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Abstract: Background: Colon capsule endoscopy (CCE) is an alternative for patients unwilling or
with contraindications for conventional colonoscopy. Colorectal cancer screening may benefit greatly
from widespread acceptance of a non-invasive tool such as CCE. However, reviewing CCE exams
is a time-consuming process, with risk of overlooking important lesions. We aimed to develop an
artificial intelligence (AI) algorithm using a convolutional neural network (CNN) architecture for
automatic detection of colonic protruding lesions in CCE images. An anonymized database of CCE
images collected from a total of 124 patients was used. This database included images of patients
with colonic protruding lesions or patients with normal colonic mucosa or with other pathologic
findings. A total of 5715 images were extracted for CNN development. Two image datasets were
created and used for training and validation of the CNN. The AUROC for detection of protruding
lesions was 0.99. The sensitivity, specificity, PPV and NPV were 90.0%, 99.1%, 98.6% and 93.2%,
respectively. The overall accuracy of the network was 95.3%. The developed deep learning algorithm
accurately detected protruding lesions in CCE images. The introduction of AI technology to CCE
may increase its diagnostic accuracy and acceptance for screening of colorectal neoplasia.

Keywords: colon capsule endoscopy; artificial intelligence; convolutional neural network;
colorectal neoplasia

1. Introduction

Capsule endoscopy (CE) is a primary diagnostic tool for the investigation of patients
with suspected small bowel disease. Colon capsule endoscopy has been recently introduced
as a minimally invasive alternative to conventional colonoscopy for evaluation of the
colonic mucosa [1,2]. This system allows overcoming some of the drawbacks associated
with conventional colonoscopy, including the potential for pain, use of sedation, and the
risk of adverse events, including bleeding and perforation [3]. The clinical application of
this tool has been most extensively studied in the setting of colorectal cancer screening,
particularly for patients with previous incomplete colonoscopy, or for whom the latter
exam is contraindicated, unfeasible or unwanted [4,5]. The role of CCE as an alternative to
conventional colonoscopy in the setting of colorectal cancer screening is growing. A recent
meta-analysis by Vuik and coworkers reported similar performance levels for conventional
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colonoscopy and CCE as well as the superiority of CCE compared to computed tomography
colonography (virtual colonoscopy) [6]. Moreover, a single full-length CCE video may
produce over 50,000 images, and reviewing these images is a monotonous and time-
consuming task, requiring approximately 50 min for completion [2]. Furthermore, any
given frame may capture only a fragment of a mucosal abnormality and lesions may be
depicted in a very small number of frames. Therefore, the risk of overlooking important
lesions is not insignificant [2].

The combination of enhanced computational power with large clinical datasets has
potentiated the research and development of AI tools for clinical implementation. The
application of automated algorithms to diverse medical fields has provided promising
results regarding disease identification and classification [7–9]. Convolutional neural
networks (CNN) are a type of multi-layered deep learning algorithm tailored for image
analysis. The application of these technological solutions to small bowel CE has provided
promising results in the detection of several types of lesions [10–13]. The introduction
of AI tools for real-time detection of colorectal neoplasia in conventional colonoscopy
has suggested a high diagnostic yield for CNN-based algorithms [14]. The impact of AI
algorithms for detection of colorectal neoplasia in CCE images has been scarcely evaluated.
Enhanced reading of CCE images through the application of these tools may improve the
diagnostic accuracy of CCE for colorectal neoplasia, which is currently unsatisfactory [2].
Importantly, the implementation of automated algorithms may help to reduce the time
required for reading a single CCE exam. The aim of this study was to develop and validate
a CNN-based algorithm for the automatic detection of colonic protruding lesions using
CCE images.

