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Ana Cláudia Teodoro a,b,* 

a Department of Geosciences, Environment and Land Planning, University of Porto, Rua Campo Alegre, 687, 4169-007, Porto, Portugal 
b Earth Sciences Institute (ICT), Pole of the FCUP, University of Porto, 4169-007, Porto, Portugal 
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A B S T R A C T   

Studying changes in temperature is fundamental for understanding its interactions with the 
environment and biodiversity. However, studies in mountainous areas are few, due to their 
complex formation and the difficulty of obtaining local data. We analysed changes in temperature 
over time in Montesinho Natural Park (MNP) (Bragança, Portugal), an important conservation 
area due to its high level of biodiversity. Specifically, we aimed to analyse: i) whether temper-
ature increased in MNP over time, ii) what environmental factors influence the Land Surface 
Temperature (LST), and iii) whether vegetation is related to changes in temperature. We used 
annual summer and winter mean data acquired from the Moderate-Resolution Imaging Spec-
troradiometer (MODIS) datasets/products (e.g. LST, gathered at four different times: 11am, 1pm, 
10pm and 2am, Enhance vegetation index - EVI, and Evapotranspiration - ET), available on the 
cloud-based platform Google Earth Engine between 2003 and 2021). We analysed the dynamics 
of the temporal trend patterns between the LST and local thermal data (from a weather station) by 
correlations; the trends in LST over time with the Mann-Kendall trend test; and the stability of hot 
spots and cold spots of LST with Local Statistics of Spatial Association (LISA) tests. The temporal 
trend patterns between LST and Air Temperature (Tair) data were very similar (ρ > 0.7). The 
temperature in the MNP remained stable over time during summer but increased during winter 
nights. The biophysical indices were strongly correlated with the summer LST at 11am and 1pm. 
The LISA results identified hot and cold zones that remained stable over time. The remote-sensed 
data proved to be efficient in measuring changes in temperature over time.   
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1. Introduction 

Earth’s temperature is influenced by several factors, such as: i) altitude and relief, which influence air temperature (the higher the 
altitude, the fewer the particles absorbing and diffusing solar radiation, resulting in lower temperatures) and act as natural barriers to 
the movement of air masses/prevalent wind patterns [1]; ii) sea and land structures, resulting in local variations, that can be opposed 
(dry and torrid heat on slopes exposed directly to the sun, occasional thermal inversion, particularly at night and in enclosed valleys 
[1]; iii) global wind patterns, that shift north or south according to the seasons [1,2]; iv) latitude and the angles of the sun rays, 
determined by the tilt of the Earth’s axis, changing the angle of incidence of electromagnetic energy and altering the day duration at 
different altitudes; and v) anthropogenic effects on atmospheric and oceanic temperature [3]. 

The increase in temperature can influence the Earth’s natural dynamics. Water vapour, evaporation rate, and changes in the hy-
drological cycle increase with atmospheric warming, raising the frequency of torrential rains [4]. Climate change is increasing the 
intensity and frequency of extreme heat events, namely at higher latitudes [5], and is also shifting the distributions of ecosystems, 
plants and animals, whose persistence is associated with climate rhythm and stability [6,7]. 

Several studies have analysed the influence of environmental characteristics (e.g. topography, Land Use Land Cover - LULC, the 
presence of vegetation and its influence on the local climate) in the thermal behaviour and its possible impacts on the health and 
welfare of human populations and Earth’s biomes and, in some cases, to guide strategic decision-making aimed at mitigating its 
impacts [8–10]. However, research studies analysing thermal changes in mountainous regions present a great complexity, due to the 
difficulty in separating the natural effects (temperature, precipitation, and radiation) from the anthropic ones [11]. In addition, the 
morphology and geological characteristics of mountainous areas create a high climatic variability in short periods of time, resulting in 
high daily and annual thermal amplitude, high inter-annual climatic variation, and extreme winter conditions, with the presence of 
snow in some months or during all-year [12,13]. There are several impacts associated with mountainous regions, among them: i) the 
melting of glaciers, which influences the availability of water resources for local human communities (for irrigation, wind energy 
production, and human consumption), as occurs in the Andes, the Himalayan Cordillera and the Alps [14,15]); ii) increase and in-
tensity of extreme climate events, which can result in floods, droughts, and landslides [16]; iii) vulnerability of ecosystems to climate 
change, affecting animal and plant species that may not survive in their natural habitats, conditioning their migration to other regions 
[6,7,17,18]; and iv) increased risk of forest fires, both due to the increase in temperature, decrease in air humidity, and precipitation 
changes, reducing the amount of moisture available for vegetation [19]. 

Obtaining Tair from in situ meteorological stations in mountainous regions is difficult due to their low accessibility and distribution 
[20]. Remote Sensing (RS) is a valid alternative technique to analyse the changes in temperature of mountainous regions, as it provides 
empirical and effective indicators related to crucial environmental and ecological information at the site level [20]. Land Surface 
Temperature (LST) is a RS thermal product widely used in studies about the thermal behaviour of a site [21]. LST, differently from Tair, 
measures the thermal radiance emission from the land surface, which receives the incoming solar energy heating the ground [22]. LST 
is a good indicator of energy partitioning at the land surface-atmosphere boundary and is sensitive to changing surface conditions 
[22–25]. Thermal sensors operate in the atmospheric window (between 8 and 14 μm); the thermal sensors are cooled near 0 K and the 
observed target temperature is compared with internal reference temperatures (absolute radiation) [26]. LST is estimated from the 
radiometric temperature aggregate value contained in the sensor’s field of view, estimated as emitted surface radiation (deduced in the 
atmospheric correction) or by inverse application of the Planck function, considering the effects of emissivity [22–24]. 

