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The study focuses on the extraction of cardiac sound components using a multi-channel

micro-electromechanical system (MEMS) microphone-based phonocardiography

system. The proposed multi-channel phonocardiography system classifies the cardiac

sound components using artificial neural networks (ANNs) and synaptic weights that are

calculated using the inverse delayed (ID) function model of the neuron. The proposed

ANN model was simulated in MATLABR and implemented in a field-programmable gate

array (FPGA). The proposed system examined both abnormal and normal samples

collected from 30 patients. Experimental results revealed a good sensitivity of 99.1%

and an accuracy of 0.9.

Keywords: phonocardiography, cardiac sounds, inverse delayed function model of neuron, artificial neural

networks, field programmable gate array

INTRODUCTION

Heart diseases are one of the major causes of human death worldwide. In the last 15 years, heart
disease and stroke have been the leading killers and causes of death on a global scale (1). Heart
failure has no cure, but early detection of its related symptoms helps in properly diagnosing heart
diseases and, thus, reducing the death rate. In the modern technological revolution, many heart
diagnosis methods like phonocardiography (PCG), ECG, echocardiogram (Echo), cardiac MRI
(CMRI), and CT heart scan are available to detect early heart failure. Each method has its own
advantages and disadvantages; for example, ECGs are widely used in diagnosis but have trouble
detecting the structural abnormalities of the heart valves, which can be detected through heart
murmurs. Furthermore, echo, CMRI, and CT scans provide accurate results but need a lot of
pre-evaluation, are high cost, and are not affordable for many people.

Phonocardiography is one of the non-invasive methods for the detection of major heart sounds
and murmurs (2). The stethoscope was the primary PCG instrument that was used to detect
cardiac auscultation; however, it had limitations in terms of clinical expertise for the analysis of
the low-frequency amplitudes formed during heart failures, such as systolic and diastolic murmurs
(3, 4). A great deal of research has been conducted in the field of heart sound segmentation
and classification in order to detect normal and abnormal components. Many signal processing
algorithms are proposed to extract heart sound components for detecting pathological events
(5–7). Artificial neural networks (ANNs) are widely used in cardiology (8–10). A neural network
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model is a well-known method for separating the normal and
abnormal pathological events in heart sounds (11–14). A well-
trained neural network model can be used to detect the complex
relationship between abnormal and normal cardiac sounds.
Deep neural networks extract high-level features from low-level
features. The methods proposed (15–17) to play significant roles
in solving the non-linear functions in medical applications.

Cardiac auscultations are non-linear in nature and
are analyzed using ANNs, which are more useful for the
approximation of non-linear functions. The neural networks
models are mainly classified by their architecture, activation
function, and learning algorithm. Instead of directly emulating
biological behavior, the traditional neuron network models
translate this behavior in terms of time-averaging techniques
(9, 18, 19). The inverse delayed (ID) function model proposed
by Nakajima (20–22) is a universal neuron model that includes
characteristics of both the Bonhoeffer Van der Pol model (19) and
the Hopfield model (23). In addition, the ID function model uses
the inverse function of the activation function rather than the
traditional activation function and features a finite conversion
time from the internal state of the element to the output.

The energy function of the ID function model with symmetric
synapse weights is similar to that of the Hopfield model. Through
selective destabilization, the negative resistance of the ID model
can free the neural network state from such local minima (20).
Unlike the chaotic neural network, the ID model does not
need to transform the output vector, record the output vector
during calculation, or control the dynamics by changing the
network parameters (22). We only need to wait for it to enter
an inactive state in order to find a solution using the ID neural
network and a simple method of implementation. The ID model
is capable of resolving combinatorial optimization problems
(21). The negative resistance of the ID model can destabilize
the stable equilibrium points of a neural network, reducing the
possibility of unknown values in suboptimal synaptic weight
solutions obtained using an ANN based on a traditional neuron
model. The ANN implementation using the ID neuron model
needs numerous parallel computations to solve the real-time
complex data for the extraction of components. The advances in
field-programmable gate arrays (FPGAs) handle these real-time
complex computations effectively and improve the performance
of the system.

