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Silicon photonics is promising for artificial neural networks computing owing
to its superior interconnect bandwidth, low energy consumption and scalable
fabrication. However, the lack of silicon-integrated and monitorable optical
neurons limits its revolution in large-scale artificial neural networks. Here, we
highlight nonlinear germanium-silicon photodiodes to construct on-chip
optical neurons and a self-monitored all-optical neural network. With specifi-
cally engineered optical-to-optical and optical-to-electrical responses, the
proposed neuron merges the all-optical activation and non-intrusive mon-
itoring functions in a compact footprint of 4.3 x 8 um?. Experimentally, a
scalable three-layer photonic neural network enables in situ training and
learning in object classification and semantic segmentation tasks. The per-
formance of this neuron implemented in a deep-scale neural network is further
confirmed via handwriting recognition, achieving a high accuracy of 97.3%. We
believe this work will enable future large-scale photonic intelligent processors

with more functionalities but simplified architecture.

Artificial intelligence (Al) has the potential to drastically change our
world through accumulating impacts in fundamental science'?, new-
type transportation®*, assisted medical treatment>®, etc. Artificial
neural network (ANN), a kind of computing architecture inspired by
signal processing in the human brain, is one of the major technical
pillars for these applications. It contains complex mapping relations in
repetitive linear and nonlinear operations. In recent years, however,
the required computing capacity for the state-of-the-art ANNs has
been doubling every 3.5 months’, far overloading Moore’s Law in
microelectronics®, e.g., electronic computers. Now, silicon (Si) pho-
tonics has been recognized as one of the most promising candidates to
break through microelectronics bottles owing to its superior inter-
connect bandwidth, low power consumption and complementary
metal-oxide-semiconductor (CMOS) compatibility. According to dif-
ferent implementations, many Si photonic neural network archi-
tectures have been proposed to facilitate complex computing tasks,

such as diffractive neural networks®'° and optical interference neural

networks™?. They utilize diffractive elements or optical inter-
ferometers to perform linear operations. The Si photonic interference
circuit has been demonstrated as 100x faster than the microelectronic
processor but of 1/1000 energy". With the rapidly increasing demand
for computational speed and power, Si photonics ANNs provide a
promising alternative for Al hardware.

Si photonics neural networks face challenges in large-scale
integration due to the lack of proper neurons. Firstly, integrating
optical nonlinear material on Si is an open challenge™**. On account
of the weak nonlinear effect of Si®®, heterogeneous integration of
other materials is often needed. Although the dye'*", phase-change
materials™®'® and two-dimensional materials®®* have been proved
their optical nonlinearities for all-optical neural networks (AONNs),
their stabilities and manufacture abilities are unsatisfactory?**,
limiting applications for large-scale networks. For example,
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two-dimensional materials, such as black phosphorus, are easily
irreversible oxidized in air, resulting in poor stability and rapid
degradation of the semiconductor properties*. Moreover, as the
average size of two-dimensional material is limited by the quality of
its corresponding three-dimensional precursor, it is hard to pro-
duce wafer-scale two-dimensional single crystalline®. In addition,
the temperature required for crystallization of typical phase-
change materials is usually too high for Si-compatible fabrication,
hindering the large-scale integration with Si photonics®. Secondly,
the lack of non-intrusive monitors®-*® to prompt the status of the
network without interference is another major obstacle. Monitor-
ing and feedback operations enable efficient networks training,
node failures detection and environmental fluctuations offset. For a
given hardware-based neural network, especially when it is trained
completely, such monitors should not change the operating points.
However, this is very difficult since a neural network may contain
thousands of neurons. For example, the implementation of in situ
backpropagation algorithm requires virtually lossless intensity
detection in every node”. Yet, the conventional light-splitting-and-
detection method drifts the operating states and also introduces
architecture complexity and accumulated insertion loss.

