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Learning the stress-strain fields in digital
composites using Fourier neural operator

Meer Mehran Rashid,1 Tanu Pittie,1 Souvik Chakraborty,2,3,* and N.M. Anoop Krishnan1,3,4,*

SUMMARY

Increased demands for high-performance materials have led to advanced com-
posite materials with complex hierarchical designs. However, designing a
tailored material microstructure with targeted properties and performance is
extremely challenging due to the innumerable design combinations and prohib-
itive computational costs for physics-based solvers. In this study, we employ a
neural operator-based framework, namely Fourier neural operator (FNO), to
learn the mechanical response of 2D composites. We show that the FNO ex-
hibits high-fidelity predictions of the complete stress and strain tensor fields
for geometrically complex composite microstructures with very few training
data and purely based on the microstructure. The model also exhibits zero-
shot generalization on unseen arbitrary geometries with high accuracy. Further-
more, the model exhibits zero-shot super-resolution capabilities by predicting
high-resolution stress and strain fields directly from low-resolution input
configurations. Finally, the model also provides high-accuracy predictions of
equivalent measures for stress-strain fields, allowing realistic upscaling of the
results.

INTRODUCTION

The surging demands for high-performance materials with diverse functionalities necessitates accurate

models for capturing the material response valid for a wide array of scenarios (Yang et al., 2021a,

2021b). Driven by the objective to engineer materials with tailored properties, such as stronger, lighter,

and stiffer materials; researchers have resorted to combining multiple phases to arrive at a superior com-

posite material that outperforms its constituent phases. Thus, while designing composites, the phase

composition and microstructure are tuned to produce a mechanically superior material (Barbero, 2017)

with desired properties and behavior. Many such advanced materials (bioinspired materials [Chen et al.,

2012; Meyers et al., 2008; Su et al., 2020; Wegst et al., 2015; Gu et al., 2016b], meta-materials [Kadic

et al., 2019; Liu and Zhang, 2011], architected materials [Meza et al., 2014, 2015; Pham et al., 2019; Zhang

et al., 2020]) have been introduced with enhanced properties and performance. However, traditional

manufacturing methods are incapable of exploiting material microstructure for improving the design

due to difficulties in combining base materials. To fully harness the potential of material response, manip-

ulations at the microstructural level have shown promise. In this regard, additive manufacturing has

emerged as a feasible solution leading us to complex microstructural composites with unprecedented

mechanical performance (Gu et al., 2016a).

In order to investigate the material behavior, various modeling methods at different length scales have

been used such as finite element (Gu et al., 2016a) (FE), molecular dynamics (Chawla and Sharma, 2018;

Kairn et al., 2005), or density functional theory (Zhou et al., 2019) simulations. Creating virtual models

and subjecting them to different representative real-world settings is a prerequisite for understanding

the behavior, design improvisation, and further development. However, the plethoric possibilities of ma-

terial configurations make it almost impossible to navigate and arrive at the optimal design. Using the

above-stated computational tools in conjunction with a brute force trial-and-error approach to analyze

different geometries is not a feasible solution to optimize the design. Besides, these methods are exorbi-

tantly expensive, lacking the means to transfer knowledge of one simulation to another. To address these

drawbacks, recent advances in machine learning (ML) offer new solutions that are cost-effective and fast, as

well as have transferability.
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Recent breakthroughs in ML have led to versatile algorithms perfectly modeling the complex nature of

different scientific problems. With the advent of Graphical Processing Unit (GPU)- and Tensor Processing

Unit (TPU)-facilitated ML and the abundance of data available, the training time has drastically reduced,

paving way for highly advanced (Devlin et al., 2019; Ramesh et al., 2021; Senior et al., 2020) models solving

intricate problems. The availability of ever-growing datasets has accelerated the advancements in ML, re-

sulting in bigger and more complex predictive models with limitless parameters (Fedus et al., 2022) that

exhibit immense expressive power. The promise shown by the ML methods has led researchers from

different domains to embrace and employ ML in their respective fields. For material science, ML models

have provided a cheap alternative to resolve difficult challenges and achieve high-fidelity results ergo facil-

itating computationally sophisticated research work. The application of ML techniques, particularly deep

learning (DL) models, has facilitated novel material designs and accelerated material discovery, material

modeling, and property predictions (Butler et al., 2018; Hughes et al., 2019; Jensen et al., 2019; LeCun

et al., 2015; Qin et al., 2020).

