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Mitogen-activated protein kinase kinase 1 (MAP2K1) is a dual specificity protein kinase
that phosphorylates both threonine and tyrosine residues in ERK. MAP2K1 mutations
have been identified in several cancers. However, their role in Middle Eastern papillary
thyroid cancer (PTC) and colorectal cancer (CRC) is lacking. In this study, we evaluated
the prevalence of MAP2K1 mutations in a large cohort of Middle Eastern PTC and CRC
using whole-exome and Sanger sequencing technology. In the discovery cohort of 100
PTC and 100 CRC cases (comprising 50 MAPK mutant and 50 MAPK wildtype cases
each), we found oneMAP2K1mutation each in PTC and CRC, both of which wereMAPK
wildtype. We further analyzed 286 PTC and 289 CRC MAPK wildtype cases and found
threeMAP2K1mutant PTC cases and twoMAP2K1mutant CRC cases. Thus, the overall
prevalence of MAP2K1 mutation in MAPK wildtype cases was 1.1% (4/336) in PTC and
0.9% (3/339) in CRC. Histopathologically, three of the four MAP2K1 mutant PTC cases
were follicular variant and all four tumors were unifocal with absence of extra-thyroidal
extension. All the three CRC cases harboring MAP2K1 mutation were of older age (> 50
years) and had moderately differentiated stage II/III tumors located in the left colon. In
conclusion, this is the first comprehensive report of MAP2K1 somatic mutations
prevalence in PTC and CRC from this ethnicity. The mutually exclusive nature of
MAP2K1 and MAPK mutations suggests that each of these mutation may function as
an initiating mutation driving tumorigenesis through MAPK signaling pathway.

Keywords: mutation, MAP2K1, papillary thyroid cancer, colorectal cancer, somatic
INTRODUCTION

Mitogen-activated protein kinase (MAPK) pathway has been known to play an important role in the
pathogenesis and survival of many tumors, especially thyroid and colorectal cancers (1–4). Genetic
alterations that aberrantly activate this kinase pathway in cancers are typically the result of BRAF or
KRAS mutations in the majority of cancers displaying MAPK activation (5–7). It is known that
BRAF is not the only downstream kinase in theMAPK pathway subject to mutation and subsequent
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MAPK activation. Several reports have identified oncogenic
mutations in MAPK kinase 1 (MAP2K1, also called MEK1) as
alternative mechanism for MAPK pathway activation in BRAF
wild-type tumor in various cancers (8–11). Mutations in
MAP2K1, a primary downstream effector of RAF kinases, are
uncommon and subsequently tumors harboring these mutations
need to be explored, especially in patients who might be treated
with MEK and RAF targeted therapy.

MAP2K1 encodes a dual specific serine/threonine and
tyrosine kinase, activated in response to phosphorylation by
RAF kinase (12). MAP2K1 mutations and deletions in the
activation segment have been shown to constitutively activate
the protein (13, 14). Mutations of MAP2K1 have been reported
in several human cancers, especially melanoma, Langerhans
histocytosis, hairy cell leukemia and lung adenocarcinoma (9–
11, 15, 16). Most of the reported MAP2K1 mutations tend to be
mutually exclusive with other MAPK driver mutations (8, 9, 15).
Mutations affecting the N-terminal negative regulatory domain
encoded by exon 2 and the catalytic core encoded by exon 3
accounted for majority of previously reported MAP2K1
mutations (9, 17–19).

Despite the major role ofMAPK pathway in colorectal cancer
(CRC) and papillary thyroid cancer (PTC), there are few reports
about the prevalence of MAP2K1 mutations in these tumor sites
(17, 20–22). More importantly, data on MAP2K1 mutations in
PTC and CRC from Arab Middle Eastern ethnicity is lacking.
Therefore, we sought to determine the prevalence of MAP2K1
mutations in a large cohort of Middle Eastern PTC and CRC. In
the discovery cohort, we performed whole-exome sequencing on
a discovery cohort of 100 PTC samples and 100 CRC samples.
We then validated our findings in set of additional 286 PTC and
289 CRC using Sanger sequencing analysis.
MATERIALS AND METHODS

Patient Selection and Tumor Samples
The initial discovery cohort included 100 cases each of PTC and
CRC (50 MAPK (BRAF/KRAS/NRAS/HRAS) mutant and 50
MAPK wildtype) diagnosed at King Faisal Specialist Hospital
and Research Centre (KFSHRC). Subsequent validation cohort
consisted of 286 PTC and 289 CRC samples, all of which lacked
mutations in the MAPK genes. Clinico-pathological data were
collected from case records, the details of which are summarized
in Tables 1 and 2. Institutional Review Board of KFSHRC
provided ethical approval for the current study. Research
Advisory Council (RAC) granted waiver of informed consent
for use of retrospective patient case data and archival tissue
samples under project RAC# 2110 031 and 2190 016.

