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Abstract 

The coronavirus disease 19 (COVID-19) has been rampant since 2019, severely affecting global public 
health, and causing 5.75 million deaths worldwide. So far, many vaccines have been developed to prevent 
the infection of SARS-CoV-2 virus. However, the emergence of new variants may threat vaccine 
recipients as they might evade immunological surveillance that depends on the using of anti-SARS-CoV-2 
antibody to neutralize the viral particles. Recent studies have found that recipients who received two 
doses of vaccination plus an additional booster shoot were able to quickly elevate neutralization response 
and immune response against wild-type SARS-CoV-2 virus and some initially appeared viral variants. In 
this review, we assessed the real-world effectiveness of different COVID-19 vaccines by population 
studies and neutralization assays and compared neutralization responses of booster vaccines in vitro. 
Finally, as the efficacy of COVID-19 vaccine is expected to decline over time, continued vaccination 
should be considered to achieve a long-term immune protection against coronavirus. 
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Introduction 
COVID-19, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), has ram-
parted the whole world since 2019, severely affecting 
global public health, causing social disruption and 
significant economic losses. As of February 2022, there 
were more than 396 million confirmed cases and 5.75 
million deaths worldwide [1]. With global spread of 
SARS-CoV-2, mutations are accumulating during 
replication, leading to viral variants that increase 
transmissibility, virulence or reduce effectiveness of 
vaccines and treatments [2]. 

SARS-CoV-2 contains four major structural 
proteins (spike protein, membrane protein, envelope 
protein, and nucleocapsid protein), which are 
encoded by individual open reading frames (ORFs) [3, 
4]. Spike protein is a glycoprotein located on the 
surface of SARS-CoV-2 viral particle. This protein can 
be cleaved into two domains: S1 and S2. S1 domain 
includes the N-terminal domain (NTD) and 
receptor-binding domain (RBD), and RBD can help 
coronavirus bind angiotensin-converting enzyme 2 

(ACE2) located at the surface of the host cells such as 
endothelial cells [5, 6]. Studies showed that the 
binding free energy (BFE) between RBD and ACE2 
was positively correlated with viral infectivity [7, 8]. 
The function of S2 domain can help the viral particle 
to enter the host cells via membrane fusion [9]. 
Among the three major structure proteins of 
SARS-CoV-2: spike, membrane and nucleocapsid, the 
gene encodes spike protein has the highest frequency 
of mutation especially in the RBD region that is used 
to design the currently used anti-COVID-19 vaccine 
[10]. Many antibody therapeutics and vaccines have 
been designed to target the spike protein based on the 
initially discovered viral strain that caused COVID-19 
in early 2020. The accumulation of these spike gene 
mutations in the new coronavirus is more likely to 
affect the effectiveness of developed vaccines against 
these new viral variants [11]. 

However, during the global spread of 
SARS-CoV-2, many new variant strains of this 
coronavirus have been isolated which may be formed 
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due to the accumulation of numerous mutations in the 
past two years [12]. Many mutations in spike protein, 
which strengthen the binding between the spike 
protein and ACE2, have been shown to affect the 
effectiveness of the existing anti-COVID-19 vaccines 
and monoclonal antibodies [13]. The mutagenesis has 
three mechanisms: molecular scale, organism scale, 
and population level. The first two mechanisms 
provide numerous candidate mutations in the SARS- 
CoV-2 genome. The population-level mechanism 
determines what mutations are predominant by 
natural selection that have two pathways of infectivity 
and vaccine resistance [8]. In the summer of 2020, 
Michigan State University established a model of 
infection based on natural selection and predicted that 
SARS-CoV-2 was more infectious on the mutations of 
residues 452, 489, 500, 501, and 505 in the RBD region, 
after computing the BFE changes of possible 
mutations by integrating genotyping, deep learning, 
biophysics, and mathematics [14]. The result was 
confirmed by pandemic SARS-CoV-2, in the last two 
years. Recently, vaccine-resistant mutations that are 
emerged after vaccinations, have been confirmed. 
Vaccine-resistant mutations with negative BFE 
changes, that disrupted the binding between the spike 
protein and antibodies, have been observed 
frequently, such as Y449S and Y449H, after many 
people in many countries were vaccinated in high 
rates [8]. The trend of increasing frequency of 
vaccine-resistant mutations correlated strongly with 
the proportion of fully vaccinated in Europe and 
America. Mutations in vaccine-resistant pathways 
also reduce the effectiveness of vaccines and antibody 
therapies, suggesting that COVID-19 will be a 
prolonged pandemic. 