Here, we propose and demonstrate nonlinear germanium-silicon
(Ge-Si) photodiodes (PDs) to construct non-intrusive and self-monitored
AONN (SM-AONN) with fully CMOS compatibility. The all-optical power
in-power out response is attributed to the intrinsic-absorption-induced
free-carrier absorption (FCA) in the Ge thin film. Specially designed
electrodes achieve high carrier concentration accumulation via hinder-
ing carrier transport. Meanwhile, the Ge-Si heterojunction provides a
non-intrusive electrical monitoring signal owing to concomitant pho-
toelectric conversion. In a compact structure of 4.3 x 8 pm?* without any
optical splitter, the nonlinear activation and monitoring are combined
simultaneously, alleviating the issues of complex architecture and
operation point drift in conventional ANNs. Experimentally, using the
activation and monitoring features, a three-layer SM-AONN enables
object classification and semantic segmentation tasks, presenting in situ
training and learning with high training accuracy. More layers of SM-
AONN can be constructed using optical fiber arrays to connect multiple
chips. In addition, the feasibility and performance of this neuron for
deep feedforward neural networks are confirmed via the Modified
National Institute of Standards and Technology (MNIST) handwriting
recognition®, achieving a high accuracy of 97.3%.

Our work proves that conventional Group-IV semiconductor
technology not only enables all-optical nonlinearity without resorting
to other materials but also merges activation and monitoring units.
The photonic neural network based on this technology allows for more
functionalities, simplified architecture and high accuracy. Due to the
material stability and mass-production®, we believe that this work will
pave a new way toward future high-density integrated photonic intel-
ligent processors.

Results

Self-monitored all-optical neural network

Figure 1a shows the architecture of the proposed SM-AONN, consisting
of aninput layer, multiple hidden layers with monitoring signals and an
output layer. In each layer, optical signals are processed by an optical
linear transformation and all-optical nonlinear activation building
blocks. Being different from the traditional architecture, each non-
linear activation block will produce electrical signals for monitoring
the states of each neuron.

Optical linear transformations are implemented using a reconfi-
gurable Si-based Mach-Zehnder interferometer (MZI) mesh, which is
an equivalent photonic field programmable gate array, as shown in
Fig. 1b. It has been proved that the arbitrary optical linear operations
can be carried out by a series of optical beam splitters, phase shifters
and attenuators®?, i.e., tunable MZIs*. As Fig. 1c shows, voltage

signals from the digital-to-analog converters (DACs) are loaded on two
thermal-tuning electrodes of the Si-based MZI. The state of each MZl is
controlled until the linear operation of the entire network is formed.
The weightings between neurons are stored and updated in the vol-
tage information. Note that a complete neuron contains both a linear
weighting part and a nonlinear part, and the thermo-optic phase
shifter-based linear weighting mesh is indispensable for building
complete neurons.

After optical linear operations, the optical signals undergo the Ge-
Si all-optical nonlinear units (AONUSs) to perform nonlinear processing
(activation function), as shown in Fig. 1d. Meanwhile, each AONU
provides an electrical monitoring signal to indicate the results of
weighting addition and nonlinear operations, by monitoring the input
and output optical power of the AONUs. Unlike conventional light-
splitting-and-detection solutions, this photoelectric monitoring
occurs concomitantly with the optical nonlinear activation in the same
structure (Fig. 1e). As shown in Fig. 1f, monitoring signals are drawn
from the electrode and converted to the digital domain through the
analog-to-digital converters (ADCs). This non-intrusive manner detects
the current node states in real-time without changing the network
operating point, and thus it enables high performance and stability of
the SM-AONN.

Nonlinear Ge-Si PD-based AONU
As a key component of the SM-AONN, the Ge-Si AONU enables
all-optical nonlinear activation and non-intrusive monitoring.
Figure 2a shows the structure and schematic of it. It is similar to the Ge-
Si waveguide PDs applied to photoelectric detection®?¢ (Fig. 2b). For
conventional PDs, the electrodes are with the same length as the Ge
film to export out the photo-generated carriers from each part of the
absorber. Typically, the output optical power is less concerned. Being
different from that, the electrodes herein are omitted where the light is
incident to engineer the carrier dynamics. Detailed device geometry
and optical field information can be found in Supplementary Note 1. In
the electrodeless region (with a small electric field and carrier transit
time » carrier lifetime), carriers accumulate and enable the FCA of the
Ge film, producing a strong all-optical nonlinear response. In the
region with the electrode (with a strong electric field and carrier transit
time « carrier lifetime), the carriers are rapidly absorbed by the elec-
trode, and no FCA effect occurs. Fortunately, these collected carriers
can be used for optical monitoring. A specific mechanism of the acti-
vation function that conforms to the proposed partial electrode
structure is given in Supplementary Notes 2 & 3.