DNA Isolation
DNA samples were extracted from formalin-fixed and paraffin-
embedded (FFPE) CRC tumor tissues utilizing Gentra DNA
Isolation Kit (Gentra, Minneapolis, MN, USA) according to the
manufacturer’s protocols as elaborated in the previous
studies (23).
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Whole-Exome Sequencing Analysis
DNA samples were analyzed by whole exome sequencing using
Illumina Novaseq. Sequencing reads in fastq format were
mapped to the human genome version 19 using Burrows-
Wheeler Aligner (BWA) (24). PCR duplicate marking, local
realignment and base-quality recalibration were performed
with Picard tools (http://broadinstitute.github.io/picard/) and
GATK (25).

Single nucleotide variants (SNVs) and indels were called
with MuTect (26), and VarScan2 (http://varscan.sourceforge.
net) respectively. Annotation of somatic variants was
performed using ANNOVAR (27). The SNVs that passed the
standard Mutect and VarScan2 filters were retained, and
common SNPs with minor allele frequency (MAF) of > 0.001
in dbSNP, the NHLBI exome sequencing project, 1000
Genomes and our in-house exome database of around 800
normals were removed for further analysis. Somatic SNVs were
manually checked using Integrated Genomics Viewer (IGV) to
filter out the artifacts.
TABLE 1 | Clinico-pathological variables for the papillary thyroid cancer
patient cohort.

Clinico-pathological
variables

Testing cohort (n = 100) Validation cohort
(n = 286)

n (%) n (%)

Age (years)
Median 39.2 30.9
Range 12–74 6–89
<55 86 (86.0) 257 (89.9)
≥55 14 (14.0) 29 (10.1)
Gender
Female 78 (78.0) 213 (74.5)
Male 22 (22.0) 73 (25.5)
Histopathology
Classical Variant 47 (47.0) 187 (65.4)
Follicular Variant 23 (23.0) 69 (24.1)
Tall Cell Variant 15 (15.0) 8 (2.8)
Others 15 (15.0) 22 (7.7)
Extra Thyroidal Extension
Absent 56 (56.0) 185 (64.7)
Present 44 (44.0) 101 (35.3)
pT
T1 23 (23.0) 82 (28.7)
T2 23 (23.0) 73 (25.5)
T3 46 (46.0) 105 (36.7)
T4 8 (8.0) 26 (9.1)
pN
N0 48 (48.0) 119 (41.6)
N1 40 (40.0) 142 (49.7)
Nx 12 (12.0) 25 (8.7)
pM
M0 95 (95.0) 264 (92.3)
M1 5 (5.0) 22 (7.7)
Stage
I 89 (89.0) 248 (86.8)
II 5 (5.0) 23 (8.1)
III 2 (2.0) 5 (1.7)
IVA 0 1 (0.3)
IVB 3 (3.0) 6 (2.1)
Unknown 1 (1.0) 3 (1.0)
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Sanger Sequencing Analysis
Sanger sequencing technology was utilized to sequence entire
coding and splicing regions of exons 2 and 3 in MAP2K1 gene
among 286 MAPK wildtype PTC and 289 MAPK wildtype CRC
samples as validation cohort. In addition, the pathogenic variants
detected by Exome sequencing analysis were further confirmed
Frontiers in Oncology | www.frontiersin.org 3
by Sanger sequencing analysis. Primer 3 online software was
utilized to design the primers (available upon request). PCR and
Sanger sequencing analysis were carried out as described
previously (28). Reference sequences were downloaded from
the NCBI GenBank and sequencing results were compared
with the reference sequences by Mutation Surveyor V4.04 (Soft
Genetics, LLC, State College, PA).

