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INTRODUCTION
As of January 2021, the overall number of global COVID-19 
cases is more than 100 million, while the deaths have 
increased to over 2 million.1 Currently, the US accounts for 
the highest number of severe acute respiratory syndrome 
coronavirus 2 (SARS- CoV-2) infections and SARS- CoV-
2- related fatalities at more than 25 million and 450,000, 
respectively. Since the beginning of the COVID-19 
pandemic, reverse- transcription PCR (RT- PCR) tests 
have been widely used and remain the primary tool for 
COVID-19 diagnosis.2–4 While most RT- PCR confirmed 
COVID-19 positive patients have mild and manageable flu- 
like symptoms, up to 11% develop severe disease requiring 
hospitalization.3,5,6 Of these, 25% need ICU admission.

With a surge in cases, guidelines from oversight committees 
planning intensive care unit (ICU) resource management 
strategies expect one in five hospitalized adult COVID-19 
positive patients to require ICU admission.7 Of these, 70% 
of ICU patients will require some ventilatory support, 
with   > 50% of ICU patients requiring invasive ventilatory 
support. Given the overwhelming demand for critical and 
limited resources such as ICU beds, mechanical ventila-
tors, etc., it is prudent to identify patient- level character-
istics at the time of admission to predict the need for these 
resources in COVID-19 patients. This will help to design 
surge capacity resource planning.

Recently, Artificial Intelligence (AI) systems for the diag-
nosis of COVID-19 on Chest X- ray (CXR) or chest CT have 
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Objectives For optimal utilization of healthcare 
resources, there is a critical need for early identification 
of COVID-19 patients at risk of poor prognosis as defined 
by the need for intensive unit care and mechanical venti-
lation. We tested the feasibility of chest X- ray (CXR)- 
based radiomics metrics to develop machine- learning 
algorithms for predicting patients with poor outcomes.
Methods In this Institutional Review Board (IRB) 
approved, Health Insurance Portability and Account-
ability Act (HIPAA) compliant, retrospective study, we 
evaluated CXRs performed around the time of admis-
sion from 167 COVID-19 patients. Of the 167 patients, 68 
(40.72%) required intensive care during their stay, 45 
(26.95%) required intubation, and 25 (14.97%) died. Lung 
opacities were manually segmented using ITK- SNAP 
(open- source software). CaPTk (open- source software) 
was used to perform 2D radiomics analysis.
Results Of all the algorithms considered, the AdaBoost 
classifier performed the best with AUC = 0.72 to predict 
the need for intubation, AUC = 0.71 to predict death, 
and AUC = 0.61 to predict the need for admission to the 

intensive care unit (ICU). AdaBoost had similar perfor-
mance with ElasticNet in predicting the need for admis-
sion to ICU. Analysis of the key radiomic metrics that 
drive model prediction and performance showed the 
importance of first- order texture metrics compared to 
other radiomics panel metrics. Using a Venn- diagram 
analysis, two first- order texture metrics and one second- 
order texture metric that consistently played an impor-
tant role in driving model performance in all three 
outcome predictions were identified.
Conclusions: Considering the quantitative nature and 
reliability of radiomic metrics, they can be used prospec-
tively as prognostic markers to individualize treatment 
plans for COVID-19 patients and also assist with health-
care resource management.
Advances in knowledge We report on the performance 
of CXR- based imaging metrics extracted from RT- PCR 
positive COVID-19 patients at admission to develop 
machine- learning algorithms for predicting the need for 
ICU, the need for intubation, and mortality, respectively.

http://creativecommons.org/licenses/by/4.0/
mailto:bino.varghese@med.usc.edu
https://doi.org/10.1259/bjr.20210221


Br J Radiol;94:20210221

BJRCXR- based prediction of clinical outcomes in COVID-19 using Radiomics

2 of 10 birpublications.org/bjr

been tested with variable accuracy.8–12 Thus, we aimed to validate 
the utility of quantitative CXR radiomics metrics in patients with 
RT- PCR confirmed COVID-19 infection in indiscriminately 
differentiating between patients with poor vs good outcomes. 
Here, poor outcomes are defined as the need for ICU admission, 
the need for intubation, and a higher risk of fatal outcomes in 
hospitalized patients. Based on current literature, we believe 
that CXRs contain predictive information of clinical outcomes 
in patients who develop severe symptoms of COVID-19.13,14 
Therefore, we hypothesize that using CXR- based radiomics with 
machine- learning, we can predict the need for ICU, intubation, 
and death among hospitalized patients.