The most used thermal sensors are those onboard the satellites Landsat (starting with Landsat 4), with a temporal resolution of 16 
days and spatial resolution resampled to 30 m (the Thematic Mapper (TM) sensor on board Landsat 4 and 5 obtain information at 120 
m and the Thermal Infrared Sensor (TIRS) and Thermal Infrared Sensor-2 (TIRS 2) sensors on board Landsat 8 and 9, respectively, 
obtain information at 100 m); Terra/Aqua (MODIS - Moderate Resolution Imaging Spectrometer) with a spatial resolution of 1 km and 
temporal resolution of twice daily and Terra (ASTER - Advanced Spaceborne Thermal Emission and Reflectance Radiometer), with a 
temporal resolution of twice daily and spatial resolution of 90 m [21]. Other sensors are available with a higher temporal resolution, 
such as those onboard geostationary satellites (which observe the same point on Earth) and polar satellites that collect information 
from the same point at two times each day - one in an ascending and one in a descending orbit. The revisit time depends on the latitude. 
Examples of geostationary and polar satellites are the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), with spatial resolution 
of 3 km, approximately [21,27] and the Geostationary Operational Environmental System (GOES), with spatial resolution of 4 km, 
approximately [21,28,29]. 

In view of the relevance of assessing how climate changes over time in mountainous regions, we selected as study area the 
Montesinho Natural Park (MNP) located in Bragança (Portugal), due to the following characteristics: i) a high vegetation diversity, 
allowing to analyse the influence of vegetation on local thermal behaviour; and ii) it has a local meteorological station that measures 
Tair, whose data can be used to analyse its relationship with LST data. Thus, our main objective is to analyse changes in LST over time 
(from 2003 to 2021) in the MNP. Specifically, we aimed to analyse: i) whether temperature increased in MNP over time; ii) what 
environmental factors influence the LST; and iii) whether vegetation is related to changes in temperature. We hypothesise that: (1) the 
temperature of MNP increased in the analysed period, due to climate change, (2) topography influences the LST, due to the presence of 
valleys and ridges in the study area; and (3) forests exerted a positive influence on temperature cooling in MNP. This is the first study, 
to our knowledge, analysing LST trends with an extensive 19-year time series collected at four different MODIS pass times and using 
other RS data (e.g. biophysical indices, topography). Notwithstanding, we also calculated the LST from the Landsat satellite series 
(namely 5, 7 and 8) and apply analytical methods to compare with the results obtained from MODIS, comparing them with another RS 
source with better spatial resolution. We obtained and processed the RS data in Google Earth Engine (GEE). We expect to further 
stimulate research on the effect of climate change in mountainous regions. 
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2. Materials and methods 

2.1. Study area 

The MNP, one of the largest protected areas in Portugal (41◦ 43′ 47″ to 41◦ 59′ 24″ N latitude and 6◦ 30′ 53″ to 7◦ 12′ 9″ W longitude), 
has 74224.89 ha (Fig. 1) [30–32] and an elevation range from 438 m to 1481 m above mean sea level (amsl). MNP hosts a high 
biodiversity, including priority habitats such as oak forests, meadows, grasslands, and bushlands with 1058 species of flora, 153 of 
nesting birds, 42 of mammals, 20 of reptiles and 13 of amphibians [32]. 

The average annual temperature varies between 8.5 ◦C and 12.8 ◦C. The average minimum and maximum annual temperatures 
range between 5 and 7 ◦C and 14 and 17 ◦C, respectively [32]. Due to the phenomenon of thermal inversion, which occurs mainly in 
the months of spring and winter (March to May, and December to February, respectively), the minimum temperatures in valley areas 
are often lower than those observed at higher altitudes [1,32,34]. In the eastern zones, the soil water deficit is recorded for a period of 
four months (June to September) and, in the central and western zones, for three months (July to September) [32]. The highest 
temperature values and the lowest precipitation levels occur in the eastern areas, because: i) greater exposure to sun and wind, due to 
its location in plateau areas and its predominant south-facing slopes, resulting in a hotter and drier climate; ii) the mountains located to 
the west, which makes the area less receptive to the rains coming from the Atlantic; iii) lower and less dense vegetation cover, which 
contributes to less moisture retention in the soil and greater solar exposure [31,32,35]. The opposite pattern is identified in the western 
areas (Montesinho and Coroa massifs) and surrounding areas. 

The annual distribution of precipitation is typical to the Mediterranean warm/cool summer climates (Cbs) [36], with a concen-
tration of precipitation in the cold months (between October and March, 72% of annual precipitation). The highest values of average 
annual precipitation are registered in the zones of higher altitudes (1215.6 mm in Moimenta and 1262.8 mm in Montesinho) and in the 
western part (1075.1 mm in Vinhais). There is a marked reduction in precipitation towards the east (806 mm in Deilão) resulting, in 
part, from the Foehn effect, which occurs when air masses cross steep reliefs and progressively dehydrate [32]. 

Regarding wind speed, the highest monthly average values occur from February to May which coincides with spring. The lowest 
occur in winter (end of December to February), representing the most frequent stable situations at this time of year. The direction is 
predominantly from the west throughout the year [32]. 

Fig. 2 shows the climate diagram for the city of Bragança, using data from meteorological stations between 1960 and 1990 [37]. It 
can be observed that, between the Tair and precipitation, there is an asymmetric distribution, resulting in a deficit of water in the soil in 
summer, which affects the vegetation that is more sensitive to summer dryness [37]. 

2.2. Environmental data 

We compiled and processed LST data and additional environmental data from several MODIS products for the period 2003–2021, 
which is the longest continuous time series (Table 1), using Google Earth Engine [38] and QGIS software 3.22 Białowieża [39]. GEE is a 
cloud-based computational platform [40] that includes the entire Landsat, MODIS, and Sentinel-2 datasets, as well as climatic and 

Fig. 1. Overview of the study area - Montesinho Natural Park (MNP) in Bragança (Portugal). Elevation of MNP obtained through the digital model 
terrain from the Portuguese Directorate General of the Territory [33]. 
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elevation data. GEE images are automatically pre-processed (cloud and topographic correction) [41]. We computed and resampled all 
variables at 1 km grid cells, the minimum spatial resolution common to all products. 

We obtained the LST in GEE from the daily data recorded by the Aqua and Terra MODIS sensors, considering the best quality option 
available (“LST produced, good quality, not necessary to examine more detailed QA”). Considering the capture times of the two sensors 
in MNP, we compiled the LST data from 11am, 1pm, 10pm and 2am, to measure the temperature variability throughout the day and 

Fig. 2. Monthly variation of the average values of maximum and minimum temperatures, relative humidity and annual distribution of precipitation 
for Bragança (Portugal) between 1960 and 1990. The monthly precipitation is represented by the columns and the average monthly maximum and 
minimum temperature values are represented by the band (adapted from Ref. [37]). 