Many studies (Cui and Chew, 2022; Ferreño et al., 2021; Stoll and Benner, 2021; Xie et al., 2021) have

focused on predicting the mechanical properties of different materials. By using two convolution neural

network (CNN) framework-based architectures—SCSNet (single-channel stress prediction neural network)

and StressNet—to encode the structure, boundary condition, and external forces, Nie et al. (2019) pre-

dicted the von-mises stress fields for 2D elastic cantilever structures. Sun et al. (2020) used StressNet to pre-

dict the stress field in 2D slices of segmented tomography images of a fiber-reinforced polymer specimen.

Yang et al. (2020) combined principal component analysis with CNN to predict the stress-strain behavior of

the binary composite over the entire failure path. Liu et al. (2015) predictedmicroscale elastic strains in a 3D

voxel-based microstructure volume element. Sepasdar et al. (2021) formulated a CNN-based framework to

estimate the post-failure full-field stress distribution and crack pattern for a carbon-fiber-reinforced poly-

mer composite. Similarly, Bhaduri et al. (2022) considered the U-Net architecture to map fiber configura-

tions to von-mises stress fields. CNN becomes a natural choice when the solution is the image represen-

tation of any quantity due to its inherent capacity to detect local and global patterns. However, other

DL-based networks such as recurrent neural networks (RNNs) and generative models have also been uti-

lized to estimate themechanical response of materials. Mozaffar et al. (2019) used RNNs to predict the plas-

tic behavior of the composite representative volume element. Various studies suggest generative models

(Hanakata et al., 2020; Kim et al., 2020; Lim et al., 2018) while addressing the inverse problem of finding the

potential material based on target properties. Furthermore, Yang et al. (2021a) used condition generative

adversarial network (cGAN) to predict the stress-strain fields for random two-phase microstructures. Be-

sides, the results are used to derive secondary material properties. In a different work, the authors (Yang

et al., 2021b) use cGAN to predict the multiple tensorial stress-strain components. However, most of the

models suffer in generalization, thereby failing to make predictions for the input settings unseen to the

model. While predicting stresses or strains, the existing studies predict a single tensorial component.

Even though Yang et al. (2021b) predicted multiple components, each tensor element is predicted by a

different trained model, thereby making it computationally expensive to predict a full tensor. Additionally,

such pixel-to-pixel learning-based methods are incapable of resolving higher-resolution inputs unseen

during model training.

To address these drawbacks, we use the Fourier neural operator (Li et al., 2021) (FNO) to predict compo-

nent-wise stress and strain for two-phase composites. Using the microstructure of the material alone as an

input, we predict the normal and shear components of the stress and strain tensor field in an end-to-end

fashion. The model learns the relation between the design geometry and material response with high ac-

curacy. By predicting the stress and strain tensors, the model learns the constitutive relation purely from

data, devoid of any knowledge of the underlying physics of the problem. We demonstrate the ability of

the ML model to generalize to unseen geometries with arbitrary shapes. Also, the super-resolution feature

of the FNO model allows high-resolution output for low-resolution inputs. Using the stress and strain pre-

dictions, we also show that equivalent stress- and strain-based quantities, viz, von-mises stress and equiv-

alent strains, can be estimated with high-accuracy, allowing upscaling of the results to higher-length scales.

RESULTS

FNO framework

First, we briefly discuss the FNO-based framework used to predict the nonlinear stress-strain response for the

2D hierarchical composite. Figure 1 presents the graphical workflow followed in this study. We consider a
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binary composite, i.e., a composite consisting of two arbitrary materials of different stiffness. The initial geom-

etry is generated in a checkered pattern, with each square randomly assigned one of the two materials.

Ground truth is generated using FE simulations (see method details). The randomly generated geometric

configurations are given as input to the FNO model to predict the stress-strain response of the material by

operator learning in a supervised fashion, where the ground truth is extracted from the FE simulations.

Specifically, we use the FNO to learn the constitutive relation for the digital composite by predicting the

component-wise stress and strain fields. FNO belongs to the recently established neural operator class

of DL frameworks that are used to model a wide range of complex problems (mainly governed by Partial

Differential Equations-PDEs), e.g., turbulent flows, multiphase flow, and weather predictions. The param-

eters are learned in the Fourier space where the output of each Fourier layer is truncated by dropping

higher Fourier modes mainly responsible for details of the construction. Broadly, FNO as shown in Fig-

ure 2, comprises a lifting layer, iterative kernel integration layers or the Fourier layers, and the projection

layer. The input is lifted to the higher dimension using a lifting layer P, essentially a linear layer with 32

nodes in our case. The higher dimensional output goes through an iterative setup of Fourier layers, and

within each Fourier layer, the physical representation is convoluted with the kernel function, which

amounts to simple multiplication in the Fourier space. FNO utilizes the FFT algorithm to transform

both the entities followed by product operation. The output is filtered by removing the higher modes,

thereby neglecting the high-frequency noise in the feature information. This filtration leads to the model

speed up as well as model generalization. FNO uses the inverse FFT to transform back these filtered

modes to the spatial domain. Finally, the output of these Fourier layers is projected to the target dimen-

sion using the projection layer Q, which is a linear layer with 128 nodes. Further details of FNO used in

the present work are provided in the method details section.