Our study is unique as it focuses on quantitative extraction of 
imaging metrics from clinically acquired CXR, which is part of 
the standard of care (SOC) management of COVID-19 patients 
in the USA to predict clinical outcomes. We consider data from 
Los Angeles County representing a multi  ethnic patient popu-
lation in training our model. This is relevant since the outcome 
for COVID-19 is known to be dependent on demographics.15,16

METHODS AND MATERIALS
This project’s data were obtained from an IRB- approved 
COVID-19 imaging repository set up at our institution. This 
COVID-19 repository collects and stores imaging and associated 
clinical data from all RT- PCR positive COVID-19 patients in a 
University of Southern California hosted REDCap database. A 
waiver for informed consent was obtained. Subject’s privacy and 
confidentiality were protected according to applicable HIPAA 
and Institutional IRB policies and procedures.

PATIENT COHORT
Our study identified 167 patients (mean age 55.4 years; range 
19–93 years) between March and May 2020, with radiographic 
findings on CXRs available within ± 2 days from RT- PCR date. 
Our study cohort was obtained from three hospitals (one public 
teaching, one private teaching and one private community). 
Of the 167 patients, 107 were males, and 59 were females, and 
one other. Of the 167 patients, 68 (40.72%) required inten-
sive care during their stay, 45 (26.95%) required intubation, 
and 25 (14.97%) died. An experienced research coordinator 
(MP) conducted chart reviews on all patients enrolled in the 
COVID-19 repository. Our inclusion criteria restricted enroll-
ment to only patients with a confirmed diagnosis of COVID-19 
by RT- PCR and a radiologic finding on the CXR. Details of 
patient demographic information has been provided in Table 1.

CXR ACQUISITIONS
Our analysis included one CXR per patient for a total of 167 
CXRs. All these images were community- acquired as part of 
creating a COVID-19 repository. Not all patients had a computed 
tomography (CT) to correlate with the CXR. The reposi-
tory contains demographic, imaging, clinical and laboratory 
data for all COVID-19 positive patients seen at three different 
sites, namely, the Keck Medical Center of USC, Verdugo Hills 
Hospital, and Los Angeles County + USC Medical Center. Of the 
collected data, we used the CXR images closest to the date of 
RT- PCR- confirmation. We also used the outcome data, viz, the 

need for ICU admission, intubation, and death. All studies were 
uploaded to and accessible from our institutions’ picture archival 
and communications systems (PACS) as part of clinical SOC at 
the time of enrollment.

RADIOMICS ANALYSIS
For radiomics analysis, the single largest lung abnormality was 
identified on the CXR per patient. The opacities on the CXRs 
were manually segmented by HS (>5 years of experience in diag-
nostic radiology) using a two- dimensional region of interest 
(ROI) that was placed contouring the identified lung abnor-
mality using ITK- SNAP (open- source software; http://www. itk. 
snap. org). If no lung abnormality was apparent, then segmenta-
tion was not performed. All the 167 patients within our cohort 
had lung opacities. Care was taken to avoid artifacts, such as ribs, 
wires, etc. The resultant ROIs from the ITK- SNAP segmenta-
tions were saved for transfer, processing, and radiomic analysis 
(Figure  1). Cancer Imaging Phenomics Toolkit (CaPTk),17–19 
an open- source software platform (https://www. med. upenn. 
edu/ cbica/ captk/), was used for feature extraction of ROIs 
obtained following ITK- SNAP extraction of tumor lesions. These 
segmented ROIs were then transferred to CaPTk for radiomics 
analysis (Table  2). Only 2D radiomics analysis of texture was 
performed. The radiomics metrics quantify the complex rela-
tionship between pixels/voxels making up the region of interest 
(texture) using sophisticated data characterization algorithms. 
Some of the key metrics featured within the CaPTk radiomics 