As of February 2022, World Health Organization 
(WHO) listed five designated variants of concern 
(VOCs) for coronavirus: Alpha (B.1.1.7, earliest 
documented in the UK in September 2020), Beta 
(B.1.351, earliest documented in South Africa in May 
2020), Gamma (P.1, earliest documented in Brazil in 
November 2020), Delta (B.1.617.2, earliest 
documented in India in October 2020), and Omicron 
(B.1.1.529, earliest documented in multiple countries 
in November 2021) (Table 1). WHO has also listed 
two designated variants of interest (VOIs): Lambda 
(C.37, earliest documented in Peru in December 2020) 
and Mu (B.1.621, earliest documented in Colombia in 
January 2021) [15]. 

Vaccines are constantly been developed to 
achieve immune responses to SARS-CoV-2 virus [16]. 
However, vaccine development is a long-lasting and 
challenging process, taking years to complete. 
Currently, there are 195 vaccines in preclinical 
development and 142 vaccines in clinical trials [17]. 

As of 12 January 2022, 10 vaccines are listed under 
WHO Emergency Use Listing Procedure (EUL), 
which include four types: mRNA vaccines, viral 
vector vaccines, recombinant spike vaccines and 
inactivated vaccines. These vaccines are being widely 
used around the world to achieve immune protection 
against SARS-CoV-2. By February 2022, more than 3.7 
billion people were vaccinated with at least 1 dose 
worldwide, about 1/4 of the total population. There 
are 2.2 billion people that were fully vaccinated 
worldwide [18]. Many countries are working together 
to roll out a COVID-19 vaccine globally. 

 

Table 1. Variants of SARS-CoV-2 and mutations in RBD. 

Variants Mutations 
Alpha (B.1.1.7) E484K; S494P; N501Y 
Beta (B.1.351) K417F; E484K; N501Y 
Gamma (P.1) K417F; E484K; N501Y 
Delta (B.1.617.2) K417T; L452R; T478K 
Omicron 
(B.1.1.529) 