Table 1 
Comprehensive summary of the environmental variables considered in this study, indicating product name, spatial resolution, rationale, and source.  

Product name Acronym Product Pixel size Rationale Source 

Air Temperature Tair Air Temperature Point where the 
weather station 
is located 

Measures the air temperature values. National Water 
Resources 
Information System 

Albedo NIR-White ALB- 
NIRW 

MCD43B3 500 m Measures the diffuse reflectivity or 
reflectance power of a surface. 

Google Earth Engine 
(GEE) 

Albedo NIR-Black ALB-NIRB 
Albedo VIS-White ALB- 

VISW 
Albedo VIS-Black ALB-VISB 
Enhanced Vegetation Index EVI MOD13Q1.061 250 m Vegetation cover quality, productivity, 

and status. 
Evapotranspiration ET MOD16A2.006 500 m Water balance between the vegetation 

cover and hydrological cycle. 
Fraction of Absorbed 

Photosynthetically 
Active Radiation 

FPAR MCD15A3H.061 Fraction of photosynthetically active 
radiation (400–700 nm) absorbed by 
green vegetation. 

Gross Primary Productivity GPP MOD17A2H.006 Terrestrial energy, carbon, water cycle 
processes, and biogeochemistry of 
vegetation. 

Land Surface Temperature 
(Terra) 

LST_11am MOD11A2.061 1 km Energy balance on the earth’s surface. 
LST_10pm 

Land Surface Temperature 
(Aqua) 

LST_1pm 
LST_2am 

Leaf Area Index LAI MCD15A3H.061 500 m Determines the interface size for energy 
(including radiation) and mass exchange 
between the canopy and the atmosphere. 

Normalized Difference 
Vegetation Index 

NDVI MOD13Q1.061 250 m Vegetation cover quality, productivity, 
and status. 

Surface reflectance 
(620–670 nm) 

SR-Band1 MOD09Q1.061 Changes detection and monitoring on the 
Earth’s surface. 

Surface reflectance 
(841–876 nm) 

SR-Band2 

Multi-Scale Topographic 
Position Index 

mTPI CSP/ERGo/1_0/Global/ 
SRTM_mTPI 

270 m Distinction between ridges and valleys. 

Land Use and Land Cover LULC Land use and occupation 
letters (2007, 2010, 2015, 
and 2018) 

25 m Land use and cover properties. Portuguese 
Directorate General 
of the Territory 
(DGT)  
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not only during the solar period [42]. The night temperature represents the period when the emitted electromagnetic energy accu-
mulates in areas with low albedos and there are no representative influences from clouds and shadows, compared to the daytime 
period [21]. We divided the data into summer (June, July, and August) and winter (December, January, and February) months to 
identify whether seasonality influenced the results. These seasons represent the highest and lowest angle of solar electromagnetic 
energy incidence, respectively [43–45]. 

We compiled the LULC data from the Portuguese Directorate General of the Territory [33] for the years 2007, 2010, 2015 and 2018, 
with a spatial resolution of 25 m. We merged the LULC classes from level 1 (Table 2), using QGIS software, to analyse the statistical 
differences between LULC and LST. To simplify further analyses, we aggregated similar LULC classes and calculated the percentage of 
each land use category (at 25 m) within each 1 km pixel. In the end, we obtained nine LULC classes (Table 2). 

We computed the Multi-Scale Topographic Position Index (mTPI) [46] to analyse the influence of topography on thermal 
behaviour. The mTPI compares the elevation of each pixel in a Digital Elevation Model (DEM - SRTM Digital Elevation 30 m), with the 
average altitude on its surroundings distinguishing between ridges and valleys. 

2.3. LST and Tair relationship 

We tested the normality of LST with the Shapiro test and correlated LST and Tair with the Spearman test at the geographical point 
corresponding to the location of the only permanent meteorological station existent in the territory of the MNP, located in Moimenta 
da Raia (41◦ 56′ 50.726″ N and 6◦ 58′ 37.182″ W). 

To this end, for each reference hour of the passage of the satellite (11am, 1pm, 10pm and 2am) we obtained the corresponding real 
times of LST recording of each day within the period under analysis and then we acquired the corresponding Tair for those times with a 
margin of up to ±0h30 in the National Water Resources Information System [47]. 

For the purpose of standardization, the correlation results were separated into five scales: i) values between 0.00 to ±0.19: null 
correlation; ii) between ±0.20 to ±0.29: weak correlation; iii) between ±0.30 to ±0.39: moderate correlation; iv) between ±0.40 to 
±0.69: strong correlation; and ≥ of ±0.70: very strong correlation [48]. 

2.4. Statistical analyses 

We analysed whether there were differences in LST between LULC classes with the non-parametric Mann-Whitney U test (Table 2). 
We computed the annual average LST for each sensor pass (11am, 1pm, 10pm and 2am), for the summer and winter of 2007, 2010, 
2015 and 2018 (which coincide with the years in which LULC data were available), and the percentage of each cell of the LULC grid. 
We analysed the trends in LST (neutral, increasing, or decreasing) for summer and winter over time, with the Mann-Kendall test using 
the annual averages of the four LST (11am, 1pm, 10pm, and 2am). Then, we mapped the Mann-Kendall trend tests considering only the 
significant pixels (α = 0.05). 

We identified hot and cold LST clusters with Local Indicators of Spatial Association (LISA) analysis, which measures the degree of 
spatial association between a variable and its geographic distribution in a study area through Local Moran’s I with 999 permutations 
[49]. This method was chosen because it is useful and widely used in identifying spatial autocorrelation patterns and favours the 
visualization of such clusters from georeferenced data [49–51]. We produced maps for four cluster types (High-High, Low-Low, 
High-Low and Low-High) for the summer and winter of each year from 2003 to 2021, and for each satellite pass time (11am, 1pm, 
10pm and 2am). We analysed the persistence of each cluster type by joining in a single map all the 19-years LISA maps. 

We verified whether there were zones with different thermal behaviours over time by analysing the hourly variation in LST during 
the day and night, based on the different times of passage of the Terra and Aqua sensors. For this purpose, we calculated the variation 
coefficients using the exact time of passage of the sensors each day, for each cell of the 1 km grid, applying Equations (1) and (2). Note 
that, the data from LST_2am and Time_2am refer to data from the day after LST_10pm and Time_10pm. 