Table 1. Description of patient cohort. Age reported as mean, 
median (interquartile range). All other variables reported as 
sample size (percentage)

Variables Sample size
No. of patients (n) 167

Age 55 ± 17, 55 (43 to 68)

Sex

  Male 107 (64.07%)

  Female 59 (35.33%)

  Other 1 (0.6%)

Ethnicity

  Hispanic Latino 111 (66.47%)

  Non- Latino 40 (23.95%)

  Unknown 16 (9.58%)

Mortality

  Survived 142 (85.03%)

  Deceased 25 (14.97%)

ICU Admission

  No ICU 99 (59.28%)

  ICU 68 (40.72%)

Intubation

  No intubation 122 (73.05%)

  Intubation 45 (26.95%)

http://birpublications.org/bjr
http://www.itk.snap.org
http://www.itk.snap.org
https://www.med.upenn.edu/cbica/captk/
https://www.med.upenn.edu/cbica/captk/
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platform include first- order statistical metrics of texture, such as 
intensity, histogram; second- order statistical metrics of texture, 
such as Grey level co- occurrence matrix (GLCM), Grey level size 
zone matrix (GLSZM), Grey level run length matrix (GLRLM), 
and higher order statistical metrics of texture such as Local 
binary patterns (LBP). First- order statistical metrics quantify 
only the ’signal’s intensity within a region of interest. Second- 
order statistical metrics consider the intensity and spatial orien-
tation, location within a region of interest. Higher order metrics 
transform the image to provide additional information regarding 
frequency, assessment at multiple levels (local versus global 
assessment). All results were exported in comma- separated value 
(.csv) format for radiomics analysis.

STATISTICAL ANALYSIS
For demographic information, we have used Chi- square test (for 
categorical data) and ANOVA or Kruskal–Wallis test (for contin-
uous data) to compare across the patient demographics across 
the three study sites. Univariate independent t- test or Wilcox on 
rank sum test depending on data normality, along with mean, 
standard division, and interquartile range displayed in box 
plot were used as the descriptive analyses for the association of 
radiomic features with clinical outcomes. Benjamini- Hochberg 
(BH) procedure was used to control multiple comparison error 
for univariate analyses. Percent features with unadjusted and 
BH procedure adjusted p < 0.05 by each radiomics family was 
calculated as the assessment of overall signal strength from each 
radiomic family, in comparing to variable of importance gener-
ated by machine learning. Three machine learning (ML) algo-
rithms were used to evaluate the ability of radiomic features to 
predict biomarkers: Random Forest (RF), Real AdaBoost,20 and 
ElasticNet. RF and AdaBoost are considered non- parametric 
approaches while ElasticNet is considered parametric. For all 
three classifiers, 10- fold cross- validation was used to evaluate 