2. Materials and Methods
2.1. Study Design

A multicenter study was performed for development and validation of a CNN for
automatic detection of colonic protruding lesions. CCE images were retrospectively col-
lected from two different institutions: São João University Hospital (Porto, Portugal) and
ManopH Gastroenterology Clinic (Porto, Portugal). One hundred and twenty-four CCE
exams (124 patients, 24 from São João University Hospital and 100 from ManopH Gas-
troenterology Clinic), performed between 2010 and 2020, were included. The full-length
video of all participants was reviewed, and a total of 5715 frames of the colonic mucosa
were ultimately extracted. Significant frames were included regardless of image quality
and bowel cleansing quality. Inclusion and classification of frames were performed by
three gastroenterologists with experience in CCE (Miguel Mascarenhas, Hélder Cardoso
and Miguel Mascarenhas Saraiva), each with an experience of >1500 CE previous to this
study. A final decision on frame labelling required the agreement of at least two of the
three researchers.

This study was approved by the ethics committee of São João University Hospital
(No. CE 407/2020). The study protocol was conducted respecting the original and sub-
sequent revisions of the declaration of Helsinki. This study is retrospective and of non-
interventional nature. Thus, the output provided by the CNN had no influence on the
clinical management of each included patient. Any information susceptible to identify the
included patients was omitted, and each patient was assigned a random number in order to
guarantee effective data anonymization for researchers involved in CNN development. A
team with Data Protection Officer (DPO) certification (Maastricht University) confirmed the
non-traceability of data and conformity with the general data protection regulation (GDPR).

2.1.1. Colon Capsule Endoscopy Procedure

For all patients, CCE procedures were conducted using the PillCam™ COLON 2 sys-
tem (Medtronic, Minneapolis, MN, USA). This system consists of three major components:
the endoscopic capsule, an array of sensors connected to a data recorder, and a software
for frame revision. The capsule measures 32.3 mm in length and 11.6 mm in width. It has
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2 high-resolution cameras, each with a 172◦ angle of view. The system frame rate varied au-
tomatically between 4 and 35 frames per second, depending on bowel motility. Each frame
had a resolution of 512 × 512 pixels. The battery of the endoscopic capsule has an estimated
life of ≥10 h [2]. This system was launched in 2009 and was not submitted to hardware
updates since then. Thus, no significant changes in image quality were evident during this
period. The images were reviewed using PillCam™ software version 9.0 (Medtronic, Min-
neapolis, MN, USA). Each frame was processed in order to remove information allowing
patient identification (name, operating number, date of procedure).

Each patient received bowel preparation according to previously published guide-
lines [15]. Summarily, patients initiated a clear liquid diet in the day preceding capsule
ingestion, with fasting in the night before examination. A solution consisting of polyethy-
lene glycol was used in split-dosage (2 L in the evening and 2 L in the morning of capsule
ingestion). Prokinetic therapy (10 mg domperidone) was used if the capsule remained in
the stomach 1 h after ingestion, upon real-time image review on the recorder. Two boosters
consisting of a sodium phosphate solution were applied after the capsule has entered the
small bowel and with a 3 h interval. Only complete CCE exams were included. A complete
exam was considered if the capsule was excreted.

2.1.2. Development of the Convolutional Neural Network

A deep learning CNN was developed for automatic detection of colonic protrud-
ing lesions. Protruding lesions included all polyps, epithelial tumors, and subepithelial
lesions. From the collected pool of images (n = 5715), 2410 showed protruding lesions
and 3305 displayed normal mucosa or other mucosal lesions (ulcers, erosions, red spots,
angiectasia, varices and lymphangiectasia). This pool of images was split for constitution of
training and validation image datasets. The training dataset was composed by 80% of the
consecutively extracted images (n = 4572). The remaining 20% were used as the validation
dataset (n = 1143). The validation dataset was used for assessing the performance of the
CNN (Figure 1).