Table 2 
Land use and occupation classes from letters (2007, 2010, 2015, and 2018) data provided by the Portuguese Directorate 
General of Territory [33], used in this study. The table includes the code, name, and description of the classes, which were used 
to determine the land use and land cover within Montesinho Natural Park.  

Class Code Class Class description 

1 Urban areas Artificialized Territories 
2 Agriculture Agriculture 
3 Pastures Pastures 
4 Agroforestry Agroforestry areas (SAF) and Chestnut trees 
5 Coniferous Forest Coniferous and Pinus pinaster forest 
6 Broadleaf forest Forest of cork oak, holm oak and other oaks 
7 Shrubland Shrubland 
8 Sparse vegetation Bare rock and sparse vegetation 
9 Surface water bodies Water bodies  
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DayCoefficient=
LST1pm − LST11am

Time1pm − Time11am
(1)  

NightCoefficient=
LST10pm − LST2am

24 − Time10pm − Time2am
(2) 

We considered that a surface temperature inversion occurs when the coefficient of variation is negative, i.e., when the temperature 
at 1pm is lower than at 11am and when the temperature at 10pm is higher than at 2am of the next day (same night). Finally, we 
quantified the percentage of surface temperature inversion over the period under analysis. 

We analysed the influence of topography on thermal behaviour with a mTPI, resampled from the original scale of 270 m to 1 km by 
extracting the average values of each grid cell and resulting in mTPI index between − 46 and 55 in MNP. Values less than − 20 cor-
responded to valleys and greater than 20 to ridges (values that maximized the valley and ridge areas, without compromising their 
correct identification). Finally, for the 113 valley points and 101 ridge points obtained with the referred thresholds, we analysed the 
LST trends with the Mann-Kendall test. 

We correlated LST (summer and winter, between 2003 and 2021, and capture time of each sensor: 11am, 1pm, 10pm, and 2am) 
with various biophysical indices: Albedo Near Infrared - Black (ALB-NIRB), Albedo Near Infrared - White (ALB-NIRW), Albedo Visible - 
Black (ALB-VISB), Albedo Visible - White (ALB-VISW), Evapotranspiration (ET), Enhanced Vegetation Index (EVI), Fraction of 
Absorbed Photosynthetically Active Radiation (FPAR), Gross Primary Productivity (GPP), Leaf Area Index (LAI), Normalized Differ-
ence Vegetation Index (NDVI), Surface reflectance (620–670 nm) (SR-Band1), and Surface reflectance (841–876 nm) (SR-Band2), to 
assess whether these indices affected the thermal behaviour [52,53]. All statistical analyses were performed in R version 4.1.0 and 
GEE. 

2.5. Comparison of MODIS results with landsat 

We compared the LST values obtained from MODIS images with Landsat LST using two approaches, namely: (i) Landsat 5 from 
2003 to 2012 and Landsat 8 from 2013 to 2021, using the “USGS Landsat 5 Level 2, Collection 2, Tier 1” [54] and “USGS Landsat 8 
Level 2, Collection 2, Tier 1” [55] collections, respectively. In this case, we adopted approach (ii) Landsat 7 from 2003 to 2021, using 
the “USGS Landsat 7 Level 2, Collection 2, Tier 1″ collection [56]. Despite covering the entire analysed period (2003–2021), we did not 
consider the single use of Landsat 7 due to the failure of Scan Line Corrector (SLC) from May 2003 [57], and kept both analyses to 
evaluate if we could get complementary information. 

The acquisition of Landsat images in the study area occurs between 10am and 11am, every 16 days, which allowed us to compare 
the results only with the MODIS LSTs of 11am, on coincident dates. We applied a cloud mask (using bits 3 and 4 of the QA_PIXEL band 
to mask the pixels with clouds and cloud shadows) to select the Landsat images. We calculated the LST by applying the sensor inherent 
scale factors of the thermal band (band “ST_B6” for Landsat 5 and 7 and “ST_B10” for Landsat 8) and by converting the obtained result 
from Kelvin to Celsius. 

For the three Landsat sensors, we calculated the averages of temperature for the entire MNP territory and then, for some time series, 
calculated the Spearman correlation between MODIS and Landsat 7 and MODIS and Landsat 5 & 8, using exclusively dates where data 
existed in both sources, separated into: i) all dates (summer + winter) and ii) analysis of the influence of seasonality on the results, 
separating the data obtained in the aforementioned seasons. 

The Mann-Kendall trend test maps analysis was conditioned to the amount of data eligible for its calculation and, due to the time of 
passage being only in the daytime period, the inversion and trends analysis of surface temperature in the night period could not be 
applied to Landsat data. 

3. Results 

3.1. LST and Tair relationship 

The correlations between LST and Tair were very strong and remained consistently higher than 0.7 across all four sensor passage 
times and both summer and winter seasons (Table 3). Specifically, in the summer season, there was a strong correlation between LST at 
10pm and Tair (ρ = 0.935) and LST at 2am and Tair (ρ = 0.919). On average, the LST is higher than Tair during the day and lower during 
the night and the differences between those magnitudes during the day are significantly higher in the summer months than in the 
winter months. 

Table 3 
Spearman’s correlations (ρ) between Air Temperature (Tair) and Land Surface Temperature (LST), at each sensor passage time, by seasonality (winter 
and summer), in Montesinho Natural Park (MNP).   

LST_11am LST_1pm LST_10pm LST_2am 

Season Nº. of data ρ Nº. of data ρ Nº. of data ρ Nº. of data ρ 
Summer 458 0.731 402 0.709 403 0.935 425 0.919 
Winter 178 0.812 185 0.772 167 0.903 179 0.904  
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3.2. Did temperature increase in the MNP over time? 

In general, thermal behaviour was more heterogeneous during winter than summer (Fig. 3). The Mann-Kendall test detected 
positive trends of LST over time during winter (namely at 10pm and 2am) (Fig. 4). The average Sen’s slope values for LST at 11am, LST 
at 1pm, LST at 10pm, and LST at 2am were 0.092, 0.113, 0.111, and 0.119, respectively. For the summer data, no significant results 
were obtained. Warm and cold areas of LST were spatially stable in both seasons over time (Fig. 5): some High-High and Low-Low 
clusters remain in the same place for the whole period (19 years). 