By solving the nonlinear Schrodinger equation (NLSE) and carrier
rate equation®’® (See Methods), the activation function can be
obtained as

p - exp(—alge)Pin
Ut 1+ Al — exp(—a(Lge — Lp))IPyn

@

where A represents for or/2hwS. When A =0, the above relationship
degenerates into linear absorption. P, and P, are input and output
optical power, respectively, with a, 0, 7, Lge, S being intrinsic absorp-
tion coefficient, absorption cross-section of FCA, carrier lifetime and
length of Ge film, as well as incident area. Lg is the length of the
electrode. 7 and w represent the reduced Planck constant and optical
frequency, respectively. Meanwhile, the concomitant electrical mon-
itoring signal occurs thanks to intrinsic absorption and photoelectric
conversion. The FCA effect only transfers momentum between
electrons, providing no photocurrent. The nonlinear relationship
between the output current and input optical power is expressed as*’

klmax
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n
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Fig. 1| Integrated self-monitored all-optical neuronal circuit. a The architecture
diagram of the proposed SM-AONN. X and Y are input and output optical signals in
vectors, respectively. W;, f; and M; represent linear transformation, nonlinear acti-
vation function and electrical monitoring signals for the i-th hidden layer, respec-
tively. b Reconfigurable Si-based MZI mesh for optical linear operations. Any real
matrix, corresponding to any linear transformation, can be decomposed into the
product of unitary matrix and diagonal matrix through singular value decom-
position. The unitary matrices can be equivalent to MZI networks in triangular or
rectangular meshes*®. The diagonal matrix can be equivalent to MZI arrays. The

figure shows the rectangular mesh connected by 6 MZIs, equivalent to any 4 x 4
unitary matrixes. ¢ The detailed structure of a tunable Mach-Zehnder inter-
ferometer. An MZI consists of two optical phase shifters and two splitters. Any 2 x 2
unitary matrixes can be configured. The MZI network integrated in a photonic chip
interconnects with the DAC through wire bonding. Al, aluminum. d The Ge-Si all-
optical nonlinear block for optical nonlinear activation and electrical monitoring.
Four AONUs are included. e From light-splitting-and-detection to non-intrusive
monitoring. f The detailed structure of the AONU. The Ge film coats on the Si
waveguide and interacts with light.

where Iy, R, Pin and I« are output current, responsivity at low-power
level, input optical power and saturation current, respectively. k is a
parameter used to change the shape of the curve. Note that this optical
monitoring is non-intrusive. The bonding wire is placed -3 pum above
the Si-Ge region, having little influence on the optical signal, and this is
the main reason we call it non-intrusive. In addition, the proposed
device consumes a portion of optical power to achieve the optical
nonlinearity, and the resulting photocurrent is used to realize
monitoring at the same time. This is to say, the optical power used
to achieve optical nonlinearity is inherently consumed, and no
additional optical power is needed to achieve monitoring. This is
another important reason we call it non-intrusive.

The length ratio of the electrode to Ge film (Lg/Lge) significantly
affects the optical-to-optical and optical-to-electrical response. A
longer electrode improves the carrier collection efficiency, thereby
increasing the output photocurrent**. However, it reduces the
carrier concentration and weaken the FCA effect. The relationship
of the carrier collection efficiency and photocurrent can be referred
to Supplementary Note 4. Figure 2c shows the carrier concentration
and collection efficiency (n.) versus length ratio. The pink area
(Lg/Lge=0.2-0.4, represented as Type-A) achieves 90% of the
maximum value of both. Within this range, a good optical non-
linearity and high optical monitoring responsivity can be obtained
simultaneously, and this range can be considered as the optimal
ratio. The orange area (Lg/Lge~1) shows the conventional PD
(represented as Type-B) with low optical nonlinearity. Figure 2d

shows the false-color image of the fabricated AONU. A 4.3 x 8 um?
Ge thin film is epitaxially grown on the Si waveguide. The
3 um-length electrodes are coated at the optical exportation of Ge.
The adopted scheme (Type-A) corresponds to Lg/Lge of 0.375. See
Methods for more fabrication details.