The current study concentrated on the non-invasive
detection of cardiac component abnormalities in raw samples
collected with micro-electromechanical system (MEMS)-based
microphones. Wavelet decomposition algorithms were used to
generate the featured set. The ID neuron function was used to
create the ANN model, which extracted the cardiac components
from the feature set obtained. The ID function model of the
neuron was used to optimize the weights of the synapses between
the neurons. The entire algorithm was implemented on a Xilinx
SoC FPGA XC7Z020CLG400 (Xilinx, USA). The proposed
system has been validated using the sensitivity, specificity, and
accuracy of the cardiac components, and justified using receiver
operating characteristic curve analysis. The study is organized
as follows: Section Theory focuses on the theory supporting the
proposed method using ID function model of the neuron and

illustrates the feature sets for cardiac sound assessment. Section
Materials and Methods focuses on the materials and methods
for the proposed technology. The results and discussions are
presented in Section Experimental Results and Discussion.

THEORY

Inverse Delayed Neuron Function Model of
the Neuron
The ANN was realized using the ID function model of the
neuron. Nakajima and Hayakawa proposed the ID function
model of the neuron by the following set of equations:

τ
dui

dt
=

∑

j.j6=i

wijxj−aiixi−ui (1)

τx
dxi

dt
= ui−g (xi) (2)

g (xi) = f−1 (xi)−Kxi (3)

Where ui is the ith neuron internal state, xj is the jth neuron
output, Wij is the synaptic weight between jth and ith neurons,
hi is the bias input, aii is the self-connection synaptic weight, τ
is the internal state time constant, and τx is the neuron output
time constant.

From Equation (3), f(x) is the neural network sigmoid
function, then g(x) = f−1(x) is the N-shaped inverse output
function (24). g(x) can be changed with a positive value of K times
output of the neuron. The transition time from u to x is less than
τ and thus τx < < τ . In general, the transition time should be
taken into account if it is significantly less than τ . For the present
problem, we used the self-connectionless neurons to devoid the
hysteresis effects (24). So aii = 0 in Equation (1).

Differentiating Equation (2) with respect to time t, we get
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Let, ∂Ui
∂xi

= 1
τ

(

g (xi) −
∑

wijxj
)

Equation (6) becomes
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dt2
+ϕi

dxi
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=
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(7)

Where Ui =
1
τ

(∫ x
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FIGURE 1 | Phonocardiography system block diagram.

FIGURE 2 | Micro-electromechanical system (MEMS) microphone frequency

response.

Ui denotes the potential of the ID function model of the
neuron. In Equation (7), the first term denotes the inertia and the
second term denotes the friction. If g(xi) is an N-shaped function,
then the area where

dg(x)
dxi

is less than −τx
τ

for specific values of xi is called the
negative resistance region.
From the Lyapunov function, the energy of the ID function
model is

E = −
1

2τ

∑

i

∑

j

wijxixj+
1

τ

∑

i

∫

0
g (xi) dxi

+
τx

2

∑

i

(

dxi

dt

)2

(8)

Since the proposed neuron network has self-connectionless
neurons, the self-connections between neurons are ignored.
The last term in Equation (8) shows the time delay in the ID
function model.
Differentiating both sides of Equation (8) with respect to time t,
we get

dE

dt
= −

∑

i

dxi

dt

{

1

τ
wijxj−

1

τ
g (xi)−τx

d2xi

dt2

}

(9)

dE
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= −
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i

(
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τ

) (

dxi

dt

)2

(10)

dE

dt
= −

∑

i

ϕi

(

dxi

dt

)2

(11)

From Equation (11), the energy (E) of the ID model, similar to
that of the Hopfield model, decreases with time if the network
state is in the positive resistance region (φi > 0). However, in the
negative resistance region (φi < 0), the energy (E) increases with
time; thus, even if the state is in the minima region, it quickly
exits this region. It is necessary to have this feature in order to
avoid local minima. As a result, if the network is an ID function
model, the likelihood of escaping the local minima is expected
to increase.

Feature Sets for Cardiac Sound
Assessment
The assessment of the cardiac sound components involved
different parameters that were deferred by a set of features to
sort out the components from the heart sounds. In the current
research, the Springer segmentation algorithm by Springer et
al. (25) was used to differentiate the heart sounds using timing
intervals of S1, S2, systole, and diastole. The following parameters
were used as feature sets to identify the low-frequency abnormal
components and normal heart sound components.
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TABLE 1 | Cardiac sounds feature sets.