In summer, during the daytime the warmest zones were concentrated in the eastern part of the MNP and the coldest ones in the 
western part, but this pattern was the opposite during winter’s night-time period (Fig. 5). During summer nights, the coldest zones 
corresponded to the highest altitudes (Fig. 5). During the daytime in winter, the clusters were more dispersed throughout the territory, 
although they also maintain some persistence in location. There were no significant HL and LH clusters. 

Considering the satellite passages times, the LST varied more in the day period than at night, and there were more surface tem-
perature inversions in the daytime period of summer and in the night period of winter (Table 4; Figs. 6 and 7). In summer, there was a 
high percentage of surface temperature inversions dispersed throughout the territory, with some parts of the territory having the LST at 
11am higher than the LST at 1pm almost half of the days (Figs. 6 and 7). In this period, there was a location where the average co-
efficient (Equation (1)) was negative. In winter, temperature variation was low, but there were some parts of the territory with a high 
percentage of inversions and there were also some parts of the territory that showed a negative coefficient (Equation (2)) between 
10pm and 2am. In the daytime periods in winter and night-time in summer, no zones had an average negative coefficient, and the 
percentage of inversions was lower, with several zones in the territory without inversions. 

3.3. What environmental factors influence the LST? 

There were no significant differences between LST and LULC classes (Table 5). The mTPI analyses identified 113 pixels as valleys 
and 101 as ridges out of a total of 857 pixels. For all times of day LST trends were lower in the valleys and higher on the ridges (except 
for daylight hours in summer). In the case of daytime summer periods, the pattern was the opposite (Table 6). 

3.4. Is temperature rise affected by vegetation? 

The indexes ET, EVI, FPAR, GPP, LAI and NDVI were highly and negatively correlated with LST in summer at 11am and 1pm 
(Appendix 1, Table A and Table B). In winter, the indices did not show strong correlations with LST. Except for SR-Band2, the other 
indices showed strong correlations in at least one of the analysed years (Appendix 1, Table C). Indices presenting correlations in more 
years were ALB-NIRB, ALB-NIRW, ALB-VISB and ALB-VISW, GPP and NDVI presented the highest correlations, but not all were 
negative (opposing the pattern observed in the summer). 

Fig. 3. Boxplots of Land Surface Temperature (LST) (◦C) throughout the years (2003–2021) for the different sensor passage time (11am, 1pm, 10pm 
and 2am) in Montesinho Natural Park (MNP). Boxplots in blue colour refer to winter season and red colour boxplots to summer season. 
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Fig. 4. Mann-Kendall trend test maps for winter season according to each sensor passage time (11am, 1pm, 10pm and 2am) in Montesinho Natural 
Park (MNP) – with the significant Sen’s slope values (− 0.2 to 0.2 unitless). 

Fig. 5. Cumulative map depicting high-high clusters (0–19 in red) and low-low clusters (-19 - 0 in blue). The map represents time pairs of 11 a.m. 
and 1 p.m. for daytime and 10 p.m. and 2 a.m. for nighttime in Montesinho Natural Park (MNP). 
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3.5. Are the MODIS results comparable to landsat? 

Considering that the revisit interval of Landsat to the study area is longer than that of MODIS and that we used only valid and 
coincident images on both satellites for comparison, we had temporal gaps in the eligible images, mainly during winter, although with 
occasional data shortages during summer (presented in Annex 2, Table A). 

The correlations between MODIS and Landsat LST considering both summer and winter images were strong and with close results, 
namely: ρ = 0.980 between MODIS and Landsat 7 data (considering 88 dates) and ρ = 0.943 for MODIS and Landsat 5 & 8 data (with 
106 dates). 

Table 4 
Variation coefficients of average hourly land surface temperature and surface temperature inversion counts per season (summer and winter) and time 
period (Day - between 11am and 1pm; Night - between 10pm and 2am the following day) in Montesinho Natural Park (MNP) from 2003 to 2021.  

MNP 2003–2021 Variation coefficient (⁰Ch− 1) Surface temperature inversion (percentage) 

Summer Day 1.50 20.2% 
Night 0.70 1.9% 

Winter Day 1.44 2.0% 
Night 0.28 9.3%  

Fig. 6. Surface temperature inversions calculated from Land Surface Temperature (LST) in Montesinho Natural Park (MNP) by season (summer and 
winter). Values come in percentages (%). The map presents time pairs of 11 a.m. and 1 p.m. for daytime and 10 p.m. and 2 a.m. for nighttime in 
MNP. The presence of white pixels within some clusters (Winter - Day and Summer – Night) indicates that there is no available data for those specific 
pixels due to quality treatment. 
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Considering seasonality, correlations remain strong. In summer, ρ = 0.929 for MODIS and Landsat 7 data (55 dates) and ρ = 0.840 
for MODIS and Landsat 5 & 8 data (71 dates). In winter, ρ = 0.947 between MODIS and Landsat 7 data (33 dates) and ρ = 0.750 for 
MODIS and Landsat 5 & 8 data (35 dates). 

4. Discussion 

Our study indicated significant changes in temperature over time in MNP. Over the 19 years, there is a trend for an average annual 
increase is the LST on winter nights and remained homogeneous during summer (day and night) and winter daytime, as observed in a 
similar study [58]. Warmer areas in summer corresponded to cold areas in winter. However, some areas of warm and cold temper-
atures remained stable over time. There were milder temperatures in the west, which may be associated with a higher incidence of rain 
and humidity [32]. 

Fig. 7. Hourly variation coefficients of land surface temperature in Montesinho Natural Park (MNP) by season (summer and winter). The map 
presents time pairs of 11 a.m. and 1 p.m. for daytime and 10 p.m. and 2 a.m. for nighttime in MNP. 

Table 5 
Significant differences between Land Surface Temperature (LST) and Land Use and Land Cover (LULC) classes, obtained from the land use and 
occupation letters (2007, 2010, 2015, and 2018), provided by the Portuguese Directorate General of Territory [33], measured with the Mann-Whitney 
U test. The analysis was conducted per season (summer and winter) and at each sensor passage time (11 a.m. and 1 p.m.) in Montesinho Natural Park 
(MNP).  