BA.1 G339D; S371L; S373P; S375F; K417N; N440K; G446S; S477N; 
T478K; E484A; Q493R; G496S; Q498R; N501Y; Y505H 

BA.2 G339D; S371L; S373P; S375F; T376A; D405N; R408S; K417N; 
N440K; S477N; T478K; E484A; Q493R; Q498R; N501Y; Y505H 

BA.3 G339D; S371L; S373P; S375F; D405N; K417N; N440K; G446S; 
S477N; T478K; E484A; Q493R; Q498R; N501Y; Y505H 

 
But the emergence of these new, potentially 

more infectious SARS-CoV-2 variants challenges 
vaccine protection [19]. Based on the changes of BFE, 
it was found that some mutations made SRAS-COV-2 
more infectious. Three key RBD mutations sites of 
N501, L452 and Y505H were proved in VOCs that 
promote transmission and break through the 
protection of vaccines (Table 1). The Delta and Alpha 
variants documented in 2020 were found to be more 
infectious, leading to a global pandemic. The Omicron 
variant is currently the most dominant pandemic 
strain, which accounted for 85% of new cases in 
January of 2022 [20]. The Omicron variant, designated 
by WHO as VOC within two days, has three lineages, 
BA.1, BA.2, and BA.3 (Table 1) [21]. BA.1 contains up 
to 32 mutations in the spike gene and 15 of these 
mutations clustered in the region encoding RBD 
strengthen infectivity and disrupt monoclonal 
antibodies [22-27]. Spike proteins are critical for viral 
entry and the main target of neutralizing antibodies. 
The Omicron variant has thus raised concerns that 
this viral stain may escape from protection conferred 
by vaccines. Recently, Omicron BA.2, which was more 
infectious than BA.1 based on changes of BFE and 
could lead to breakthroughs in vaccines, is replacing 
the BA.1 in China [28]. The lack of clinical data on the 
effectiveness of vaccines against new variants creates 
an uncertainty that could prolong the duration of the 
pandemic. We need to understand the effectiveness of 
COVID-19 vaccines, especially against VOCs. 

Therefore, the purpose of this article is to review 
the recent studies on the effectiveness of vaccines 
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against different SARS-CoV-2 variants. We hope this 
review will provide an overview on the effectiveness 
of various types of vaccines, which will contribute to 
the development of new treatments and new vaccines. 

Effectiveness of clinical vaccines against 
VOCs 

VOCs were able to break through the protection 
of vaccines, evade immunological surveillance and 
escape neutralizing antibodies after vaccination [23, 
29-33]. So far, the Alpha variant has been found to 
have limited effect on the efficacy of the vaccine. 
Numerous data and research have demonstrated that 
neutralization response and vaccine-induced immune 
protection declined against the Omicron variant 
compared to wild-type virus and other VOCs (Table 
2). The emerging evidence supports that the 
neutralizing antibodies against SARS-CoV-2, which 
can block the interaction between the spike protein 
with ACE2, play an important role in protective 
immunity after vaccination or infection. B and T 
lymphocytes also contribute to the protective effect 
against symptomatic infection. Several monoclonal 
antibody-based therapeutics have been approved to 
treat patients with SARS-CoV-2 [34]. However, the 
anti-Omicron activity of many monoclonal antibodies 
was diminished [23, 25, 35, 36]. Next, this review will 
discuss the efficacy of several commonly used 
vaccines against the coronavirus variants from 
published preclinical and clinical data in population 
studies and laboratory tests. 

 

Table 2. Efficacy and neutralization efficiency of different vaccines 

Outcome Wild type Alpha Delta Beta/Gamma Omicron 
Efficacy against infection % 
mRNA-1273 (Moderna) 94 73 70 61 44 
BNT162b2 (Pfizer–BioNTech) 95 94 88 72 70 
AZD1222 (AstraZeneca) 74 70 60 64 N/A 

 

mRNA vaccine 
The mRNA-1273 (Moderna) vaccine was 

co-developed by researchers at the National Institute 
of Allergy and Infectious Disease in USA. In 
population-based studies, effectiveness of 
mRNA-1273 vaccine after full doses was 
approximately 73% against infection of the Alpha 
variant, but 61% against infection of the Beta variant 
[37, 38] (Table 2). Only 55% of serum samples, 
randomly selected from participants in the 
Coronavirus Efficacy (COVE) phase 2 and phase 3 
trials, were detected to have neutralization response 
against the Omicron variant by geometric mean 
neutralizing titers (GMTs). Together, neutralization 
titers were 34.8-fold lower against the Omicron 
variant than the wild-type virus [33]. The 

effectiveness against omicron infection was 
approximately 44% at two weeks after vaccination, 
but 5.9% after 9 months [39]. 