model performance. The full dataset was equally divided into 
tenfolds. We re- iterated the learning process ten times and 
applied the classifier to each testing sample. Thus, each study 
sample served as an independent testing case once. Receiver 
operating characteristic (ROC) curve was constructed using the 
predicted probability from 10 testing datasets combined. The 
area under the curve (AUC) with 95% confidence interval was 
used to assess prediction accuracy. We applied a fivefold cross- 
validation (‘out- of- bag’ cross- validation) process within each 
iteration to determine the final prediction model before scoring 
through the 10% independent testing sample. The 10% of inde-
pendent testing data were excluded from the learning phase to 
avoid information leaking. For Random Forest, we have used 800 
trees with a maximal depth of 50, leaf size of 16, and variable to 
try was the square root of variable number. For Real Adaboost, 
since it is more efficient, only 25 trees were built with a depth of 
3 as recommended by21.21 For Random Forest and Adaboost, the 
Gini impurity index was used as the loss function. Loh method22 
was used for variable selection. This method selected the vari-
able that has the smallest p- value of a chi- square test of associ-
ation in a contingency table; interval variable was truncated by 
dynamically calculated proportion of standard deviation from 
mean. Predicted residual sum of squares (CVPRESS) was used 
for ElasticNet to select candidate predictors and the final model. 
For imbalanced outcome, prior correction as described by King  
et. al.23 was used. Variable- of- importance (VOI) from Random 
Forest and Adaboost was selected and ranked using Out- of- bag 
Gini index (OOBGini), while ElasticNet was the remaining vari-
ables in the final model. For Random Forest and Adaboost, the 
cut- off for top“VOI was determined by the “cliff ” of OOBGini, 
that is, a sudden large change from the previous ranking posi-
tion. The VOI selection procedure was repeated ten times, and 
the final ranking was based on the number of counts as top VOI 
during the 10- fold cross- validation. SAS Enterprise Miner 15.1: 

Figure 1. A typical radiomics workflow showing its four main Stages 1. Image acquisition 2. Segmentation and/or ROI marking 
(highlighted in red) 3. Feature extraction and finally 4. Statistical analysis. The two green axes divide the image plane into four 
quadrants. We use 237 radiomic metrics across seven different texture families for this study.

http://birpublications.org/bjr
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Table 2. Radiomic Features Evaluated on Diagnostic CXR in 167 COVID-19 positive patients. Radiomic features extracted by 
CaPTk (Cancer Imaging Phenomics Toolkit). CaPTk provides quantitative imaging analytics for precision diagnostics and predic-
tive modeling of clinical outcomes. All features of CapTk are in conformance with the Image Biomarker Standardization Initiative 
(IBSI), unless otherwise indicated within the documentation of CaPTk.19 Additional details on the definition equation and imple-
mentation of these metrics in CaPTk can be found here: https://cbicagithubio/CaPTk/tr_FeatureExtractionhtml#tr_fe_defaults. 
From all the radiomic metrics available on CaPTk, only the 2D radiomic metrics of texture were calculated

Family Metric What it measures
Intensity- based
(Texture)

Minimum Intensity These features quantify the distribution of the grey- levels 
(histogram) making up the region of interest. It provides 

distribution of the histogram. These are first- order statistical 
metrics of radiological texture, as it accounts for only the grey- 

level intensity in the image, not its spatial orientation of the 
image.

Maximum Intensity

Mean Intensity

Standard Deviation

Variance

Skewness

Kurtosis

Histogram- based
(Texture)

Bin frequency & probability These features quantify the distribution of the grey- levels 
(histogram) making up the region of interest. These are first- 

order statistical metric of radiological texture.Intensity values (fifth quantiles)

Intensity values (95th quantiles)

Bin- level statistics

GLRLM: Grey level run length matrix
(Texture)

SRE: Short Run Emphasis These metrics quantify the relationships between image pixels/
voxels. In GLRLM analysis, texture is quantified as a pattern of 
grey- level intensity pixel in a fixed direction from a reference 

pixel. Run- length is the number of adjacent pixels with the same 
gray- level intensity in each direction. These are second- order 

statistical metrics of radiological texture as it accounts for both 
the grey- level intensity and its spatial orientation of the image.

LRE: Long Run Emphasis

GLN: Grey Level Non- uniformity

RLN: Run Length Non- uniformity

LGRE: Low Grey Level Run Emphasis

HGRE: High Grey Level Run Emphasis

SRLGE: Short Run Low Grey Level 
Emphasis

SRHGE: Short Run High Grey Level 
Emphasis

LRLGE: Long Run Low Grey Level 
Emphasis

LRHGE: Long Run High Grey Level 
Emphasis

GLCM: Grey level co- occurrence matrix
(Texture)

Energy These metrics quantify the relationships between image pixels/
voxels. In GLCM analysis, texture is quantified as a tabulation of 
how often a combination of grey- level values in an image occur 

next to each other at a given distance in each direction. These are 
second- order statistical metrics of radiological texture.