Year Season LST Class W p-value 

2007 Summer 11 a.m. Shrubland 655191 0.9863 
2010 Summer 1 p.m. Agriculture 646091 0.5535 
2015 Summer 1 p.m. Agriculture 644352 0.4824 
2015 Winter 1 p.m. Pastures 678312 0.1439 
2018 Summer 1 p.m. Agriculture 638730 0.2901  
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In this study, topography had an influence over LST: in valley areas the trends are smoothed, and, in the peaks, they are increased, 
relative to the general trends of the territory, except for the summer daylight hours, which presented an opposite pattern. Altitude 
affects LST, generating a gradient that determines that as one moves higher above sea level, there is a tendency for surface temperature 
to decrease [11,59–61]. However, this relationship is influenced by other factors such as LULC [11,59], elevation range [62], and 
meteorological conditions [60]. In specific atmospheric conditions, a temperature inversion layer can appear being characterized by 
the presence of a layer of warm air positioned above cooler air near the surface. In these circumstances, LST within the inversion layer 
might exhibit an ascent with altitude, contrary to the typical decline in temperature observed at higher elevations [63,64]. This 
phenomenon can be influenced by the stability of meteorological conditions and specific processes associated with the local orography 
[65,66]. One process in mountain regions is the formation of katabatic winds (i.e. a drainage wind that carries high-density air from a 
higher elevation down a slope under the force of gravity), which may determine the formation of a thermal inversion mostly during 
nocturnal conditions [67]. 

LST was highly and negatively correlated with the biophysical indices ET, EVI, FPAR, GPP, LAI and NDVI, especially at 11am and 
1pm. Vegetation adapts to seasonality: during summer temperature peaks, vegetation enters an estivation state, reducing its metabolic 
activities for protection from heat and drought, as confirmed by our results, in the aforementioned biophysical indices (i.e., pixels with 
higher temperatures presented lower values of biophysical indices) [68–70]. In winter, they usually behave similarly to protect 
themselves from the cold, namely dormancy [70], but in our data, we did not have significant correlation results that ratify the 
literature. Most areas exhibited a consistent thermal trend throughout each season. The use of day-time and night-time data obtained at 
different satellite pass times corroborated the heat exchange processes and variations in solar radiation [13,71,72]. Additionally, the 
inclusion of seasonal analyses also allowed for the understanding of different thermal patterns between seasons [73]. These analyses 
were possible thanks to the effectiveness of RS in mapping temperature trends: although temperature data can be interpolated from 
meteorological stations [74], RS data provides temperature data over large areas and over time [75]. Further, analyses can be pro-
cessed with GEE more quickly and over larger datasets [40]. 

LST and Tair had similar trend patterns over time and strong correlations at the times of passage. Previous studies have obtained 
similar results to ours, where LST is higher than Tair in the morning and lower at night [76,77] and both variables are less correlated 
during the day than at night [78]. However, as we only have one site for Tair and the low spatial resolution of the MODIS sensor (1 km), 
any conclusion about the representativeness of the results for the whole territory should be considered with caution. Therefore, this site 
of Tair cannot be considered an added value for this work. It is worth noting that the physical variable measured at LST – via radiation – 
is not the same as at Tair, but both refer to surface warming that subsequently affects Tair in the lower atmosphere [79], i.e. it is 
interesting to compare the trends of both variables over time [24,76,80]. 

Regarding the comparison of LST MODIS and Landsat, the results indicated a strong correlation between the surface thermal 
behaviour of the areas, both considering all coincident dates (summer + winter) and seasonality. In summer, the number of available 
images was higher, which may be associated with the presence of clouds and rainfall in the winter period. This result is interesting both 
to present a similarity in the results obtained in RS from different satellites and to present the comparability between the data acquired 
by MODIS and Landsat, despite the difference between spatial and temporal resolutions. The revisit time of Landsat, which is more 
spaced compared to MODIS, compromised the application of temporal and trend analysis due to the number of available images. The 
revisit time of Landsat only at one time period (11am) makes it impossible to carry out studies that aim to evaluate the thermal 
behaviour of the surface considering night periods and not allowed the identification surface temperature inversions [21,24,25]. As 
such, MODIS is a more appropriate data source for these case studies, despite its low spatial resolution in comparison to Landsat or 
other satellite series with moderate to high spatial resolution. 

Table 6 
Influence of topography in Land Surface Temperature (LST) trends over time (2003–2021) in Montesinho Natural Park (MNP). Average trends of LST 
over time (Sen’s Slope) in summer and winter for valleys and ridges defined by the Multi-Scale Topographic Position Index (mTPI).  

Season LST MNP (Valleys and Ridges) Valleys Ridges % dif Valleys -MNP % dif Ridges -MNP 

Summer 11am − 0.027 − 0.034 − 0.023 20.50% − 19.30% 
1pm − 0.025 − 0.033 − 0.019 24.40% − 31.40% 
10pm 0.043 0.041 0.044 − 4.60% 1.50% 
2am 0.045 0.044 0.048 − 2.60% 5.50% 

Winter 11am 0.077 0.064 0.077 − 18.90% 0.90% 
1pm 0.100 0.083 0.102 − 20.20% 2.40% 
10pm 0.109 0.105 0.113 − 4.80% 2.70% 
2am 0.117 0.111 0.121 − 5.60% 2.70%  
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Future studies should include in situ validation data obtained from portable weather stations, data loggers, thermal data from 
unmanned aerial vehicles (UAV), and handheld thermal cameras, to complement the spatial resolution obtained in MODIS and, 
consequently, the detail of the analyses [81]. 

However, the adoption of these suggestions depends on a feasibility analysis and adaptations, considering the specificities of the 
MNP, especially in relation to its extension: which can make it difficult to collect continuous data. UAV flights, for example, can be used 
in small areas of heterogeneous coverage for comparison of surface thermal behaviour relative to satellite data or that provide 
interesting details for the studies. The same applies to the use of portable thermal cameras and portable weather stations. In all ap-
proaches, it is necessary to consider the different influences and scale of data for each methodology for the comparison to be 
appropriate. 

5. Conclusions 

Climate change contributes to an increase in the intensity and frequency of extreme events, which can contribute to environmental 
disasters, changes in the hydrological cycle, and impacts on natural biomes and human communities. Mountain systems, as ecolog-
ically sensitive areas, are specially affected by these changes, increasing the melting of glaciers, landslides, changes in habitats, and 
shifts in species ecological niches. 