In population-based studies, researchers in the 
UK found that vaccination with BNT162b2 (Pfizer–
BioNTech) vaccine or AZD1222 (AstraZeneca) vaccine 
decreased the risk of infection with the Alpha variant, 
but the risk of infection with the Delta variant 
increased relative to the Alpha variant [40]. The 
effectiveness of BNT162b2 vaccine against infection 
was approximately 94% against the Alpha variant, 
88% against the Delta variant [41], 72% against the 
Beta variant [42] and 70% against the Omicron variant 
[43] (Table 2). The neutralization titers of serum 
samples also verified these results against various 
viral strains (wild-type virus ˃ Delta variant ˃ Beta 
variant ˃ Omicron variant) and the neutralization 
efficiency with two doses of BNT162b2 vaccine 
against Omicron variant was lower (by a factor of 
about 20) than wild-type virus [43, 44]. 

In summary, these reports showed that after 
administration of aforementioned vaccines, the 
antibody titers against Omicron variant were lower 
than those against the wild-type virus and some stains 
of VOCs, especially the Omicron variant, may escape 
mRNA vaccines-induced immune protection. 

Viral vector vaccines 
AZD1222 (also known as ChAdOx1 nCoV-19) 

consists of a replication-deficient chimpanzee 
adenoviral vector containing the sequence of 
SARS-CoV-2 spike gene. The efficacy after two-doses 
of AZD1222 vaccination was approximately 70% 
against symptomatic infection of the Alpha variant 
[45] (Table 2). Likewise, a study by University College 
London Hospitals and the Francis Crick Institute in 
London showed that 37% serum samples with 
two-doses of AZD1222 vaccination were detected 
with quantifiable neutralizing antibody titer against 
the Omicron variant, which was lower than the 
detected rate against the Alpha and the Delta variants 
[46]. The neutralization titers of serum samples 
against different viral strains ranged in the following 
order: Alpha ˃ Delta ˃ Omicron. The research by 
College of Life Science and Technology, Beijing 
University of Chemical Technology also found that 
serum samples from some recipients of two-dose 
AZD1222 did not exhibit any detectable titer of 
neutralizing antibody against the Omicron variant 
and those data suggested that the Omicron variant is 
antigenically more different from the wild-type virus 
than the Beta and Delta variants [47]. So, those results 
showed that recipients who received viral vector 
vaccines (i.e. AZD1222) displayed a decreased 
neutralization response and immune response 
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relative to wild-type virus than to some of VOCs, 
especially the Omicron variant. 

Recombinant spike vaccines 
ZF2001, a recombinant dimeric RBD protein 

vaccine, induces RBD-directed neutralizing response, 
and is undergoing phase 3 clinical trials [48-50]. All 
the serum samples of ZF2001 recipients displayed 
positive neutralization response against wild-type 
virus and ZF2001 also preserved the neutralizing 
activity against the Delta variant [51]. However, it was 
almost impossible for ZF2001 to neutralize the 
Omicron variant [52]. 

Inactivated vaccines 
SARS-CoV-2 inactivated vaccines elicit immune 

response directed against the entire viral particle 
instead of only targeting the spike protein or RBD of 
the virus [53]. After 4 months, neutralizing antibodies 
against Gamma and Delta variants were limitedly 
detected with two-dose CoronaVac (Sinovac) [54]. 
Among the vaccine recipients, all serum samples were 
negative for both Omicron and Delta variants [55]. 
The third dose of CoronaVac was found to stimulate 
cross-protective B and T cell responses against 
variants [30, 56]. 

BBIBP-CorV (Sinopharm, Beijing CNBG), 
authorized by the Hungarian National Drug and Food 
Evaluation Authority, contains SARS-CoV-2 inactiva-
ted in Vero cells. Ninety percent of participants were 
below the age of 50 and they were detected to have 
RBD-binding antibody after two doses of BBIBP-CorV 
vaccination [57]. Neutralization titer was decreased 
against the Beta variant, a greater degree was found 
with the Delta variant. RBD binding antibodies of the 
serum samples were also decreased against the VOCs 
[58]. It was also reported that the neutralizing activity 
against wild-type virus was 80% after two doses of 
inactivated BBIBP-CorV and only 10% serum samples 
showed successful neutralization against the Omicron 
variant. Neutralization titer against Omicron variant 
was also significantly reduced relative to wild-type 
virus in serum samples recovered from Delta variant 
infection [35]. 