Contrast

Entropy

Homogeneity

Correlation

Variance

SumAverage

Variance

Autocorrelation

(Continued)

http://birpublications.org/bjr
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High- Performance procedures were used for machine learning. 
SAS9.4 was used for all other statistical analysis.

RESULTS
In this study, we extracted the texture (spatial distribution of grey 
levels) content present within the segmented lung opacities using 
radiomics. There were 237 features extracted for the data anal-
ysis. The details of our patient cohort are shown in Table 1.

In Figure 2, we have plotted the AUC values for predicting the 
need for ICU, the need for intubation, and death for the three 
machine learning algorithms considered in this study. This 
figure illustrates that the Adaboost classifier performs the best in 
predicting death and intubation. It has similar performance with 
ElasticNet in predicting the need for ICU.

The associated sensitivity, specificity, positive- predictive value, 
and negative- predictive value for the three machine learning 
models across the three outcomes have been reported (Supple-
mentary Material 1).

Of the three clinical outcomes, Adaboost- based radiomics 
signature showed reasonable discrimination (AUC  >0.72) for 
predicting the need for intubation among patients admitted in the 
ICU. The Adaboost- based radiomic signature reported an AUC 

of 0.71 and 0.61, respectively, in predicting death and the need 
for ICU among hospitalized. Our univariate analyses supported 
these data. 14.7%, 15.2%, and 20.6% of all radiomic metrics 
reached significance at the p ≤ 0.05 level in differing between two 
groups across the three clinical outcomes, respectively.

Across the seven texture families analyzed, GLRLM yielded the 
greatest percentage of signatures within a given family to reach 
significance at the p ≤ 0.05 level at 69.38% when assessing the 
differences in radiomic metrics between hospitalized patients 
with a higher risk of death compared to others. Similarly, first- 
order texture metrics such as histogram analysis and intensity 
yielded the greatest percentage of signatures within a given family 
to reach significance at the p ≤ 0.05 level at 88.9% when assessing 
the differences in radiomic metrics between ICU patients in 
need for intubation vs their controls. Similar results were also 
observed when assessing the differences in radiomic metrics 
between hospitalized patients in need of ICU vs their controls.

We used the Out- of- bag Gini index to rank the variables of 
importance. Of the radiomic metrics, the top 10 that met the 
criteria for variables of importance for the Adaboost model 
were from the first- order texture family, such as histogram and 
intensity, followed by GLSZM and GLCM. This observation was 
consistent across the three ’outcomes’ prediction models. The 

Family Metric What it measures
GLSZM: Grey level size zone matrix
(Texture)

SZE: Small Zone Emphasis These metrics quantify the relationships between image pixels/
voxels. In GLSZM analysis, texture is quantified as a tabulation of 
how often a combination of grey- level values in an image occur 
next to each other at a given distance. Contrary to GLCM and 
GLRLM, GLSZM is direction independent. These are second- 

order statistical metrics of radiological texture.

LZE: Large Zone Emphasis

GLN: Gray Level Non- Uniformity

ZSN: Zone- Size Non- Uniformity

LGZE: Low Gray Level Zone Emphasis

HGZE: High Gray Level Zone Emphasis

SZLGE: Small Zone Low Gray Level 
Emphasis

SZHGE: Small Area High Gray Level 
Emphasis

LZLGE: Large Zone Low Gray Level 
Emphasis

LZHGE: Large Zone High Gray Level 
Emphasis

GLV: Gray Level Variance

ZV: Zone Variance

LBP: Local binary patterns
(Texture)

Select first- order and second order 
texture metrics such as mean, median, 

standard deviation etc.