The use of spatial methods that integrate various sources of information, computing tools and statistical analyses proved to be 
effective for mapping the thermal behaviour. 

Indeed, our methodology can be applied to other mountainous areas of similar characteristics, to complement decision-making 
processes. Research studies aiming to understand the thermal behaviour and trends of mountainous areas are fundamental to iden-
tifying patterns and taking remedial and mitigating measures to ensure the conservation and preservation of local biodiversity and 
ecological services. 
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Appendix 1  

Table A 
Spearman’s correlations (ρ) between Land Surface Temperature at 11 a.m. (LST_11am) during the summer period and the environmental variables considered in this study. (in red: null correlation; in 
orange: weak correlation; in blue: moderate correlation; in green: strong correlation; in black: very strong correlation).  

Biophysical Index 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

ALB-NIRB − 0.14 − 0.18 − 0.03 − 0.14 − 0.22 − 0.1 − 0.26 − 0.25 0.06 − 0.13 − 0.13 − 0.15 0 − 0.15 0.03 − 0.31 − 0.12 0.03 − 0.1 
ALB-NIRW − 0.17 − 0.2 − 0.08 − 0.17 − 0.24 − 0.12 − 0.32 − 0.28 0.04 − 0.17 − 0.14 − 0.18 − 0.02 − 0.17 0 − 0.34 − 0.16 − 0.02 − 0.14 
ALB-VISB 0.47 0.46 0.53 0.46 0.47 0.5 0.5 0.44 0.58 0.49 0.45 0.49 0.52 0.44 0.53 0.38 0.5 0.55 0.51 
ALB-VISW 0.45 0.46 0.52 0.46 0.46 0.49 0.49 0.43 0.57 0.48 0.45 0.49 0.52 0.45 0.54 0.39 0.48 0.56 0.52 
ET − 0.75 − 0.77 − 0.75 − 0.72 − 0.73 − 0.7 − 0.81 − 0.77 − 0.64 − 0.73 − 0.75 − 0.74 − 0.67 − 0.74 − 0.69 − 0.77 − 0.7 − 0.62 − 0.71 
EVI − 0.72 − 0.74 − 0.72 − 0.71 − 0.7 − 0.66 − 0.79 − 0.77 − 0.58 − 0.7 − 0.7 − 0.69 − 0.61 − 0.68 − 0.65 − 0.76 − 0.64 − 0.56 − 0.62 
FPAR − 0.79 − 0.79 − 0.81 − 0.77 − 0.75 − 0.72 − 0.84 − 0.81 − 0.69 − 0.78 − 0.78 − 0.76 − 0.71 − 0.77 − 0.72 − 0.8 − 0.72 − 0.67 − 0.73 
GPP − 0.75 − 0.78 − 0.77 − 0.73 − 0.69 − 0.7 − 0.82 − 0.77 − 0.65 − 0.72 − 0.74 − 0.74 − 0.69 − 0.72 − 0.71 − 0.77 − 0.7 − 0.61 − 0.7 
LAI − 0.73 − 0.76 − 0.77 − 0.7 − 0.71 − 0.69 − 0.82 − 0.76 − 0.67 − 0.72 − 0.74 − 0.73 − 0.69 − 0.73 − 0.7 − 0.74 − 0.7 − 0.64 − 0.7 
NDVI − 0.75 − 0.77 − 0.8 − 0.75 − 0.74 − 0.75 − 0.82 − 0.79 − 0.71 − 0.77 − 0.78 − 0.75 − 0.72 − 0.77 − 0.73 − 0.79 − 0.72 − 0.71 − 0.76 
SR-Band1 0.43 0.44 0.46 0.42 0.51 0.4 0.45 0.36 0.5 0.39 0.4 0.44 0.48 0.42 0.47 0.32 0.47 0.48 0.48 
SR-Band2 − 0.29 − 0.32 − 0.18 − 0.26 − 0.34 − 0.26 − 0.41 − 0.4 − 0.1 − 0.32 − 0.27 − 0.28 − 0.14 − 0.26 − 0.11 − 0.45 − 0.25 − 0.12 − 0.2   
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Table B 
Spearman’s correlations (ρ) between Land Surface Temperature at 1 p.m. (LST_1pm) during the summer period and the environmental variables considered in this study. (in red: null correlation; in 
orange: weak correlation; in blue: moderate correlation; in green: strong correlation; in black: very strong correlation).  

Biophysical Index 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

ALB-NIRB − 0.04 − 0.14 0.05 − 0.01 − 0.2 − 0.08 − 0.17 − 0.21 0.08 − 0.02 − 0.01 − 0.11 0.07 − 0.1 0.06 − 0.23 − 0.06 0.13 − 0.06 
ALB-NIRW − 0.07 − 0.16 0.01 − 0.04 − 0.22 − 0.1 − 0.23 − 0.24 0.06 − 0.06 − 0.03 − 0.14 0.05 − 0.12 0.03 − 0.27 − 0.11 0.08 − 0.1 
ALB-VISB 0.55 0.49 0.58 0.57 0.5 0.53 0.58 0.48 0.6 0.58 0.53 0.54 0.56 0.49 0.55 0.44 0.54 0.61 0.55 
ALB-VISW 0.52 0.47 0.55 0.56 0.47 0.5 0.55 0.45 0.58 0.56 0.51 0.53 0.54 0.47 0.54 0.44 0.51 0.6 0.54 
ET − 0.74 − 0.76 − 0.72 − 0.71 − 0.75 − 0.72 − 0.81 − 0.79 − 0.68 − 0.72 − 0.72 − 0.77 − 0.65 − 0.76 − 0.7 − 0.76 − 0.7 − 0.6 − 0.72 
EVI − 0.7 − 0.73 − 0.68 − 0.68 − 0.71 − 0.68 − 0.76 − 0.77 − 0.61 − 0.66 − 0.64 − 0.7 − 0.58 − 0.69 − 0.66 − 0.72 − 0.63 − 0.51 − 0.63 
FPAR − 0.79 − 0.8 − 0.79 − 0.76 − 0.77 − 0.75 − 0.83 − 0.84 − 0.74 − 0.78 − 0.77 − 0.79 − 0.7 − 0.8 − 0.75 − 0.79 − 0.72 − 0.65 − 0.75 
GPP − 0.74 − 0.77 − 0.74 − 0.72 − 0.72 − 0.72 − 0.81 − 0.79 − 0.7 − 0.73 − 0.73 − 0.77 − 0.68 − 0.74 − 0.72 − 0.77 − 0.7 − 0.6 − 0.72 
LAI − 0.75 − 0.77 − 0.77 − 0.73 − 0.75 − 0.72 − 0.83 − 0.8 − 0.73 − 0.75 − 0.75 − 0.77 − 0.7 − 0.77 − 0.74 − 0.75 − 0.71 − 0.64 − 0.74 
NDVI − 0.78 − 0.79 − 0.81 − 0.79 − 0.77 − 0.78 − 0.85 − 0.82 − 0.76 − 0.8 − 0.81 − 0.79 − 0.75 − 0.81 − 0.78 − 0.81 − 0.74 − 0.72 − 0.79 
SR-Band1 0.51 0.47 0.53 0.52 0.55 0.43 0.54 0.41 0.53 0.48 0.49 0.49 0.54 0.48 0.52 0.39 0.51 0.55 0.52 
SR-Band2 − 0.21 − 0.29 − 0.1 − 0.16 − 0.32 − 0.27 − 0.34 − 0.38 − 0.1 − 0.24 − 0.16 − 0.26 − 0.08 − 0.22 − 0.1 − 0.38 − 0.2 − 0.03 − 0.18   
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Table C 
Spearman’s correlations (ρ) between Land Surface Temperature (LST) at each sensor passage time (11am, 1pm, 10pm and 2am) in Montesinho Natural Park (MNP) during the winter period for each year 
(2003–2021). Only strong results (in green).  