Pathogenicity Assessment of Mutations
Mutations were characterized as pathogenic according to The
American College of Medical Genetics and Genomics (ACMG)
guidelines or found functional in The Clinical Knowledgebase
database (https://ckb.jax.org/). The remaining mutations were
termed pathogenic if found deleterious by two of the three in
silico algorithms (SIFT, PolyPhen, and MutationTaster).
RESULTS

MAP2K1 Mutation in PTC and CRC
In the discovery cohort of PTC cases consisting of 50 MAPK
wildtype and 50 MAPK mutant cases, one inframe deletion
(p.I99_K104del) of MAP2K1 was identified in a MAPK
wildtype case, accounting for 2% (1/50) of all MAPK wildtype
PTC cases. No mutation was detected in MAPK mutant PTC
cases. This mutation was reported as gain of function mutation
by The Clinical Knowledgebase (CKB, https://ckb.jax.org).
Furthermore, in the discovery cohort of CRC cases, one
missense mutation, p.93V>A, was detected in one (2%) of 50
MAPK wildtype cases, while no mutation was found in 50MAPK
mutant cases. This mutation was predicted as pathogenic
mutation by SIFT and MutationTaster (Table 3 and Figure 1).

Since MAP2K1 mutations were only identified in MAPK
wildtype cases, we further analyzed 286 MAPK wildtype PTC
and 289MAPK wildtype CRC cases as validation cohort. Among
286 PTC cases, three cases (1.0%) carried gain of function
mutations, while in 289 CRC cases, two (0.7%) cases harbored
gain of function mutations ofMAP2K1 gene. Altogether, four out
of 336 (1.1%)MAPK wildtype PTC cases carried gain of function
mutations while three out of 339 (0.9%) MAPK wildtype CRC
cases carried mutations (Table 3 and Figure 1). Among five
mutations identified in our study, one was novel mutation while
four were reported as somatic mutations in COSMIC
(Supplementary Table 1).
TABLE 2 | Clinico-pathological variables for the colorectal cancer patient cohort.

Clinico-pathological variables Testing cohort
(n = 100)

Validation cohort
(n = 289)

n (%) n (%)

Age (years)
Median 52.1 56.0
Range 13–90 22–91
≤50 46 (46.0) 96 (33.2)
>50 54 (54.0) 193 (66.8)
Gender
Male 50 (50.0) 167 (57.8)
Female 50 (50.0) 122 (42.2)
Histological subtype
Adenocarcinoma 86 (86.0) 261 (90.3)
Mucinous carcinoma 14 (14.0) 28 (9.7)
Histological grade
Well differentiated 9 (9.0) 19 (6.6)
Moderately differentiated 72 (72.0) 237 (82.0)
Poorly differentiated 15 (15.0) 27 (9.3)
Unknown 4 (4.0) 6 (2.1)
Tumor site
Left 67 (67.0) 246 (85.1)
Right 33 (33.0) 43 (14.9)
pT
T1 3 (3.0) 8 (2.8)
T2 8 (8.0) 50 (17.3)
T3 70 (70.0) 192 (66.4)
T4 15 (15.0) 36 (12.5)
Unknown 4 (4.0) 3 (1.0)
pN
N0 44 (44.0) 147 (50.9)
N1 29 (29.0) 91 (31.5)
N2 22 (22.0) 48 (16.6)
Nx 5 (5.0) 3 (1.0)
pM
M0 72 (72.0) 257 (88.9)
M1 28 (28.0) 32 (11.1)
TNM Stage
I 9 (9.0) 44 (15.2)
II 32 (32.0) 97 (33.6)
III 30 (30.0) 116 (40.1)
IV 28 (28.0) 32 (11.1)
Unknown 1 (1.0) 0
TABLE 3 | MAP2K1 mutations in papillary thyroid cancer and colorectal cancer cases.