These metrics are computed using sampling points on a circle of 
a given radius and using mapping table. These are higher- order 

statistical metrics of radiological texture.

NGTDM: Neighborhood grey tone 
difference matrix
(Texture)

Coarseness These metrics quantify the difference between a gray- level 
intensity and the average gray- level intensity of its neighborhood 
within a given distance. These are second- order statistical metric 

of radiological texture.
Busyness

Contrast

Complexity

Strength

Table 2. (Continued)

http://birpublications.org/bjr
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distribution of these metrics for Adaboost model is summarized 
in Figure 3.

A Venn- diagram approach was used to access the overlap of 
radiomic metrics that made it to the variable of importance 
criteria for predicting the three outcomes. The results have been 
summarized in Figure  4. Many overlapping radiomic metrics 
were identified between the three prediction models. Greater 
overlap was found between the radiomics metrics driving the 
prediction model for the need for ICU and need for intubation, 
compared to other scenarios. At least three different radiomics 
metrics that met the top 10 variables of importance criteria were 
common in the three outcomes' prediction models.

DISCUSSION
Techniques to predict the need for key clinical resources, such as 
the need for ICU, need for intubation, and high risk of death, are 
crucial for surge and mass casualty planning, particularly during 
the COVID-19 pandemic.24 Currently, qualitative imaging, clin-
ical, demographic, and blood panel- based metrics are being 
employed, yet their accuracy varies. Accurate early- on quantita-
tive indicators based on CXR, which is currently part of the stan-
dard imaging workup in COVID-19 patients, has the potential 
to achieve this task. This study utilized a CXR- based radiomics 
analysis applied to multicenter data to construct such a decision 
classifier. We used three machine- learning approaches, namely 
Adaboost, Elastic net, and RF, which yielded reasonable to good 
discriminative power in predicting clinical outcomes, the need 
for ICU, the need for intubation, and death. Of the three machine- 
learning approaches, the best performance was observed using 
Adaboost. We report AUCs of 0.72 95% CI (0.63 0.81), 0.71 
95% CI (0.58 0.84) and 0.61 95% CI (0.49 0.67) in predicting the 
need for intubation, death and the need for ICU, respectively in 
167 RT- PCR confirmed COVID-19 positive patients. In addi-
tion to creating prediction models, we also identified radiomic 
metrics that drive the predication models performance across 
the three outcomes and investigated the overlap in these metrics. 
Our results show greater overlap between the radiomics metrics 
driving the prediction model for the need for ICU and the need 
for intubation compared to other scenarios. Post- validation in 
other studies, the results presented in this study demonstrate that 
data acquired at or around the time of admission of a COVID-19 
patient to a care facility may aid in providing an objective and 
accurate assessment of clinical outcomes, particularly the need 
for intubation in ICU patients. The presented work is foun-
dational, and we subsequently plan to include lab and clinical 
metrics for these patients, which may help improve the predic-
tive performance of these models. Central to the hypothesis 
of radiomics applicability in CXR of COVID-19 patients is its 
ability to assess lung lesions objectively, such as opacities, and its 
heterogeneity dynamically in longitudinal studies. The distinc-
tive advantage of CXR radiomics is the comparatively low turn- 
around time for obtaining results. Despite potential applications 
of CXR radiomics in COVID-19 assessment, radiomics research 
has generally been hindered by the search for metrics that are 
both robust (i.e., stable across multiple image settings) and 
reproducible (i.e., stable across multiple different scanners).25,26 
While single- scanner, single- center databases, in theory, provide 

Figure 2. Area under the curve (AUC) plotted along the x- axis 
for the three classifiers (i.e., Ada Boost, Elastic Net and Ran-
dom Forest) considered in the study for predicting the need 
for ICU (A), need for intubation (B) and mortality (C). Of the 
three classifiers, Ada Boost shows the best performance for 
predicting the need for intubation and mortality with an AUC 
of 0.72 and 0.71, respectively. It has similar performance with 
ElasticNet in predicting ICU with an AUC of 0.61.