Stress-strain prediction

The general stress-strain relationship (generalized Hook’s law) is defined as

Figure 1. Workflow

The 2D digital composite geometry is analyzed for the mode-I tensile test using FEM. Pre-crack is along the x-direction, and loading is applied in the

y-direction. This simulation is done to establish the ground truth for model training. Material geometry image is the input to the FNO model. The FNO

framework used has 6 layers; 2 linear layers and 4 Fourier layers. The model is trained separately to predict stresses and strains (Figure S3), but for each of

these field variables, all the components are predicted in a single pass. The trained model outputs are validated against the accurate FEM results besides

testing it for unseen geometries. The tensor components are used to derive scalar-valued equivalent measures such as von-mises stress and equivalent

strains.
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�
sij

�
= Cijkl fεklg Equation 1

where sij and εkl are the stress and strain components, respectively, and Cijkl is the overall stiffness tensor.

For 2D problem, we have sx,sy,sxy satisfying the stress-equilibrium equations as:

vsx

vx
+
vsxy

vy
+ Fx = 0 ðalong x � axisÞ Equation 2

vsy

vy
+
vsxy

vx
+ Fy = 0ðalong y � axisÞ Equation 3

where Fx and Fy are the body forces in x and y directions, respectively,

and strains εx ; εy ; εxy defined as

εx =
vux

vx
; εy =

vuy

vy
; εxy =

vux

vy
+
vuy

vx
Equation 4

where ux and uy are the displacements in the x and y directions, respectively.

In this study, we use the FNO framework to estimate the stress and strain components for the 2D tensile

problem. By learning the distinct tensor components, we demonstrate the ability of the FNO to learn

the underlying constitutive relationship for the 2D composite from the material geometry grid (each grid

point in the input material geometry image has an E value of the corresponding FE element).

To demonstrate the ability of FNO to predict complex stress-strain patterns, we train the model with the data

on the mode-I quasistatic fracture response of a digital composite (Figure 1) having soft and stiff units (see

Table 1 for material properties) . For each material geometry, the model predicts three stress components,

viz, sxx, syy, and sxy, as well as three strain components, εxx, εyy, and εxy. The FNO-based stress-strain predic-

tions for a typical composite are shown in Figure 3. Unlike the previous studies (Yang et al., 2021b), our model

Figure 2. Fourier Neural Operator-FNO network architecture

The input is lifted to the higher dimensional channel space through a neural network P. The output of this linear layer is fed iteratively to the 4 Fourier layers.

Each Fourier layer is an integral convolution in Fourier space. Taking the Fourier Transform F of the input v(x), followed by a linear transformation R on the

lower modes and truncating higher modes, and then applying inverse Fourier Transform F� 1. Besides, the input is concurrently supplied to the local linear

transformation W. The combined output of the spectral layers and convolution layer is acted upon by a nonlinear activation function s. Finally, the neural

network Q projects the output back to the target dimension. u(x) is the solution prediction of the FNO.
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predicts full stress-strain tensors in a single pass. Instead of training different models for each component, we

just train two models to predict all the components of the stress and strain tensor. The model input is the ma-

terial geometry image having 83 8material units and 483 48 image resolution. Figure 3A reveals the compo-

nent-wise stresses compared to the Finite Element Method (FEM)-based ground truth. The output field maps

for each component are also 483 48. The predicted strain fields qualitatively and quantitatively agree with the

ground truth except in the regions of the crack tip and a rare occurrence at the soft-stiff unit interface. It is

important tomention that calculating a single value-based error for the whole image does not provide insight

into the accuracy of the results. In order to quantitatively evaluate the accuracy of the model predictions, we

calculate the pixel-wise absolute error (AE) and absolute relative error fractions for each component. Only a

few pixels show relatively high error; this is due to the development of localized stress concentrations at and

around such regions. For the rest of the grid points, the results are consistent with the FEM output and pre-

cisely capture the stress patterns for each component. As expected, relatively higher stress values are gener-

ated in stiffer units. It can be visualized clearly in the stress distributionmaps, especially for the syy component,

as the loading is applied in the y-direction. Similarly, Figure 3B shows the three strain component predictions

that are obtained from a different trained model. The strain field predictions exactly resemble the ground

truth (FEM results). The exactness of global strain patterns for composite geometry is remarkable, especially

the ability to pick up the crack tip position besides the complex response at soft-stiff unit interfaces. The dif-

ficulties in model predictions at the crack tip are expected since this represents a discontinuity that is even

challenging for conventional solvers. Creating a DL framework with the capacity to exactly capture the crack

behavior is a potential area for future work.