However, the BBIBP-CorV vaccine was effective 
in generating cross-protective B and T cell responses 
to prevent infection of other variants, which were 
mutated in spike protein [59, 60]. Those 
cross-protective responses have also been found after 
receiving vaccination of mRNA-1273 and BNT162b2 
mRNA [61, 62]. It thus suggests that the inactivated 
vaccine can generate cell-mediated immune responses 
against other variants. 

Effectiveness of vaccine booster against 
VOCs 

Although the efficiency of vaccination could be 
decreased over time, some studies have shown that 
both inactivated vaccines and mRNA vaccine booster 
significantly increased the neutralization titers to 
wild-type virus and other variants, restored efficiency 
of vaccine and reduced virus transmission [30, 36, 
63-65]. 

It has been observed that the neutralization 
efficiency against the wild-type virus was decreased 
by 7.6 times after 6 months of vaccination with a 
second dose of the mRNA-1273 vaccine [33]. The 
results obtained from 239 COVID-19 vaccinees 
showed that booster mRNA vaccines (mRNA-1273 
and BNT162b) increased neutralizing antibody 
response compared to two-dose mRNA vaccines, 
especially against the Omicron variant. After the third 
dose of mRNA-1273 vaccine, neutralization against 
the Omicron variant was detected in all serum 
samples, but not in some serum samples after 
two-dose mRNA-1273 vaccine [30, 33]. Data from 49 
states of U.S. in December 2021 showed that receipts 
of BNT162b2 vaccine booster was protective against 
the Omicron and Delta variants, while there was less 
protection for the Omicron variant than for the Delta 
variant [63]. It was also reported that the third dose of 
BNT162b2 vaccine was 100 times more effective in 
neutralizing the Omicron variant than the two-dose 
vaccination [44]. 

The neutralization titers against the Omicron 
variant and wild-type virus were elevated after the 
third inactivated vaccine [35]. The neutralization titer 
of BBIBP-CorV/ZF2001 heterologous booster group 
was higher relative to homologous booster group [66]. 
Both homologous and heterologous inactivated 
vaccine booster increased neutralizing antibodies and 
improved the protection against the Omicron variant 
[35]. Results demonstrated that the ZF2001 booster 
was more efficient against SARS-CoV-2 variants that 
have mutations in NTD of the spike, such as the Delta 
variant [54]. The study from Fudan University found 
that after BBIBP-CorV booster, the levels of antibody 
in the blood samples were increased, and humoral 
immune responses of spike-specific memory B and T 
cells were quickly elevated [67]. Therefore, it is very 
necessary to carry out COVID-19 vaccine booster to 
restore the efficiency of vaccine and limit virus 
transmission. 

Conclusion 
During the current pandemic, SARS-CoV-2 

variants are continuously selected, which can evade 
immunological surveillance and promote 
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transmission. Vaccines can loss immunity to 
SARS-CoV-2 variants due to the mutations in the 
spike proteins. The emergence of new variants threat 
vaccine recipients and researchers are finding new 
solutions to attenuate immune evasion. 

Interestingly, recipients who received an 
additional booster vaccine after two doses quickly 
elevated neutralization response and immune 
responses of spike-specific memory B and T cells and 
similar results were also observed in rhesus macaques 
[68]. However, the efficiency of vaccination decreased 
over time. For example, even after the second dose of 
the mRNA-1273 vaccination, the neutralization 
efficiency against the wild-type virus was decreased 
by 7.6 times after 6 months [33]. Similarly, after a third 
booster dose of mRNA-1273 vaccine, the 
neutralization efficacy against the Omicron variant 
was decreased by 6.3 times after five months. 
Therefore, continued vaccination even after the 
vaccine booster should be considered to achieve 
long-term immune protection against new emerging 
variants of SARS-CoV-2. 
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