Here, we experimentally verified the optical and electrical
responses of the proposed AONU, compared with a reference
conventional PD. The PP, relations are shown in Fig. 2e. For
Type-A, the output power is linear at low input, and then gradually
flattens as the power increases, showing obvious P,u-P;, non-
linearity. However, the curve of Type-B is linearly tangent to that of
Type-A. At the same input, the difference between the two curves
contributes to the FCA. The threshold of the nonlinear activation is
about 1.1 mW. Such a low threshold requirement is very beneficial
for low power consumption and for driving the nonlinearity units of
next level. The activation functions are fitted by Eq. (1), as the solid
line shown in Fig. 2e. On the other hand, the measured output
photocurrents are shown in Fig. 2f. Although the linearity is slightly
reduced, the photocurrent still increases monotonously with the
input optical power, so that the input optical power can be uniquely
determined and monitored from the output current. Combined
with the P;,-P,,. relation, the output optical power can also be
determined. The photodetection metrics including the responsiv-
ity, bandwidth and dark current can be referred in Supplementary
Note 6. The bandwidth is influenced by the doping of the AONU and
the detailed analysis is given in Supplementary Note 7.
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Fig. 2| Theoretical and experimental analysis of the Ge-Si AONU. a The structure
and schematic of the proposed AONU (Type-A). A large number of carriers are
accumulated in the non-electrode part of the Ge film, which enhances the nonlinear
interaction with light. At the tail end, the carrier movement forms the photocurrent
that served as a monitoring signal. The yellow wave ray represents the data flow of
the electrical monitoring signals. b The structure of the conventional Ge-Si PDs
(Type-B). ¢ The carrier concentration and collection efficiency versus length ratio.
Con., concentration. d The false-color image of the AONU. Pink region, Si wave-
guide. Yellow region, Ge film. Green region, Si slab under Ge film. Red region, metal

contacts on Si. The optical signals travel from the Si waveguide into Ge film via
evanescent coupling for the desired response. e The measured and fitted Poy-Pin
relations. Here, the output optical power is normalized. The actual output optical
power of the AONU is between 0 and 1.6 mW under different input optical power,
with the optical loss being estimated to be 6.2 dB. The optical loss can be reduced
to <3 dB by reducing the optical absorption length or operating at a longer wave-
length (with a lower optical intrinsic absorption coefficient). Please see Supple-
mentary Note 5 for more details. f The measured and fitted output photocurrents as
a function of input optical power.

Large scale SM-AONN performance

Having proved that the state of each neuron can be obtained from the
monitoring signals, the performance of the entire neural network is
characterized. We prepare a scalable three-layer fully connected
feedforward neural network using MZI mesh and the proposed
AONUs, as shown in Fig. 3a. Although the three-layer network can be
built on one chip with the same fabrication process, we split it into
three chips and connect them using optical fiber arrays, for easy
comparison and arbitrary combination. More importantly, more layers
of networks can be constructed using optical fiber arrays to connect
multiple chips. Here, three layers are sufficient to demonstrate the
following machine learning tasks with high accuracy. Figure 3b shows
one layer of the packaged SM-AONNS, consisting of four neurons with
16 MZIs and four nonlinear units. The MZI mesh and nonlinear units are
present in Fig. 3¢, d, respectively.

The basic operations of neural networks are training and infer-
ence. Compared with inference, training consumes most of the com-
puting power in neural networks. However, it can be completed
quickly and automatically, using self-monitoring electrical signals
combined with special processing chips and optoelectronic integra-
tion. The training set of machine learning tasks consists of a series of
vectors of inputs and outputs, being encoded on optical power. As
shown in Fig. 4a, the input optical signals are processed by the pho-
tonic chip to obtain the real optical outputs. Being different from the
conventional training method, the real output is read by monitoring
signals rather than external PDs. A loss function such as cross-
entropy* is defined to evaluate the distance between the real outputs
and training-set predicted outputs. The difference is eliminated with
iteration by feedback algorithms such as backpropagation*® in special
processing chips. Then, the SM-AONN is trained completely. The
detailed in situ training implementation can refer to Supplemen-
tary Note 8.