S. no Feature Description

1 F1 Mean of the Systolic to diastolic time interval ratio of each heart sound.

2 F2 Mean of the S1, S2 intervals ratio.

3 F3 Mean of the heart sound peak energy in systolic cycle to total cardiac cycle energy of each heart beat

4 F4 Mean of the heart sound peak energy in diastolic cycle to total cardiac cycle energy of each heartbeat.

5 F5 Mean of spectral frequencies from 10 to 900Hz with window resolution of 10Hz in systole cycle of each heartbeat.

6 F6 Mean of spectral frequencies from 10 to 900Hz with window resolution of 10Hz in diastolic cycle of each heartbeat.

FIGURE 3 | Artificial neural networks (ANNs) using the ID function neuron model.

MATERIALS AND METHODS

High-Performance Phonocardiography
System Hardware
The proposed high-performance phonocardiography system was
developed based on the advanced MEMS microphone to capture
the low-frequency components and analyze the captured data
using a proposed algorithm based on the inverse delayed neuron
model. The proposed algorithm was implemented on the Xilinx
Zynq-7 System on-chip FPGA, which has a dual-core ARM
cortex-A9 for application software and programmable logic for
algorithm complex computations. The detailed block diagram for
the high-performance phonocardiography system is as shown in
Figure 1.

A cardiac sound detection unit consists of a MEMS
microphone, which is a tiny integrated circuit with a sound
transducer, an analog front end, and a signal conditioning
circuit (7). The MEMS microphone has a high Signal-to-
Noise Ratio (SNR) at 70 dB and a good frequency response
from 10Hz to 10 kHz as shown in Figure 2. Due to its
flat response and high SNR in the lower region, a cardiac
sound detection (CSD) is more suitable for the detection
of the third and fourth heart sounds and murmurs. The
CSD module has four microphones, the placements of which
were on the basis of sound source localization to cover
the four heart valves (aortic valve, tricuspid valve, mitral
valve, and pulmonary valve). These valves are the origins of
cardiac sounds.
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FIGURE 4 | Transfer function.

FIGURE 5 | Real-time experimental setup with proposed hardware.

A high-speed data processing unit consists of a Xilinx Zynq-
7 System on-chip FPGA, which has a dual-core ARM cortex-
A9 processor for the application software and programmable
logic for algorithm complex computations. The high-speed data
processing (HSDP) module is responsible for the separation of
cardiac sounds based on the frequencies and processes used in the
proposed ANN-based ID model neuron. The Graphical Display
Recorder (GDR) unit consists of an LCD touchpad for parameter
configuration and a display for analyzing the results for further
diagnosis. The application software was developed on an ARM
cortex-A9 processor and interfaced to the GDR module.

The current system implemented was in two phases.
In the first phase, the proposed algorithm was modeled
using the MATLAB, simulated with different test parameters,
and baselined as a golden reference for further hardware

system development. The proposed neural network model
was implemented on FPGA in the second phase to achieve
performance comparable to the MATLAB model. The cardiac
sounds detected by the CSD unit were then passed to the HSDP
unit for the extraction of the cardiac feature set mentioned in
Table 1. Afterward, these feature sets were given as inputs to the
hidden layer and known spectrograms, which would train the
network and predict the error deviation to assess the features of
the cardiac sounds.

Prediction Model Using ID Function Model
of the Neuron
The proposed ANN algorithm is based on a feedforward network
with three layers as shown in Figure 3. The first layer has six
inputs for the six feature sets mentioned in Table 1. The second
layer is a hidden layer that consists of 12 hidden neurons that
compute the delayed weighted sum of inputs and the inverse
tangent sigmoid non-linear function for the feature extraction.
The third layer is an output layer that consists of five output
neurons. It is a logical net to reduce the error in extraction and
sends the output based on the input from the hidden layer.

Realization of Inverse Activation Function
An activation function is used to present non-linearity into the
output of the neuron. For the current work, an inverse tan
hyperbolic function is taken as the activation function.

f (x) = tan−1 h (x)=
1

2
ln

(

1+ x

1− x

)

(12)

f (x) =
1

2
(ln (1+ x)− ln (1− x) ) (13)

f (x) =
1

2

(

2x+
2

3
x3+

2

5
x5+ . . .

)

(14)

f (x) = x+
x3

3
+
x5

5
+ . . . (15)

Neglecting the higher terms f(x) becomes

f (x)= x+
x3

3
(16)

Equation (16) is realized using a constant (1/3), adder, and
multiplier. The activation limits the output in the range of (1,−1).