http://birpublications.org/bjr
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Figure 3. Variable (radiomic metric) of importance is plotted along the y- axis for the Adaboost model across the three outcome 
predictions i.e., need for ICU, need of intubation and death, respectively based on ranking of radiomic metrics within a rigorous 
LOO cross- validation procedure. ‘Frequency’ defined as the number of times each variable made to the top 10 variable of impor-
tance list during 10- fold cross- validation is plotted along the x- axis.

http://birpublications.org/bjr
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cleaner analyses, these conditions are not replicable in the real- 
world environment. For our study, we have included data from 
three sites with large difference in age and ethnicity distribution 
(Supplementary Material 1) and used a cross- validation method 
to assess the model robustness. A 10- fold cross- validation will 
have had reshuffled the data 10 times and mixed the data from 
different institutes in both learning and testing sample. This 
procedure has a similar function as “intend- to- treat” that is, to 
washout the artefact if the prediction model only works for data 
from one institute/scanner but not others.

CT and CXR have been traditionally used to diagnose and 
manage viral pneumonia. Since atypical pneumonia is the main 
presentation of SARS- CoV-2 infection, much has been published 
using AI- augmented imaging techniques to assess COVID-19; 
however, these have been mostly limited to CT and mostly using 
visual assessment and/or semi- quantitative methods. In addition, 
pathological studies on biopsied lung tissue from COVID-19 
patients suggest thrombosis with microangiopathy and vascular 
angiogenesis to be strong discriminators of the disease.27 There-
fore, radiomic analysis, particularly texture analysis, which has 
been shown to capture these phenotypes, could provide more 
information about COVID-19 as well.28,29

Using data from 315 patients, Homayounieh et al reported 
promising use of chest CT radiomics to differentiate in outpa-
tient vs inpatient with an AUC of 0.84 (p < 0.005), which was an 
improvement from “the ’radiologists’ interpretations of disease 
extent and opacity type, which had an AUC of 0.69 (p < 0.0001).30 
The group also reported an improvement in the performance 
of radiomics based prediction model as opposed to radiologist 

predictions in need for ICU admission (AUC:0.75 vs 0.68) and 
death (AUC:0.81 vs 0.68) (p < 0.002). Yue et al reported CT radio-
mics models based on a signature of 6 second- order radiomic 
metrics that discriminated short- and long- term hospital stay 
in 52 COVID-19 patients, with areas under the curves of 0.97 
(95%CI 0.83–1.0) and 0.92 (95%CI 0.67–1.0) by logistic regres-
sion and random forest, respectively.31 While the performance 
of CT is better than CXR in assessing COVID-19 infections,32 
CXR is easier to perform in ICU patients and recommended by 
various societies in the USA. However, most of the radiomics 
studies using CXR data revolved around detecting COVID-19 
from other viral infections.

Based on our Venn- diagram approach overlapping radiomic 
metrics were identified between the three prediction models. 
Greater overlap was found between the radiomics metrics driving 
the prediction model for the need for ICU and need for intuba-
tion, compared to other scenarios. Six different radiomic metrics, 
five from the first- order family, namely intensity, and one from 
the second order family, namely GLCM, were found overlapping 
between the radiomics metrics driving the prediction model for 
the need for ICU and need for intubation. Interestingly, all the 
overlapping metrics belong to texture families assessing spatial 
heterogeneity in grey- levels within the segmented ROI. The 
overlapping metrics between the need for ICU and need from 
intubation show the close association of changes in textures as 
a patient in the ICU eventually needs intubation. These can be 
detected from CXR scans taken at admission.