Now, we plot the results along cross-sections in two specific directions to further illustrate the accuracy of

the model predictions for stress and strain components. We choose two lines, XX and YY, along the hori-

zontal and vertical directions, respectively, and plot the model predictions vs. ground truth (FEM) for each

of the tensor components. Figure 4 shows the results for one such example wherein for the same material

geometry, we show stress components sxx, syy, and sxy in Figure 4A and strain components εxx, εyy, and εxy

in Figure 4B. The results almost precisely match the ground truth, thereby capturing the complex nature of

these quantities. Except the boundary and regions around the crack tip, FNO yields precise results with

predictions overlapping the FE results. This is valid for any component of stress or strain tensor evaluated

by the model. With such accurate predictions, the model can be used to achieve high-fidelity results for

field quantities, thereby enabling us to explore the design landscape as well as comprehensively under-

stand the material behavior.

To compare the FNO results with standard existing CNN-based DL models, we choose ResNet (He et al.,

2015) and U-Net (Ronneberger et al., 2015) models to evaluate the tensor components for both the physical

quantities considered. We evaluate these models for the same 200 test samples, and the results are shown

in Table 2. We measure the R2 values as well as the L2-based error defined as:

L2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i = 1ðuðxiÞ � buðxiÞÞ2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i = 1ðuðxiÞÞ2
q Equation 5

where uðxiÞ is the ground truth and buðxiÞ is the pixel-wise model prediction for the i-th point. The results

demonstrate the superior performance of the FNO framework in predicting both the stress and strain

components.

Material and pixel-wise super resolution

Until this point, the models have been trained on the input material geometry image of 8 3 8 grid of soft

and stiff units, and the overall image resolution for the input and output image maps was 48 3 48. The

Table 1. Material properties of arbitrary 2-phase composite

Property Soft material Stiff material

Modulus of elasticity (E) (MPa) 100.00 1000.00

Poisson’s ratio 0.33 0.33

Failure strain (ε) 0.4 0.04

Fracture energy (G) (0.5 3 E3 ε
2 3 volume) 0.008 0.0008
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material resolution of 8 3 8 represents a simpler material configuration, but the geometries are more

complex in real-world applications, and a higher material grid resolution is observed. To address this

challenge, we exploit the super-resolution capability of FNO, both in spatial as well as temporal do-

mains. The model trained on lower-resolution data can be evaluated for higher resolution, making

A

B

Figure 3. Component-wise stress-strain prediction maps by the ML model for the 2D composite compared to high fidelity FEM solution

(A) FNO predicting the three stress components sxx, syy, and sxy for a typical composite material. The stress distribution is compared to the ground truth.

Pixel-wise absolute relative error (AE) and absolute relative error (RE) maps are also shown corresponding to each stress component.

(B) Similarly, predictions of strain components εxx, εyy, and εxy by the model compared with the FEM results. AE and RE maps for point-wise error

quantification.
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FNO discretization invariant. Unlike classical solvers whose results are significantly affected by the size of

discretization, FNO is able to transfer the solution from lower resolution to higher resolution. This is

possible because FNO by design learns the parameters, which are the Fourier modes in Fourier space.

We exploit this feature and use the trained model to evaluate stress and strain fields on higher-resolution

images. For the case of material super-resolution, we test the model with input geometries having a

16 3 16 material grid and 96 3 96 overall image resolution. The model predictions are shown in Fig-

ure 5A depicting the εyy component predictions vis-à-vis ground truth. Based on these results, we

conclude that the model fairly captures the strain details for this high-resolution image as well as the

crack tip position. The ability of the model to predict for higher material resolution shows its capability

to predict at multiple length scales.

A

B

Figure 4. Quantitative comparison of tensorial components along the specific cross-sectional directions

(A) Comparison of stress values for each component along the XX and YY directions.