To create the CNN, we modified the Xception model with its weights trained on
ImageNet (a large-scale image dataset aimed for use in development of object recognition
software). To transfer this learning to our data, we kept the convolutional layers of the
model. We replaced the last fully connected layers with 2 dense layers of size 2048 and
1024, respectively, and then attached a fully connected layer based on the number of classes
we used to classify our endoscopic images. To avoid overfitting, a dropout layer of 0.3 drop
rate was added between convolutional and classification components of the network. We
applied gradient-weighted class activation mapping on the last convolutional layer [16], in
order to highlight important features for predicting protruding lesions. The size of each
image was set for 300 pixels of height and width. The learning rate of 0.0001, batch size of
128 and the number of epochs of 30 was set by trial and error. We used Tensorflow 2.3 and
Keras libraries to prepare the data and run the model. The analyses were performed with a
computer equipped with a 2.1 GHz Intel® Xeon® Gold 6130 processor (Intel, Santa Clara,
CA, USA) and a double NVIDIA Quadro® RTX™ 8000 graphic processing unit (NVIDIA
Corporate, Santa Clara, CA, USA).

2.1.3. Model Performance and Statistical Analysis

The primary outcome measures included sensitivity, specificity, positive and negative
predictive values, and accuracy. Moreover, we used receiver operating characteristic (ROC)
curve analysis and area under the ROC curve (AUROC) to measure the performance of
our model in the distinction between the categories. For each image, the trained CNN
calculated the probability for each of the categories (protruding lesions vs. normal colonic
mucosa or other findings). A higher probability value translated in a greater confidence
in the CNN prediction. The software generated heatmaps that localized features that
predicted a class probability (Figure 2A). The category with the highest probability score
was outputted as the CNN’s predicted classification (Figure 2B). The output provided by the
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network was compared to the specialists’ classification (gold standard). We performed a 3-
fold cross validation. Therefore, the entire dataset was split into 3 even-sized image groups.
Training and validation datasets were created for each of the five groups, at a proportion of
80% and 20% for training and validation datasets, respectively. Sensitivities, specificities,
positive and negative predictive values are presented as means ± standard deviations
(SD). Additionally, the image processing performance of the network was determined by
calculating the time required for the CNN to provide output for all images in the validation
image dataset. Sensitivities, specificities, positive and negative predictive values were
obtained using one iteration and are presented as percentages. Statistical analysis was
performed using Sci-Kit learn v0.22.2 [17].
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Figure 2. Heatmaps (A) and output (B) obtained from the application of the convolutional neural
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CNN. (B) The bars represent the probability estimated by the network.

3. Results
3.1. Construction of the Network

One hundred and twenty-four patients were submitted to CCE and enrolled in this
study. A total of 5715 frames were extracted, 2410 showing protruding lesions (2303 polyps,
8 subepithelial lesions and 99 epithelial tumors) and 3305 showing normal colonic mucosa
or other findings. The training dataset was constituted by 80% of the total image pool. The
remaining 20% of frames (n = 1143) were used for testing the model. This validation dataset
was composed by 482 (42.2%) images with evidence of protruding lesions and 661 (57.8%)
images with normal colonic mucosa/other findings. The CNN evaluated each image and
predicted a classification (protruding lesions vs. normal mucosa/other lesions), which was
compared with the classification provided by gastroenterologists. Repeated inputs of data
to the CNN resulted in the improvement of its accuracy (Figure 3).

3.2. Overall Performance of the Network

The confusion matrix between the trained CNN and expert classifications is shown in
Table 1. Overall, the developed model had a sensitivity and specificity for the detection of
protruding lesions of 90.0% and 99.1%, respectively. The positive and negative predictive
values were, respectively, 98.6% and 93.2%. The overall accuracy of the network was 95.3%
(Table 1). The AUROC for detection of protruding lesions was 0.99 (Figure 4).
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Table 1. Confusion matrix and performance marks.