LST Index 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

LST_11am ALB-NIRB   0.41 0.41 0.47    0.43 0.56   0.46 0.55   0.41  
LST_1pm      0.4   0.45 0.4 0.46        
LST_2am        0.41           
LST_11am ALB-NIRW   0.41 0.43 0.48    0.42 0.55   0.45 0.55   0.41  
LST_1pm      0.4   0.51 0.43 0.48        
LST_2am        0.45           
LST_11am ALB-VISB  0.46 0.49 0.41 0.48    0.55 0.6  0.47 0.43 0.59 0.44 0.44   
LST_1pm         0.54 0.44 0.52 0.42 0.42 0.45     
LST_11am ALB-VISW  0.46 0.48 0.41 0.47    0.54 0.6  0.47 0.43 0.59 0.43 0.43 0.4  
LST_1pm         0.55 0.46 0.53 0.42 0.41 0.46     
LST_10pm EVI      0.4             
LST_2am      0.44             
LST_10pm FPAR               0.47    
LST_2am             0.46      
LST_10pm GPP  0.5   0.53 0.53       0.47 0.4 0.43    
LST_2am     0.61 0.44       0.43      
LST_10pm LAI             0.43 0.4 0.49    
LST_2am             0.44      
LST_11am NDVI  − 0.45       − 0.47 − 0.48    − 0.48    − 0.4 
LST_10pm         0.4     0.4     
LST_1pm  − 0.41       − 0.45  − 0.53  − 0.43 − 0.48    − 0.41 
LST_11am SR-Band1  0.46                0.55 
LST_10pm − 0.4     0.42 0.55            
LST_1pm  0.44       0.41  0.41  0.42    0.53  
LST_2am − 0.4     0.45 0.45            
LST_11am SR-Band2          0.49   0.41 0.4     
LST_10pm      0.43             
LST_1pm         0.42        0.45  
LST_2am      0.49               
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Appendix 2  

Table A 
Number of images processed to generate the Land Surface Temperature (LST) from Landsat 5 and 8, Landsat 7, and MODIS in winter (W) (Dec, Jan and Feb) and summer (S) (Jun, Jul and Aug).   

Landsat 5 and 8 Landsat 7 MODIS  

Month By Season Month By Season Month By Season 

Year Jan Feb Jun Jul Aug Dec S W Jan Feb Jun Jul Aug Dec S W Jan Feb Jun Jul Aug Dec S W 
2003    2 1  3 0  1     0 1 31 28 30 31 31 24 92 83 
2004 2 1 1 2 2 2 5 5 1  1    1 1 31 29 30 31 31 31 92 91 
2005 2  2 1 1  4 2    1 2 1 3 1 31 28 30 31 31 31 92 90 
2006  2 1 2 1 1 4 3   2 1 2 1 5 1 31 28 30 31 31 31 92 90 
2007 1 2 1 2 1  4 3 1     1 0 2 31 28 30 31 31 31 92 90 
2008    1 2  3 0 1   1 1  2 1 31 29 30 31 31 29 92 89 
2009 2 1 1 2 2  5 3 1 1  1 1  2 2 31 28 30 31 31 31 92 90 
2010 1 1 1 1 1 1 3 3    1 1  2 0 31 28 30 31 31 31 92 90 
2011 2  2 1 1  4 2       0 0 31 28 30 31 31 31 92 90 
2012       0 0 1 2   1  1 3 31 29 30 31 31 31 92 91 
2013   2 2 1 2 5 2   1   1 1 1 31 28 30 31 31 31 92 90 
2014 1 1 1 2 2 2 5 4 1 1 2 2 2 2 6 4 31 28 30 31 31 31 92 90 
2015 2 1 2 2 2 1 6 4 1 1 2 2 2 1 6 3 31 28 30 31 31 31 92 90 
2016 2 1 2 2 2 1 6 4 1 1 2 2 1 2 5 4 31 20 30 31 31 31 92 82 
2017 2 1 2 2 2 2 6 5 2 1 1 2 2 2 5 5 31 28 30 31 31 31 92 90 
2018 1 2 2 2 2 1 6 4 1 1 2 2 2 1 6 3 31 28 30 31 31 31 92 90 
2019 2 2 2 1 2 2 5 6 2 1 2 2 2 1 6 4 31 28 30 31 31 31 92 90 
2020 1 2 1 2 2 2 5 5 1 1 2 2 2 2 6 4 31 29 30 31 31 31 92 91 
2021 1 1 2 2 2 1 6 3 2 2 2 2 2 1 6 5 31 28 30 31 31 31 92 90 
Total 22 18 25 31 29 18 85 58 16 13 19 21 23 16 63 45 589 528 570 589 589 580 1748 1697   
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