(B) Comparison of strain values for each component along the XX and YY directions.
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At times, we are interested in finer resolution details in the outputs, mainly around the stress concentra-

tions or for the purpose of high-fidelity solutions. In classical solver setups such as FEM, we are required

to take small mesh sizes to capture small-scale details. However, this imposes severe computational

costs and makes such analysis inefficient. FNO’s ability to transfer solutions across different resolutions

puts it in a unique list of frameworks available that feature super-resolution functionality with tremendous

speed up. In this case, we test the model for inputs having a fixed material grid size of 8 3 8 but varied

overall image resolution. Figure 5B shows the vertical component (εyy) of strain predicted for (1)

104 3 104-size and (2) 200 3 200-size images along with AE plots. The model captures the strain patterns

for both resolutions with decent accuracy. At points of stress concentration, the model suffers a bit

because, in general, the DL models have the tendency to smoothen spikes (here stress concentrations)

to lower the total loss. Overall, the ML model trained on lower-resolution data can be used to fetch re-

sults for a finer domain discretization with acceptable accuracy. With such performance, the results of the

ML-based surrogate significantly reduce the costs of such analysis aimed at achieving high-precision re-

sults. Since the FNO model utilizes larger Fourier modes for feature training, this leads to the loss of

small details. Therefore, one can increase the number of Fourier layers without dropping any Fourier

modes to capture more sharp details but at the cost of computational efficiency.

Zero-shot generalization to unseen geometries

The real-world geometries of the composites can get complex having any type ofmaterial distribution. There-

fore, to extend the ambit of our model, we test the model for arbitrary shapes. Earlier, the model has been

trained on geometries with a chequerboard pattern of soft and stiff units; we now test it for geometries

with arbitrary material distributions. These unseen geometries no longer have equal fractions of soft and stiff

units, which was the case during model training. To demonstrate such a possibility, we prepare a test set with

random uncheckered material geometries with similar FE settings as mentioned in the method details sec-

tion. The geometries are created to represent wide complexities possible in the design paradigm of such

composites. Herein, we provide the results for three typical arbitrary geometries in Figure 6. Since the com-

posites are loaded in the horizontal direction (y-direction in FE setup), we evaluate the model for εyy compo-

nent. It is quite evident that the model generalizes well to composites having complex shapes exhibiting an

extraordinary performance for zero-shot predictions. From the above results, it can be concluded, in principle,

the model has been able to learn the complex mechanical behavior without being provided with any knowl-

edge of the underlying physics/mechanics. We no longer need different models for component-wise field

quantity evaluations or different conditions be it the changing geometry, changing soft-stiff unit fractions,

or finer material resolution. The versatility of the ML model to predict for a wide range of scenarios can be

used to optimize different mechanical properties previously computationally inaccessible.

Von-mises stresses and equivalent strains

Until now, all the stress and strain components were directly outputted by the model. By using these results

from the ML models, we aim to predict the equivalent quantities, specifically von-mises stress and equiv-

alent strains. Von-mises stress is the nontensorial measure of stresses calculated using normal and shear

components. Similarly, equivalent strain is an effective single-valued measure of strain components. The

available studies use an end-to-end approach to calculate the equivalent quantities by training ML models

to predict such quantities, citing the complexities in predicting multiple tensorial components in a single

pass. However, our model has the capacity to predict multiple components, and hence, the equivalent

measures of stresses and strains are computed by postprocessing the stress and strain tensor obtained us-

ing the trained FNO. Figure 7 shows the results for von-mises stress and equivalent strain distribution for a

Table 2. Comparison of FNO with ResNet and UNet

Model

R2 L2 Error

Stress (Mean G SD) Strain (Mean G SD) Stress Strain

FNO 0.98 G 0.07 0.99 G 0.03 0.0896 0.0793

ResNet 0.96 G 0.07 0.96 G 0.03 0.1491 0.1830

UNet 0.93 G 0.08 0.94 G 0.03 0.1964 0.2175

We test the FNO, ResNet, and UNet for the same 200 test samples for both stress and strain predictions. In this table, we

present the mean R2 score and L2 error metric. Both the metrics indicate the superior performance of FNO.
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typical digital 2D composite compared with the results from FEM. On analyzing the results, we find that

both the quantities closely match the ground truth (FEM results), suggesting themodel’s capacity to recog-

nize a complex material behavior. The robustness of the ML model to derive secondary mechanical

quantities without the need to explicitly train for such can be used to evaluate the array of design settings

leading to a composite with superior mechanical performance.

DISCUSSION

Altogether, in this study, we use a neural operator-based framework, FNO, to evaluate the mechanical

response of digital composites subjected to tensile loading. To this extent, material geometries are

A

B

Figure 5. Super-Resolution

(A) Material-wise super-resolution: The model trained on geometric configurations with a 8 3 8 material grid is tested for the 16 3 16 material grid. Results

are shown for two random geometric configurations along with AE distribution. Since loading is applied in the y-direction, the model is trained to predict the

εyy component.