S. No. Mutation Exon Organ Site No. of cases SIFT PolyPhen Mutation Taster

1 c.294A>C & c.295_312delATTCATCTGGAGATCAAA; p.I99_K104del Ex3 PTC 1 N/A N/A N/A
2 c.293_310delTAATTCATCTGGAGATCA; p.I99_K104del & p.L98Q Ex3 PTC 2 N/A N/A N/A
3 c.302_307delTGGAGA;p.E102_I103del Ex3 PTC & CRC 2 N/A N/A N/A
4 c.278T>C;p.93V>A Ex2 CRC 1 Damaging Benign Disease causing
5 c.157T>TC;p.53F>F/L Ex2 CRC 1 Tolerated Probably damaging Disease causing
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Clinico-Pathological Characteristics of
MAP2K1 Mutant PTC and CRC Cases
Among the four PTC cases harboring MAP2K1 mutation, the
median age was 51 years (range: 30–70 years). The mutations
were distributed equally among male and female PTC patients
(two each). 75% (3/4) of PTCs with MAP2K1 mutation were of
follicular variant and 25% (1/4) were classical variant. 75% (3/4)
of the tumors harboring MAP2K1 mutation were encapsulated
with only one case showing tumor capsule invasion. None of the
cases showed vascular invasion or extra-thyroidal extension. All
the tumors were unifocal. 75% (3/4) of patients had stage I PTC
and one patient had stage IV with distant metastasis to the brain.
On follow-up (median: 5.5 years, range: 1–9 years), the patient
with distant metastasis died due to disease progression, whereas
the other three patients had no evidence of disease (Table 4).
Frontiers in Oncology | www.frontiersin.org 4
Among the three CRC cases harboring MAP2K1 mutation,
the median age was 79 years (range: 60–81 years). All patients
were male. All three patients had moderately differentiated left
sided tumors. One patient presented with stage II disease and
two patients presented with stage III disease. One of the tumors
showed mismatch repair deficiency by immunohistochemistry
(Table 5).
DISCUSSION

Targeted therapies have emerged as a promising cancer
therapeutic option due to their effectiveness in treating
“oncogene-addicted” cancers (29, 30). Therefore, accurate
prediction of anti-tumor effects of molecularly targeted agents
TABLE 4 | Clinico-pathological characteristics of MAP2K1 mutant papillary thyroid cancer case.

Case
no.

Cohort Age
(years)

Gender Histopathologic
subtype

Encapsulation Vascular
Invasion

Extra-thyroidal
extension

Focality pT pN pM Stage Status

1 Testing 70 Female Follicular variant No Negative Absent Unifocal T3a N0 M1 IV-B Deceased (due to
metastatic disease)

2 Validation 30 Male Follicular variant Yes Negative Absent Unifocal T2 N0 M0 I No evidence of disease
3 Validation 50 Male Follicular variant Yes Negative Absent Unifocal T1 N0 M0 I No evidence of disease
4 Validation 52 Female Classical variant Yes Negative Absent Unifocal T1 N0 M0 I No evidence of disease
M
ay 20
21 | Vol
A

B

C

FIGURE 1 | Electropherogram of three MAP2K1 representative mutations identified in PTC and CRC cases. Upper traces represent normal sequences while lower
traces show mutated sequences.
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before clinical trial design and implementation in cancer patients
is important to achieve the goal of precision medicine. Many
studies investigating the effect of inhibitors of the MAPK
pathways in thyroid and colorectal cancers highlight the
importance of identifying mutations in such signaling pathway
and their impacts on the subsequent efficacy of targeted
therapies, thus reinforcing the importance of better
personalized therapeutic strategies (31–34). In this study, we
identified the prevalence of MAP2K1 mutations in Middle
Eastern PTC and CRC.

MAP2K1 mutations have been reported in several types of
tumors, including CRC and PTC (9, 11, 15, 17, 20, 21, 35). The
majority of previously reported MAP2K1 mutations or deletions
targeted Exon 2 and 3 which encode the negative regulatory
domain and the catalytic core (9, 17–19). Due to the recent easy
access to next generation sequencing, we sought to analyze a
small discovery cohort of 100 PTC and 100 CRC samples using
exome sequencing to identify MAP2K1 mutations and their
correlation to other MAPK pathway mutations, especially since
recent reports have shown mutual exclusivity between MAP2K1
mutations and BRAFV600E mutations in these organ sites (17,
21). We have identified one case of inframe deletion in Exon 3 of
PTC cohort and one CRC case carrying a missense mutation in
Exon 2. Each of the above mentioned mutations occurred in a
BRAF wild-type context, consistent with the notion that BRAF &
MAP2K1 are acting in the same transformation pathway.

We then further expanded our study to include additional 286
PTC and 289 CRC samples as validation cohort. We found
overall mutations in MAP2K1 occurring in 1.1% (4/336) of PTC
and 0.9% (3/339) CRC MAPK wildtype cohorts. MAP2K1
mutations have been classified into 3 classes (36). Class 1
MAP2K1 mutations are RAF dependent and are least
activating. Class 2 MAP2K1 mutations are activating in nature
but can be upregulated further by upstream RAF. Class 3
MAP2K1 mutations lead to auto-phosphorylation of MEK
which is independent of RAF and usually is mutually exclusive
with other mutations that activateMAPK signaling and therefore
considered driver mutations. Previous report has shown the
ability of class 3 mutation in vivo to promote tumor growth
more efficiently than class 1 and class 2 mutations (36).