Experimentally, the simplified object classification and semantic
segmentation tasks are performed. As shown in Fig. 4b, we utilize two-
valued optical intensities to encode the labels of four input targets, for
example, ‘0110’ for input and ‘0100’ for output are represented for ’
target 2’. At the optical input port, only ports 2 and 3 are configured to
pass through via the variable optical attenuators (VOAs). When the
neural network is successfully trained, only port 2 is expected to be the
optical output. In real application, the targets can represent different
grayscale images. Figure 4c shows the relationship of the loss function
and iterations. The output histograms of the initial state, the inter-
mediate state of the 20 iterations and the final state are shown as the
insets. In the initial state, the output of each mode is chaotic, since the
weightings of the MZI network are given randomly. With the recon-
struction of weightings, the recognition of each mode becomes
clearer. Being fully configured, the output probability of each mode at
the correct port exceeds 97%. Similarly, the training for semantic
segmentation is present. As a 4 x 4-pixel image shown in Fig. 4d, the
gray levels of the 'L’ and 'T’-type regions are greater than others. After
training, the gray levels of 1’ and ’0’ are contrastive to identify ‘L’ and
T’ in the image. Since each input to SM-AONN is a column vector (in
the Y direction), the sum of normalized output power in the Y direction
remains unity. As Fig. 3e shows, when the number of iterations exceeds
only 15 epochs, the output of each port is near the expectation of 50%
for two input ports and 100% for one input port. For these two
experiments, the error analysis can refer to Methods. The successful
training of two different tasks has demonstrated the general
configuration task and the powerful learning ability of the SM-AONN.
Thanks to the electrical monitoring signals, the training results have
extremely high expected accuracy. Large-scale training tasks are fully
automated with the help of electronics.

Here, we use the digital computing as an example. Actually, the
demonstrated photonic neuromorphic computing architecture is

Nature Communications | (2022)13:6048
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Fig. 4 | Training and results of three-layer neural networks. a The set-up diagram
of training. The panel on the left side represents the data flow during training,
where W(V), f (+) are linear and nonlinear operations, respectively. X, ¥ are the input
of the first layer and the output of the last layer, respectively. U and / are the optical
input and electrical output of the last layer of AONU, respectively. V is the voltage
that controls the weighting. LD, Laser. EDFA, Erbium-Doped Fiber Amplifier. VOA,
Variable Optical Attenuator. PC, Polarization Controller. b Introduction of the
classification task. Four modes are utilized for simplified classification tasks. The

60
Epoch

classified patterns are represented by 4 x 1 vectors. Black pixel is represented by '’
and input, while white is ‘0’ and no input. The task is to train the neural network so
that all modes are output only at their labeled ports. ¢ The results of the classifi-
cation task. The insets are the probabilities of each mode output from the four
ports. d Introduction of the semantic segmentation task. The input in the dark gray
area is set to 0.9 and the output is 1. The input in the light gray area is set to 0.1 and
the output is 0. e The results of the semantic segmentation task. The insets are the
relative outputs of 16 pixels.
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analog in nature and can be used for analog computing as well. This
is because the MZI weighting network can directly handle the
multiplication of complex-valued data, and the optical nonlinear
response is also a continuous-valued input-output function. The
difference between analog computing and digital computing is only
the form of the input and output data sets. If the current digital
input of ‘0’ or '1’ is replaced with a continuous-time optical inten-
sity, analog computing can be performed.