Expert Classification

Protruding Lesion Normal Mucosa

C
N

N
cl

as
si

fi
ca

ti
on Protruding lesion 434 6

Normal mucosa 48 655
Sensitivity 90.0%
Specificity 99.1%

PPV 98.6%
NPV 93.2%

Accuracy 95.3%
Abbreviations: CNN—convolutional neural network; PPV—positive predictive value; NPV—negative predic-
tive value.

We performed a 3-fold cross validation, where the entire dataset was randomized and
split in 3 equivalent parts. The performance results for the three experiments are shown in
Table 2. Overall, the estimated model accuracy was 95.6 ± 1.1%. The mean sensitivity and
specificity of the model were 87.4 ± 4.6% and 96.1 ± 1.4%. The algorithm had a mean AUC
of 0.976 ± 0.006.

3.3. Computational Performance of the CNN

The CNN completed the reading of the testing dataset in 17.5 s (approximately
15.4 ms/frame). This translates into an approximated reading rate of 65 frames per second.
At this rate, the CNN would complete the revision of a full-length CCE video containing
an estimate of 50,000 frames in approximately 13 min.
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Table 2. Three-fold cross validation.

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC

Fold 1 82.8 97.5 62.6 99.1 96.9 0.980
Fold 2 87.4 95.9 57.1 99.2 95.4 0.970
Fold 3 92.1 94.7 48.4 99.6 94.6 0.980

Overall, mean
(±SD) 87.4 ± 4.6 96.1 ± 1.4 56.0 ± 7.1 99.3 ± 0.2 95.6 ± 1.1 0.976 ± 0.006

Abbreviations: ±SD—±standard deviation; PPV—positive predictive value; NPV—negative predictive value;
AUC—area under the receiving operator characteristics curve.

4. Discussion

The exploration of AI algorithms for application to conventional endoscopic tech-
niques for automatic detection of colorectal neoplasia has been producing promising results
over the last decade. The development and implementation of these systems has been
recently endorsed (although with limitations) by the European Society of Gastrointestinal
Endoscopy [18]. Furthermore, a recent meta-analysis has suggested that the application
of AI models for adenoma and polyp’s identification may substantially increase the ade-
noma detection rate and the number of adenomas detected per colonoscopy [19]. These
improvements in commonly used performance metrics have shown not to be affected by
factors known to influence detection by the human eye, including the size and morphology
of the lesions [19]. Artificial intelligence is expected to play a major role in improving the
acceptability and the diagnostic yield of CCE [20]. These systems may help in several steps
of the CCE process, from predicting the quality of colon cleanliness, lesion detection and
the distinction of colorectal lesions [20–22].

In our study, we have developed a deep learning tool based on a CNN architecture for
automatic detection of protruding lesions in the colonic lumen using CCE images. This
study has several highlights. First, our model demonstrated high levels of performance,
with a sensitivity of 90.0%, a specificity of 99.1, an accuracy of 95.3% and an AUROC of
0.99. Obtaining fairly high levels of sensitivity and negative predictive value is paramount
for CNN-assisted reading systems, which are designed to lessen the probability of missing
lesions, while maintaining a high specificity. Third, our network had a remarkable image
processing performance, being capable of reading 65 images per second.
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The precise role of CCE in everyday clinical practice is yet to be defined. Thus far, most
studies highlight its potential when applied in the setting of colorectal cancer screening. Al-
though colonoscopy remains the undisputed gold standard, studies have suggested that CCE
could be viewed as a non-invasive complement, rather than substitutive of conventional
colonoscopy, particularly in the setting of a previous incomplete colonoscopy [23]. Current
guidelines on colorectal cancer screening list CCE as a valid alternative to colonoscopy
for the screening of an average-risk population [15]. Studies comparing the diagnostic
yield of CCE with another non-invasive screening test, CT colonography, have shown the
superiority of CCE [24]. Moreover, when following a first positive fecal-immunological
test, CCE may reduce the need for more invasive conventional colonoscopy [25]. Although
conflicting evidence exist, some studies have shown that adoption of CCE as a screening
method may lead to a higher uptake rate compared to conventional colonoscopy [26].
Moreover, CCE may not only be seen as an alternative to conventional colonoscopy but
rather as a complementary solution in programmed screening settings. Indeed, CCE may
help to shorten waiting lists, decrease hospital appointments and make screening available
to remote areas [27]. In this setting, the cost-effectiveness of CCE appears to be greater
when the prevalence of colorectal cancer is lower and the uptake rate is superior to that
of conventional colonoscopy [28]. However, the use of CCE is hampered by its purely
diagnostic character, the need for a rigorous bowel cleansing protocol, as well as the time
required for reading each CCE exam.