Figure 4 shows that the activation function in the ID model is
an N-shaped transfer function.

The ID network, which consisted of 12 hidden neurons
in the hidden layer, was trained using MATLABR. Learning
was accomplished through the use of the Levenberg–Marquardt
backpropagation algorithm. Backpropagation was used to obtain
the input and layer weight matrices by incorporating the
derivatives of the inverse functions. These matrices were used to
replicate the ID network onto the FPGA. The neural network was
trained using the ID function model. The result of the regression
coefficient “R” is shown in Figure 13.

System-Level Implementation
The experimental setup with PCG sensors and the CardiacHealth
Monitoring System (CHMS) is shown in Figure 5. The proposed
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FIGURE 6 | Flow diagram for extraction of cardiac sound components.

FIGURE 7 | Field-programmable gate array (FPGA) hardware for the proposed

system.

algorithm implementation in FPGA is shown in Figure 6. The
prediction model, which was based on the ID function neuron
model, was developed in the system generator tool, and the
Verilog netlist for RTL integration was generated. The VIVADO
design suite 2018.2 was used for simulation and synthesis. The
model was successfully dumped onto the Zynq7 – XC7Z010-
1CLG400 device FPGA board. The PCG sensor data captured in
FPGA internal Block RAMmemory were passed through the pre-
processing module to remove the unwanted noise. The cleaned
data were then processed through the cardiac cycle separation
engine to differentiate the systole and diastole cycles. The feature
extraction module extracted the features mentioned in Table 1

from systole and diastole. The extracted six featured sets were
passed through the ANN model to classify them into five heart
sound component groups. The decision logic outputted the
true-negative (TN), true-positive (TP), false-negative (FN), and
false-positive (FP) for corresponding heart sound components.
Figure 7 shows the FPGA hardware board developed for the
proposed system.

The ANN with the inverse delayed neuron model was
implemented in MATLABR using the neural network
toolbox and the fixed-point toolbox as discussed in
previous sections. The model was simulated to check
for functionality and then used to calculate the synaptic
weights and bias required for the hidden and output
layers. The simulated fixed-point MATLAB model was
taken as a golden reference for further hardware realization
using FPGA.

The Xilinx System generator tool was used for the
implementation and generation of the Verilog code for the
system integration. As discussed in earlier sections, the ANN
model was realized in three stages. For the first stage, in
the input layer, the inputs were scaled with weights and
passed to hidden neurons. For the second stage, the bias was
added to the summed weights by the hidden layer, which
then passed through the delayed activation function. For
the third stage, the output layer computed the output value
from all hidden neurons, the output bias, and the activation
function. The sigmoid activation function was a building
block that was used in both the hidden and output layers (26).
Equation (16) was used to implement the inverse activation
function, which consists of an adder, multiplier, and constant
value. As shown in Figure 8, the neuron model was realized
using a Mult-Add block and a constant block for bias, an
activation function.

Figure 9 depicts the proposed ANN model implementation.
The estimated sigmoid value is closer to the real sigmoid value
obtained fromMATLAB, allowing the approximation effect to be
reduced for improved accuracy when implemented in hardware.

EXPERIMENTAL RESULTS AND
DISCUSSION

The extraction of cardiac sounds from the MEMS-based high-
performance phonocardiography system using a neural network
was based on the ID function model of the neuron. The
neural networks based on the ID function model and the
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FIGURE 8 | Neuron model.

FIGURE 9 | System generator implementation of the ANN model.

FIGURE 10 | RTL Schematic—Neuron Model.
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FIGURE 11 | Physical layout for the proposed system.

FIGURE 12 | Resource utilization of the proposed system.

conventional neuron models were realized on FPGA, and the
hardware requirements and performance of the two models were
compared. The proposed system was validated using the data of
30 patients in accordance with the Declaration of Helsinki. After
obtaining informed consent, a total of 60 patients were made
available for evaluation, with the data of 30 patients being used
for training the neural networks and the data of the remaining 30
patients used for testing the proposed system.