Going forward, we introduce the obtained nonlinear optical
responses as nonlinear activation functions in a three-layer deep
feedforward neural network for the MNIST handwriting recognition,
to further test large-scale data processing capability. The MNIST
data set consists of 60,000 784-pixel images, therein 50,000 and
10,000 images are used for training and testing, respectively. These
images contain handwritten digits from 0 to 9, as shown in Fig. 5a.
The deep feedforward neural network consists of two hidden layers
containing 200 neurons and an output layer containing 10 neurons.
The input is a 784 x 1 vector, and the output is a 10 x 1 vector. The
output layer adopts the Softmax activation function to convert the
output results into probability. The proposed Ge-Si AONU is
extracted as the activation function for the hidden layers. The acti-
vation function with normalized input and output is shown in Fig. 5b.
The simulation utilizes the conjugate gradient backpropagation
algorithm to iterate 100 times, and the loss function is cross-
entropy. An accuracy of 97.3% and corresponding confusion matrix
are shown in Fig. 5c and d, respectively. Each column of the matrix
represents the instances in a predicted label, while each row repre-
sents the instances in a true label. The diagonal elements represent
the probabilities that are correctly predicted. These results show
that our nonlinear unit has high performance on representative
machine learning tasks.

Discussion

One of the key advantages of the AONU is the ability to non-intrusively
observe the optical energy. The experimental and emulational com-
parisons on the performance and stability are provided in Supple-
mentary Note 9. Indeed, the results indicate a more stable and better
performance for the proposed “non-intrusive” scheme. Compared to
the intrusive monitoring with different degrees of perturbation, the
non-intrusive scheme shows a smoother activation function and
improved accuracies of 1.7-4% in handwritten recognition. Further-
more, the iterations to reach the maximum accuracy is much less,
resulting in a decreased training cost. In addition, when the neural
network is trained completely, the accuracy fluctuation is much
smaller, which means a better stability on inferring tasks. On the other
hand, photonic neural networks are large-scale and dynamically tun-
able circuits, and their control becomes enormously difficult due to
manufacturing variations and thermal crosstalk**. Fortunately, the
non-intrusive monitoring provides a calibration capability by com-
pensating the fabrication errors and environmental fluctuations. In the
training process, the monitoring enables non-intrusive intensity
detection of each node, to implement in situ gradient measurements
and forward or backpropagation algorithms®. This method can enable
highly efficient gradient calculation in training. When an already
trained neural network is working, the non-intrusive monitoring fea-
ture can obtain information about environmental fluctuations without
changing the operating point of the network”. On this basis, the net-
work can be dynamically tuned and calibrated without introducing
other disturbances.

Another main advantage of the photonic neural network is
potentially possessing higher speed and energy efficiency compared
to electronics'®*. Typically, the computing speed is defined as the
number of operations per second (FLOPS). For our demonstrated
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system, the FLOPS is calculated to be 1.92 x 10" operations per second
with a 20 GHz detection bandwidth. In principle, such a computing
speed is one order of magnitude faster than electronic neural networks
which are usually restricted to a GHz clock rate*. The consumed
energy is calculated to be ~0.27 pJ per operation in our system, better
than an “ideal” electronic computer (1 pJ per operation, assuming no
energy is used on data movement) and two orders of magnitude better
than conventional graphics processing units (GPUs) (100 pJ per
operation)”’. Please see Supplementary Note 10 for the detailed cal-
culation and comparison. On the other hand, in the photonics system,
the energy required for the optical nonlinearity of the Si-Ge system is
relatively higher than that of some other materials*, but it has the
advantages of CMOS fabrication compatibility and compact structure
that other material systems may not have.

The scalability of the photonic neural network is an important
challenge. Typically, some form of nonlinearity is required to imple-
ment the thresholding effect of a neuron in the neural networks.
However, optical nonlinear responses are comparatively power inef-
ficient, and the neuron output is often weaker than its input'. Thus,
previous works utilized optical amplifiers**~°, optical-electrical-optical
conversion®' or all-optical carrier regeneration™® to alleviate this issue.
These methods also bring additional optical and electrical power
consumption. By contrast, an advantage of our scheme is that only the
loss of the optical nonlinear part needs to be considered, while the loss
from optical splitters and monitoring is avoided. This might be com-
petitive as the neural network scales up. At present, we use off-chip
EDFAs to pump the network. Recently, Liu, et al.*> achieved on-chip
erbium-doped waveguide amplifiers with a gain up to 30 dB. This
would be suitable to simultaneously address the challenges of multi-
layer scaling and on-chip integration.