In this study, we detected MAP2K1 mutation in 4/336 (1.1%)
PTCs that otherwise had no known MAPK pathway genetic
alterations. All mutations identified in our PTC cohort were in-
frame deletions/class 3 mutations and located in the kinase
domain encoded by Exon 3. These deletions cause gain of
MAP2K1 function as demonstrated by activity, independent of
Raf and increased phosphorylation of Mek and Erk relative to
wild-type MAP2K1 (37) (CKB database, https://ckb.jax.org) and
have been reported previously (8, 36, 38, 39). Interestingly, the
Frontiers in Oncology | www.frontiersin.org 5
missense mutation c.157T>TC;p.53F>F/L within the negative
regulatory region was also reported as gain of MAP2K1 function
due to increase of Erk and Mek phosphorylation (16). Although
MAP2K1 mutated PTCs show no predilection to gender, stage
and grade, majority (75%; 3/4) were encapsulated and showed
follicular pattern. All of the MAP2K1 mutated cases were
unifocal and showed absence of any extra-thyroidal extension.
Upon follow-up, only one adverse event was registered.

Till date, only two reports have been published about the
incidence of MAP2K1 mutations in PTC. First published report
was limited toMAP2K1 Exon 2 mutations which was not present
in any of the PTC cases tested (20). Second, more recent report,
examined Exon 2 and 3 and identified MAP2K1 mutation in 2%
of their 101 PTC cohort which is higher than the frequency of
mutations in our cohort (1.1%), but the difference was not
statistically significant (17). Similar to our results, all PTC
mutations identified were limited to Exon 3 (catalytic core)
and all tumors showed similar histology where all the cases
harboring MAP2K1 mutations were encapsulated, had
predominantly follicular architecture and were intra-thyroidal
with no lymphovascular invasion. In contrast to our study,
TCGA reported MAP2K1 mutations in only 0.2% (1/482) PTC
cases (40, 41).

Furthermore, our study has shown MAP2K1 mutation in
0.9% (3/339) of CRCs, all mutually exclusive with other MAPK
driver mutations. One mutation was classified as Class 2
MAP2K1 mutation and was similar to previous studies (36),
whereas one Class 3 mutation (p.E102_I103del) was identified in
our cohort. The Cancer Genome Atlas (TCGA) has reported
MAP2K1 mutations in a high percentage (2.4%; 13/549) of CRC
cases (40, 42, 43), while other studies have shown incidence
varying from 1% to 2% (20–22). All patients harboringMAP2K1
mutation in our cohort were older than 50 years with moderately
differentiated tumors. Compared to previous studies (21, 41, 44),
the clinico-pathological characteristics of MAP2K1 mutant CRC
cases in our cohort differed with respect to gender distribution,
tumor location and tumor stage.

The limitation of the present study is the low number of
MAP2K1 mutant cases in both PTC (4/336, 1.2%) and CRC (3/
339, 0.9%) and are not adequate for performing valid statistical
associations. Subsequent multicenter study is needed to identify
significant associations of these variants in Middle
Eastern population.

In conclusion, this is the first comprehensive report of
MAP2K1 somatic mutations prevalence in PTC and CRC from
this ethnicity. The mutually exclusive nature of MAP2K1 and
BRAF mutations suggests that each of these mutation may
function as an initiating mutation driving tumorigenesis
through MAPK signaling pathway. This might have important
TABLE 5 | Clinico-pathological characteristics of MAP2K1 mutant colorectal cancer cases.

Case no. Cohort Age (years) Gender pT pN pM Stage Grade Tumor site MMR IHC

1 Testing 60 Male T3 N1 M0 III Grade 2 Left colon dMMR
2 Validation 81 Male T3 N2 M0 III Grade 2 Left colon pMMR
3 Validation 79 Male T3 N0 M0 II Grade 2 Left colon pMMR
May 2021
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clinical implications for the use of BRAF and MEK inhibitor
therapies in a subset of Middle Eastern PTC and CRC patients.
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