The neural networks were trained offline using data from
the 30 patients in MATLABR, and then implemented on FPGA
to reduce design circuitry. The MATLABR model weights and
biases were used as hard-coded values in the FPGA ANN
model to reduce computational cycles and achieve the accuracy
obtained in the simulation. The FPGA implementation of the
inverse tangent sigmoid function, which requires the realization

of an N-shaped activation function, involved multiplication
but not division. The multiplier was all that was required for
the functional units of the ID model. This greatly reduced
hardware complexity. The system generator FPGA netlist files
were used to run the synthesis, and implement and generate
the bit file needed to program the FPGA. Figure 10 depicts the
RTL schematic for the neuron model following RTL synthesis.
The physical layout of the proposed system is depicted in
Figure 11.

Figure 12 shows the FPGA resource utilization of the
proposed layout after place and route.

The mean square error in the extraction of cardiac
sound components detection rate using neural networks
with 12 neurons in the hidden layer was .9. Regression
analysis was performed on the input and target datasets,
and the mean square error was found to be 4.4 × 10−5.
Figure 13 depicts the regression analysis of the training
and validation of the network. In the regression analysis,
the parameter “R” = 0.99 represents the correlation
between extracted cardiac components and actual
cardiac components.

The regression analysis showing the training and validation
of the network is depicted in Figure 13. The parameter “R,”
which is equal to 0.99 in the regression analysis, signifies the
correlation between extracted cardiac components with actual
cardiac components. Figure 14 depicts the training state analysis
of a neural network based on the ID function model of a neuron.
Figure 15 depicts a neural network for performance analysis.
Training analysis was performed for epoch 11, with a gradient
factor of 9.0661× 10−5 and validation checks equal to 6.

In accordance with the Declaration of Helsinki, clinical
trials were conducted on 30 patients using the proposed high-
performance phonocardiography system, and the results were
compared to the known test results from themedical practitioner.
The prevalence of disease in the tested population, the outcome of
the diagnostic test, and the sensitivity and specificity of the test all
had an impact on the reliability of any diagnostic test result. The
sensitivity, the specificity rate, and the accuracy can be computed
as follows

Sensitivity =
TP

TP+ FN
×100% (17)

Specificity =
TN

TN+ FP
×100% (18)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
×100% (19)

where true-negative (TN) represents the number of correct
heart sound components rejected, true-positive (TP) represents
the number of correct heart sound components detected by the
proposed system, false-negative (FN) represents the number of
incorrect heart sound components rejected, and false-positive
(FP) represents the number of incorrect heart sound components
detected by the proposed system. Table 2 displays the sensitivity,
specificity, and accuracy of cardiac component detection for a
healthy individual under specific disease conditions.
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FIGURE 13 | Regression analysis of neural network based on the ID function model of the neuron.

FIGURE 14 | Training state analysis of neural network based on the ID

function model of the neuron.
FIGURE 15 | Performance analysis of neural network based on the ID function

model of the neuron.
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The performance of the proposed method was evaluated
using the receiver operating characteristic (ROC) curve
area under curve (AUC) value. This validated the
extraction of cardiac components from the captured data
using the proposed algorithm. The ROC curve for the
extraction of cardiac component accuracy for the proposed
ID neuron model system is shown in Figure 16. The
accuracy of S1 and S2, S3 and S4, aortic stenosis, mitral
Stenosis, and mitral regurgitation is 99.3, 98.6, 98.7, 98.7,
and 98.6%, respectively, based on the AUC values in
Figures 16A–E.

TABLE 2 | Accuracy of proposed system for different cardiac components in

heart sounds.

Heart sound components Sensitivity (%) Specificity (%) Accuracy

S1 and S2 99.1 99.3 0.99

S3 and S4 98.1 98.6 0.98

Aortic stenosis 98.3 98.7 0.98

Mitral stenosis 98.5 98.7 0.98

Mitral regurgitation 98.2 98.4 0.98

CONCLUSION

The current research focused on the development of multi-
channel MEMS-based phonocardiography system to capture
heart sounds and process the acquired sample to remove
unwanted noise and derive a feature set using wavelet transforms.
Thereafter, the low frequency cardiac sounds were extracted
using the ANN based on the ID function of the neuron model.
The neural network was trained using real, known data, and
the proposed system was tested using patient test data. The
developed ANN-based phonocardiography system was useful
to the physician for recognizing abnormal, low-frequency heart
sounds with a simple diagnosis setup similar to the stethoscope
and visualizing graphical data for better medical diagnoses. The
performance of the phonocardiography system was evaluated
using 2,150 cardiac cycles of PCG from a cohort of 30 patients
with different pathophysiological conditions, resulting in a
sensitivity of 99% and an accuracy of 0.9.
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