(B) Pixel-wise super-resolution: The model trained on 483 48 image resolution is used to predict solution for higher-resolution domains (1) 1043 104 and (2)

200 3 200 image resolution. This establishes the robustness of the model with the ability to query solutions at new points in the domain.
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randomly generated consisting of two distinct constituents of equal proportions. An end-to-end approach

is used to predict the tensorial components of stress-strain fields. We show that the model trained on a

fixed 48 3 48 resolution geometry images encoding material microstructure exhibits excellent agreement

with the ground truth obtained from the FE simulations. Furthermore, we show that the FNO trained on a

given resolution exhibits zero-shot generalizability to super-resolution both pixel-wise and material-wise.

In addition, we show that the FNO exhibits zero generalizability to complex geometries with varying

percentage of the constituent materials. Finally, FNO also provides excellent predictions for the

Figure 6. Zero-shot prediction for non-chequered material geometries

The model trained on chessboard geometry of soft and stiff units is tested against arbitrary uncheckered geometries with

varying fractions of soft/stiff units. A direct comparison of εyy values of the ML model vs FEM shown for three typical

examples.
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equivalent stresses and strains, allowing realistic upscaling of the results. These results substantiate the

multifunctionality of the FNO model by generalizing over unknown microstructural shapes as well as

outputting high-resolution predictions for low-resolution inputs.

Limitations of the study

At this juncture, it is worth mentioning some of the open challenges that remain to be addressed.

Although the model provides excellent predictions in an overall fashion, the model exhibits inferior pre-

dictions for the stress concentrations at the crack tip, the improvement of which requires further work.

Similarly, the crack propagation in the present work is modeled in a quasistatic fashion. Modeling

dynamic fracture with varying time steps of integration remains an open challenge to be modeled in

FNO. In addition, the ability of FNO to generalize to unseen boundary conditions remains to be explored.

Finally, incorporating physics-based information to model the dynamics of crack propagation can be an

interesting extension that can significantly enhance the performance of the model, while reducing the

computational cost.
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Figure 7. Measurement of equivalent stress-strain quantities

An end-to-end approach is used for this study to predict stress-strain tensorial components. Using these results to derive

the equivalent stress and strain measures, viz, von-mises stress and equivalent strains. Distribution of these quantities is

shown here for a typical geometry.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, N. M. Anoop Krishnan (krishnan.@iitd.ac.in).

Materials availability

This study did not generate new materials.

Data and code availability

d Training data have been deposited at Zenodo: Learning the Stress-Strain Fields in Digital Composites

using Fourier Neural Operator | Zenodo https://zenodo.org/record/7127734 and are publicly available

as of the date of publication. DOIs are listed in the key resources table.

d The original code has been deposited at GitHub: https://github.com/M3RG-IITD/FNO-StressStrain and

is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Dataset preparation: Geometry, material properties, FE modelling

Mode-I tensile test FE simulations are run on an 8 mm 3 8 mm 2-D plate (thickness is taken to be negli-

gible i.e. 0.001 mm compared to the other two dimensions and hence ignored to facilitate numerical

compuatation) in ABAQUS (Manual, 2014) to generate the initial dataset for the FNO. We use an arbi-

trary composite material made up of two individual components, namely soft material and stiff material.

The modulus ratio (Estiff/Esoft) for the two materials is 10 while the failure stress for both is kept equal

at an arbitrary value of 40 MPa. Consequently, the toughness ratio (Gstiff/Gsoft) of the two materials is

0.1. The numerical values of material parameters are detailed in Table 1. Both the materials are

assumed to be perfectly elastic, and a maximum principal stress criterion is used to define the point

of damage initiation. The damage evolution (softening) criterion is based on the fracture energy (G).

The square plate was divided into equal cells and each cell was assigned a material property (soft or

stiff) randomly using a python script. However, the fraction of soft and stiff units is equal for all the

FE samples. Therefore, each 2D composite has a material resolution of 8 3 8 and the overall image

resolution is 483 48. Each pixel corresponds to a finite element in the FE configuration. The loading

is applied in the horizontal direction (global y-direction) and the pre-crack is along the x-direction.

Around 1500 distinct configurations are generated and used for simulating mode-I tensile test for

the composite plate using the above method. These configurations are randomly generated to explore

a wide range of design arrangements. In addition to this, we generate multiple test sets with varied

material and image resolution discussed in the results section. All the results are post-processed using

ABAQUS’s python interface which includes extracting nodal and elemental information (type of mate-

rial, displacement, strain, stress etc.) from the FE simulations used for training and testing of the FNO

model.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

ABAQUS Dassault Systèmes Abaqus Unified FEA - SIMULIA� by Dassault Systèmes� (3ds.com)

Data Zenodo https://zenodo.org/record/7127734

Code Github M3RG-IITD/FNO-StressStrain (github.com)
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To define the boundary conditions (BCs) we label the sides of the input geometry as Left Edge(LE), Right

Edge (RE) , Top Edge (TE) and Bottom Edge(BE) as shown in Figure 1. Also, U1 is the translational degree of

freedom (DOF) along the x-axis, U2 is translational DOF in y-direction and UR3 is the z-direction rotational

DOF . The loading is applied on the RE (y-direction). The LE has been fixed (U1 = U2 = UR3 = 0), and TE and

BE have U1 = 0, U2 = free, UR3 = 0 as their BCs’.