Aiming at solving the issues of large-scale Si-based integrated
ANNs, we have demonstrated that the specifically designed nonlinear
Ge-Si PD enables both all-optical activation and non-intrusive mon-
itoring. The SM-AONN based on this technology achieves 97.3%
accuracy on open machine learning tasks. The advantages of the Ge-Si
PD-based SM-AONN include: (1) Material advantages. Ge is a kind of
material with stability and CMOS compatibility. (2) All-optical opera-
tions. The photoelectric conversion only occurs during training. There
is no need for the information exchange between optical and electrical
domains once trained. (3) Non-intrusive monitoring. The network
supports automatic training, node failures analysis and environmental
fluctuations monitoring without disturbing the operation points. (4)
Simplified architecture. The activation and monitoring units are
merged in the same device with compact footprint. (5) Large scale.
Multiple layers of SM-AONN can be constructed using optical fiber
arrays to connect multiple chips. (6) High accuracy. A deep neural
network utilizing this new activation function shows high perfor-
mance. In addition, due to characteristics of the Si MZI network and Ge
nonlinearity, this network may also draw interests in quantum
networks™** or mid-infrared applications®. We believe that this work is
promising for future large-scale optical intelligent neuromorphic
systems.

Methods

Analysis coupled equations

The interaction process of intrinsic absorption and FCA can be
described by the nonlinear NLSE equation

d/ 2
= —oal - B - 3
e al — BI> — oNI 3
and the carrier rate equation
ON a, B , N
NSy P p 2 4
ot hw I+ Zhwl T @)

where / and N are optical intensity and carrier concentration, respec-
tively, with a, B, 0 and 1 being intrinsic absorption coefficient, two-
photon coefficient, absorption cross-section of FCA and carrier
lifetime of the Ge. Here, f=0. h and w represent the reduced Planck
constant and optical angular frequency, respectively. z is the light
propagation direction and ¢ is the time.

Device fabrication

The device is fabricated using a silicon-on-insulator wafer with
220 nm thick Si top layer and 2 um buried oxide. The Si layer is
etched into strip waveguides for the pattern of the MZIs and Si slab
under Ge film. Then, the Si top layer is implanted using different
doses of boron ions to form the P-type regions. A 500 nm-thick Ge
film is grown on the P-type doped Si slab. On the top of Ge film,
phosphorus ions are implanted with ~-100 nm-depth to form the
N-type region of a PIN junction. The titanium nitride (TiN) heater of
120 nm in thickness is deposited 2 pm above the Si waveguide for
thermal tuning. Finally, metal electrodes are fabricated and connect
to Si, Ge and TiN through via holes.

Error analysis

The training of the neural network relies on the monitoring photo-
current of the AONU, and then the weighting values are loaded on the
thermally tuned MZI network in the form of voltages. The photo-
detector noise (0p) and the voltage fluctuation applied on MZIs (04)
are the dominant error sources. In the experiments, we used DACs with
10-bit precision and a three-layer 4 x 4 matrix with oy, estimated to be
1073, as well as a photodetector noise of op=1.8 102 under a mean
photocurrent of -1 mA. We carried out the following steps to numeri-
cally simulate the performance with the op and 0. For the trained 4 x 4
unitary matrices U, we calculate a set {Vjyz} that encodes the matrix.
We assume phase-encoding errors 6Viz is a random variable sampled
from a Gaussian distribution G(0, o). We obtain a new set of per-
turbed phases {V\iz1 + 6Vuz} and perturbed 4 x 4 unitary matrices U'.
During forward propagation, every time a matrix multiplication is
performed for a result v=U’ - u (u is input vector), we add a set of
random photodetection errors 6V as the perturbed output vector v’ =
v+ v, where we assume each 6v is a random variable sampled from a
Gaussian distribution G(0, op-lv|). Then perturbed optical output is
derived from v’ and the accuracy is calculated. Repeating 50 times, the
final accuracy is estimated to be ~98%. We attribute other errors to the
fabrication error and thermal crosstalk of the linear networks.
The fabrication error can be compensated by pre-calibration steps,
while the thermal crosstalk can be reduced by adding thermal isolation
trenches.

Data availability

All the data supporting this study are available in the paper and Sup-
plementary Information. Additional data related to this paper are
available from the corresponding authors upon request.

Code availability
The simulation and computational codes for this study are available
from the corresponding authors on reasonable request.
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