While statistical harmonization methods such as ComBat have 
been used to harmonize scans from different scanners and/or 

Figure 4. Venn diagram showing the overlap in radiomic metrics between the three prediction models. Of the 3- common over-
lapping radiomic features across the three prediction models, two belong to the first- order texture metrics: Histogram analysis. 
The first one, MeanAbsoluteDeviation measures the average distance between each data value and the mean. The metric provides 
a quantification of the “spread” of the values in a data set. The other histogram metric, entropy help quantifies the information 
contained within the dataset. Lastly the GLSZM metric: ZoneSizeEntropy evaluates entropy (or uniformity) in the distribution of 
groups of connected voxels with the same discretized intensity.

http://birpublications.org/bjr
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acquisition settings.33 A recent study showed when scans been 
harmonized, it may not preserve the original effect size. In some 
scenarios, it may introduce “unwanted effects”, which may exag-
gerate the prediction accuracy.34 When the learning and indepen-
dent testing data been “harmonized” together, the independent 
data are no longer truly “independent” and may be the reason for 
the improved accuracy when using ComBat. To the best of our 
knowledge, no study has examined the change of false discovery 
when using ComBat. While harmonization of radiomic metrics 
aid in the reliable assessment of radiomics using multicenter 
data, not all radiomic features require harmonization. Based on 
previously published radiomics reliability studies using custom- 
built CT- radiomics phantoms, we identified radiomic features 
that were robust without the necessity of harmonization.25,26 
During cross- validation, the robust features were much more 
likely to be retained as important predictors. The features with 
large difference between institutes and scanners would drop out 
since the unstable signals mostly cancel each other. We have 
conducted sensitivity analysis using robust feature only in this 
study (Supplementary Material 1). The prediction accuracy using 
only the robust features remained similar to the full model using 
all features. Therefore, while conservative our results are robust.

Our study is not without limitations. All CXR images were 
segmented manually, which might not be feasible in analyzing 
very large datasets. The segmented ROIs were the largest most 
representative captures of the ground glass opacities that were 
visually observed on the CXR. The exact shape of the ROI was 
not critical and hence not evaluated in the analysis. Consid-
ering CXRs were obtained from multiple sites including portable 
units, an absolute size assessment of the ROIs was not practical. 
In subsequent studies, we intend to perform a semi- quantitative 
assessment of ROI size. However, despite these limitations, this 
study can lay the foundation for future research in this field. Our 
results can be used to develop more accurate tools for identifying 
early predictors of poor outcomes such as the need for intuba-
tion, ICU admission, or death in COVID-19 patients.

Current literature reports on strong predictors for the outcome 
for example, age is the strongest predictor for death, oxygen 
saturation is the strongest predictor for intubation.35 When 
these factors are added as inputs into the predictive models, the 
machine learning classifiers automatically choose these metrics 

instead of radiomics features. However, since the focus of this 
paper is to assess the predictive value of radiomic features for as 
markers for outcomes, we did not include non- imaging predic-
tors within our prediction models. We considered ‘regressing out’ 
the influence from non- imaging predictors for each radiomic 
feature. However, the list of potential non- imaging predictors 
and its strength of association with each radiomic feature is vari-
able. Also, arbitrary regressing out of too many non- imaging 
predictors (confounders) with weak associations will create arti-
ficial effects in the machine learning. Consequently, we adopted 
cross- validation as a safeguard against confounding effects. The 
confounding effect is always introduced by data sampling. When 
splitting data into learning and testing sample, the confounding 
relationship will change, for example, a confounder in learning 
sample will not likely be a confounder in testing sample. There-
fore, if the model’s prediction accuracy can be repeated in the 
cross- validation process, it is indicative of minimal impact from 
confounding factors.

CONCLUSION
This work represents the performance evaluation of CXR- based 
imaging metrics extracted from RT- PCR positive COVID-19 
patients at admission to develop machine learning algorithms 
for predicting the need for ICU, the need for intubation, and 
mortality, respectively. Following validation using a larger cohort, 
early assessment of these predictors can help healthcare systems 
strategize resource management, particularly during a surge of 
cases. Future studies should explore rigorous validation strate-
gies using deep learning methods within a multicenter setting.
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