The development of AI tools for detection of colorectal neoplasia in CCE images has
been poorly explored. Automatic detection of these lesions is limited by the poor resolution
of CCE images combined with their variable morphology, size and color. To our knowledge,
only two other studies have assessed the potential of the application of CNN models to
CCE images. Yamada et al. was the first to explore the implementation of AI algorithms
for the identification of colorectal neoplasia in frames extracted from CCE exams. Their
network was developed using a relatively large pool of CCE images (17,783 frames from
178 patients). Overall, their algorithm achieved a good performance (AUROC of 0.90) [29].
However, the sensitivity of their model was modest (79%) compared to that of our network.
Blanes-Vidal et al. adapted a preexisting CNN (AlexNet) and trained it for the detection of
colorectal polyps. The sensitivity, specificity and accuracy expressed in their paper were
97%, 93% and 96%, respectively. In our perspective, the development of these technologies
should aim to support a clinical decision rather than substitute the role of the clinician.
Therefore, these systems must remain highly sensitive in order to minimize the risk of
missing lesions.

Our network demonstrated a high image processing performance (65 frames/second).
To date, no value for comparison exists regarding CCE. Nevertheless, these performance
marks exceed those published for CNNs applied to other CE systems [11,30]. The devel-
opment of highly efficient networks may, in the near future, translate into shorter reading
times, thus overcoming one of the main drawbacks of CCE. Further well-designed studies
are required to assess if a high image processing capacity in experimental settings can be
reproduced as an enhanced time efficiency regarding reading times of CCE exams compar-
ing to conventional reading. The combination of enhanced diagnostic accuracy and time
efficiency may have a pivotal role in widening the indications for CCE and its acceptance
as a valid screening and diagnostic tool.

This study has several limitations. First, it is a retrospective study. Therefore, further
prospective multicentric studies in a real-life setting are desirable to confirm the clinical
value of our results. Second, although we included a large number of patients from two
distinct medical centers, the number of extracted images is small. This limited number of
extracted images was mainly dictated by the low number of frames showing protruding
lesions. In order to produce a balanced dataset while minimizing the risk of missing
lesions, an equilibrium between the number of images showing protruding lesions and
normal mucosa was fostered. This may partially explain the suboptimal sensitivity. We
are currently expanding our image pool in order to increase the robustness of our model,
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thus contributing to decrease the rate of false negative CE exams, which should be one
of the main endpoints in developing these algorithms. The multicentric nature of our
work reinforces the validity of our results. Nevertheless, multicentric studies including
larger populations are required to ensure the clinical significance of our findings. Moreover,
future studies for clinical validation of these tools must contemplate the comparison
of performance between AI software and conventional colonoscopy, the gold standard
technique for the detection and characterization of these lesions.

In conclusion, we developed a highly sensitive and specific CNN-based model for
detection of protruding lesions in CCE images. We believe that the implementation of AI
tools to clinical practice will be a crucial step for wider acceptance of CCE for non-invasive
screening and diagnosis of colorectal neoplasia. Future studies should assess the impact of
AI algorithms in mitigating the limitations of CCE in a real-life clinical setting, particularly
the time required for reviewing each exam, as well as evaluate the potential benefits in
terms of diagnostic yield.
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