FE modelling

The crack was modelled using Extended finite element method (X-FEM) which uses the partition of unity

property of standard FE shape functions to add additional enrichment terms for modelling the displace-

ment discontinuity. This eliminates the need of dynamic mesh refinement around the region of crack prop-

agation and saves computational effort and time. The displacement field approximation for enriched

nodes as per X-FEM is given as

uh =
X
i˛ I

ui4i +
X
j˛ J

bj4jH
�
x
�
+
X
k ˛K

 X4

l = 1
clkFl

�
x
�!

Equation 6

In the above equation, uh represents the final displacement field, ui represents the standard nodal displace-

ment field, 4i and 4j are the shape functions, H(x) is the Heaviside function used to enrich the nodes along

the crack path, Fl(x) is the tip asymptotic function used to enrich the nodes near the crack tip (given in Equa-

tion 7), and bj, ck
l are additional degrees of freedom assigned to the enriched nodes. J is the jump displace-

ment field for nodes along the crack front faces and K is the asymptotic displacement field near the

crack tip.

Flðr ; qÞ =
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r

p
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�
q

2
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;
ffiffi
r
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q

2

�
;
ffiffi
r

p
sin

�
q

2

�
sin ðqÞ; ffiffi

r
p

cos

�
q

2

�
sinðqÞ Equation 7

A signed distance function is used as a level set function in ABAQUS to determine the nodes in the vicinity

of the crack. The crack-line is treated as an intersection of two normal planes and the level set function is the

signed distance of any point from the two planes. A general representation of enriched nodes using X-FEM

in ABAQUS is shown in Figure S1. Finally, the direction of crack propagation is decided by the maximum

principal stress criterion i.e., the crack advances in the direction where the value of the principal stress is

maximum.

ML model and its training

Model description

Neural Operators (NOs): Traditionally, neural networks have been used to learn the mappings between

finite-dimensional Euclidean spaces. For such network constructs, we can only feed discrete inputs to learn

the underlying relation under a typical supervised learning setting. Recently, a new paradigm has been es-

tablished known as the neural operator (Li et al., 2020; Lu et al., 2021; Patel et al., 2021) to learn the map-

pings between infinite dimension Euclidean spaces. This generalization of neural network helps in learning

the operator that maps input function space to solution space. We use these neural operators to solve

the PDEs by specifically learning the operator that maps the input parameters a˛A to the solution space

u˛U. Let D3 Rd be bounded and open set and A = ðD;Rda Þ is the input function space, U = ðD;Rdu Þ is
the output function space. A and U are the two Banach spaces of functions defined on domain D taking

values in Rda and Rdu respectively. G : A � q1U is the mapping that satisfies the PDE. Considering sam-

ples faj ; ujgwhere aj is an independent and identically distributed (i.i.d) sequence sampled from the prob-

ability measure m in A and uj =GðajÞ , the neural operator approximates the mapping Gq by minimising the

following stated problem using the cost function C : U3 U1R

min
q
E a � m½CðGqðaÞ; GðaÞÞ� Equation 8

For the problem framework, we assume point-wise evaluations of both the input function aj and solution

function uj. Let Dj =fx1; x2;.; xmg be the m point discretization and aj and uj be the finite samples of

input-output pairs accessible. In this computational setup, we work with these finite m pair data

faj; ujgmj = 1 to learn the non-linear differential operator Gq which approximates the G : A1U satisfying

the governing PDE.

Fourier Neural Operator: Using data-driven and physics-informed neural networks to satisfy the differential

operator has significantly sped up the solution convergence in contrast to the classical PDE solvers.
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However, these approaches become computationally expensive as they can only be trained for a single

instance of PDE parameters a ˛ A and we require a different model training if the parameter setting is

altered. To overcome this, the recently introduced Fourier Neural Operator is able to learn the non-linear

differential operator which in turn learns the family of PDEs corresponding to different parameter values.

