The Primary Tumor
Ti, T1 79 (16.5%) 139 (29.0%) 20.35 6.44E-6
T2, T3, T4 399 (83.5%) 341 (71.0%)

The Lymph Nodes
N0 246 (53.7%) 229 (59.6%) 17.68 5.12E-4
N1 103 (22.5%) 104 (27.1%)
N2 86 (18.8%) 34 (8.9%)
N3 23 (5.0%) 17 (4.4%)

Metastasis
M0 332 (93.0%) 354 (94.4%) 0.40 0.53
M1 25 (7.0%) 21 (5.6%)

Immune Subtypes
C1 150 (37.2%) 89 (21.0%) 130.05 <2.2E-16
C2 169 (41.9%) 82 (19.3%)
C3 66 (16.4%) 201 (47.4%)
C4 18 (4.5%) 52 (12.3%)
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FIGURE 5 | Summary of the correlation between TME and CAPER score or CAPER gene expression using the TCGA test set. (A) Differences in the immune score
between the CAPER score groups. (B) Differences in the stromal score between the CAPER score groups. (C) Differences in tumor purity between the CAPER score
groups. (D) The bubble plot shows the p-value of Spearman correlation tests conducted on 18 types of cancer. (E) The boxplot cellular abundance differential score
between the high- and low-CAPER score groups (*p < 0.05, **p < 0.01, and ***p < 0.001). (F) The autocorrelation plot of cellular abundance.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 78477511

Tao et al. CAPER Score Construction and Translation

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TABLE 6 | Summary of the association between four tumor immunity-related variables and CAPER score in the IMvigor210 cohort.

Variables High-CAPER n (%) Low-CAPER n (%) χ2 p

IC Levels
IC0 41 (25.8%) 50 (31.6%) 5.55 0.06
IC1 56 (35.2%) 66 (41.8%)
IC2+ 62 (39.0%) 42 (26.6%)

TC Levels
TC0 113 (71.1%) 137 (86.7%) 11.96 2.53E-3
TC1 14 (8.8%) 8 (5.1%)
TC2+ 32 (20.1%) 13 (8.2%)

Immune Phenotypes
Desert 27 (21.6%) 44 (33.3%) 9.19 0.01
Excluded 55 (44.0%) 63 (47.7%)
Inflamed 43 (34.4%) 25 (18.9%)

Lund Molecular Subtype
UroA 37 (27.8%) 55 (53.4%) 37.48 7.28E-9
Infiltrated 41 (30.8%) 41 (39.8%)
Basal/SCC-like 55 (41.4%) 7 (6.8%)

FIGURE 6 | Summary of the differences between the four tumor phenotypes in different CAPER groups using IMvigor210. (A) TC levels; (B) IC levels; (C) immune
phenotypes; (D) Lund molecular subtypes.
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the CAPER score with clinical prognosis, proving its value in
clinical translation.

Interestingly, some associations between genes and certain
cancer types were not taken into account during the selection
procedure but were detected during the validation procedure.
For example, MICB is defined as the casual gene of CESC,
PRAD, and UCEC (Table 2), but showed a high correlation
with the tumor purity in four cancer types (KIRC, KIPP,
LUAD, and MESO), which were not included in the
selection step (Figures 5A,E). In addition, while THCA was
not included in the selection step, its stemness showed a high
level of correlation with the expression of MICA, MYEOV,
POU5F1B, and TRET (Supplementary Figures S7A,C). This
indicates the potential value of a pan-cancer analysis to
identify novel associations.

In addition, we also found a link between the CAPER score
and drug sensitivity using the GDSC database, which indicated
the potentially extensible application of the CAPER score for the
therapeutic and prognostic management of cancer. In particular,
81 drugs were found to be significantly correlated with the
CAPER score, among which 67 showed a negative correlation
with CAPER score, while only 16 showed higher sensitivity in the
group with high CAPER score, indicating a limited selection of
drugs available for the high-risk group.

In summary, we developed a CAPER score using a novel
strategy based on fine-mapping. An extensive validation
procedure was followed to confirm the robustness and
efficiency of the CAPER score. Considering its potential
usage in prognosis prediction and the identification of
novel associations, we expect that this score may provide
valuable information that can be used to better understand
oncogenesis to guide management from a pan-cancer
perspective.
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