Fourier Neural Operator is a state-of-the-art neural operator which can model a wide array of problems

pertinent to the fields of fluid mechanics (Li et al., 2021) and climate modelling (Pathak et al., 2022). The

architectural breakdown of FNO is shown in Figure 7. The input aðx; tÞ is lifted to a higher dimension by fully

connected shallow neural network P as vðxÞ; vðxÞ = Pðaðx;tÞÞ. This higher dimensional output is fed concur-

rently to an iterative setup of Fourier layer and convolution layer denoted as vj + 1 = HðvjÞc j = 1; :::;T

steps on voðxÞ. This typical update step is defined as

vj + 1ðxÞ $ s
�
WvjðxÞ + ðKða;4Þvj

� ðxÞ � cx ˛D Equation 9

where, sð $Þ : R1R is a non-linear activation function, W : Rdv 1Rdv is a linear transformation, K : A3

q1 LðU;UÞ is the non-local integral operator. FNO treats Kða;4Þ to be a kernel integral transformation

parametrized by 4˛Qk k. This kernel integral operator is defined as:

�K�vj�ðxÞ� =

Z
D

kðaðx; yÞ; x; y;4 ÞvjðyÞdy x˛D ; j˛ ½1; T � Equation 10

where k4 : R2d +da1 Rdv 3dv is a neural network parametrized by q˛Q. It can be considered as the kernel

function that is learned from the input data. By letting kðx;yÞ = kðx � yÞ, FNO replaces this kernel integral

operator with a convolution operator defined in Fourier space where it is reduced to a basic multiplication

operation. Let F denote the Fourier transform and F� 1 the inverse Fourier transform, therefore (Equation

10) changes to �K�vj�ðxÞ� = F� 1
�F�k4� $ F�vj���x� � x ˛ D Equation 11

On parameterizing the k directly by its Fourier coefficients, we get

KðvÞðxÞ = F� 1
�
R4 3 F�vj��ðxÞ x˛D Equation 12

where R4 is the Fourier Transform of periodic function k. On assuming k as periodic, FNO exploits this by

working with discrete Fourier modes of the Fourier expansion and truncates the series expansion at the

maximum number of modes kmax . The higher modes which are usually responsible for finer features are

dropped to improve upon the speed of convergence as well as regularization. It is followed by an inverse

Fourier transform to transform back to the spatial domain. The output of these iterative layers is fed to

another shallow fully connected neural network which projects the data back to the target dimension.

FNO takes advantage of the Fast Fourier Transform FFT algorithm to calculate the F and F� 1 thereby

responsible for its tremendous speed.

Model hyperparameters

The FNO architecture used for this study as described in Figure 7 comprises 6 layers in total. This includes 2

linear layers; one at the start and the other at the end having 32 and 128 nodes respectively and 4 Fourier

layers in between. We train FNO by retaining the different number of modes and 12 modes are found to

give the best results considering model accuracy and time needed during training. The model is trained

on a single NVIDIA V100 GPU with 16GB memory using the PyTorch (Paszke et al., 2019) framework. We

use a smoother version of ReLU namely GELU (Gaussian cumulative distribution function) activation func-

tion, ADAM optimizer which is a first order gradient-based method to train 500 epochs with a batch size of

20. We keep the weight decay as 10�4 and the initial learning rate is fixed at 0.001 and it halves after every

100 epochs (see Table S1). During the training, we use an L2 based loss function which is defined as (Equa-

tion 5). The dataset is divided into 1200 training samples and 200 test samples. The above-stated values of

batch size, learning rate, number of epochs and training set size have been considered after performing

hyperparameter optimization.

Evaluation metrics

The output of the FE simulations is the element-wise data for each material geometry. The trained models

are used to obtain the components of stress and strain tensors for material geometries having a unique

configuration of soft and brittle units in their composition. Besides field variables, we evaluate global prop-

erties such as von-mises stresses and equivalent strain using the available field outputs. We present pixel to

pixel comparison of the solutions obtained from the FNO model with those obtained from the numerical
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solver. To quantitatively assess the performance of the FNO model, we measure element-wise absolute

error (AE) maps and relative error (RE) for the field variables defined as:

AE : = dAE = jbuðxiÞ � uðxiÞj Equation 13

RE : = dRE =

				buðxiÞ � uðxiÞ
uðxiÞ

				 Equation 14

where buðxiÞ is the predicted value and uðxiÞ is the actual value for the i-th element. To compare the FNO

with existing frameworks we calculate the R2 and L2 based metric as shown in Table 2. In addition to these,

for every component, we plot the FEM vs prediction results for stress and strains along with specific cross-

sectional directions. Among a wide range of available colour schemes, the colour spectrum used for plot-

ting the results works best in terms of viewing the details at the soft and brittle interface as well as near the

crack region.
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