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Abstract: Ever since the late-eighties when endothelium-derived relaxing factor was found to be the 
gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups 
tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger 
was actually a gas and therefore didn’t obey the established rules of neurotransmission made it even 
more intriguing. In just 30 years there is now too much information for useful comprehensive 
reviews even if limited to animals alone. Therefore this review attempts to survey the actions of 
nitric oxide on development and neuronal function in selected major invertebrate models only so 
allowing some detailed discussion but still covering most of the primary references. Invertebrate 
model systems have some very useful advantages over more expensive and demanding animal 
models such as large, easily identifiable neurons and simple circuits in tissues that are typically far 
easier to keep viable. A table summarizing this information along with the major relevant references 
has been included for convenience.  
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1. Introduction 

Ever since the late-eighties when endothelium-derived relaxing factor (EDRF) was found to be 
the gas nitric oxide (NO) [1–3] endogenous NO production has been observed in virtually all animal 
groups tested and additionally in plants, diatoms, slime molds and bacteria [4–8]. The fact that this 
new messenger was actually a gas and therefore didn’t obey the established rules of 
neurotransmission made it even more intriguing. Research into this novel new player has expanded 
rapidly especially in the field of neuroscience with NO being implicated in such significant and 
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wide-ranging processes as olfaction, learning and memory and dementia. In neuroscience 
invertebrate models have always been held in high regard because the nervous systems are simpler 
and typically composed of large peripherally-arranged cell bodies that can often be identified from 
preparation to preparation so ensuring the utilization of the same neuron in each experiment. This 
review is focused on the direct effects of NO on invertebrate neurons and nervous systems and 
additionally neuronal developmental in which NO has been implicated. A review of all the 
invertebrate organisms utilized for NO research, let alone all animals, would probably be 
overwhelming so for this review the groups covered will be limited to the major model organisms 
from the molluscs, insects and their watery cousins the crustaceans. This still leaves a significant 
number of organisms to cover especially as, for example, there are several different species of land 
snail utilized by researchers around the world. The author himself used Helix aspersa because they 
were easy to collect locally (and free!) in and around the University of Southampton in England 
where he performed his PhD. under the direction of Dr. R.J. Walker. Where possible the individual 
species are discussed but if too numerous they are grouped appropriately. Hopefully the majority of 
research utilizing these animals has been included and additionally compiled into a comprehensive 
table for easy reference (Table 1). It is hoped that this review can help guide the reader to the 
primary literature on the appropriate model system for a detailed description which would be beyond 
the scope of this review. 

2. Nitric oxide 

Before discussing the possible effects of NO on these selected invertebrates’ neurons and 
nervous systems, it might prove useful to briefly discuss the origins and chemistry of NO; for a far 
more comprehensive overview the reader is recommended to access Moroz and Kohn’s excellent 
2011 review [9]. That review suggests NO involvement in signaling is traceable back to the origins 
of life. Nitric oxide is infact part of the nitrogen cycle and a vital intermediate which is far more 
reactive than nitrogen itself which has to be “fixed” before most organisms can utilize it [10–15]. It 
should be noted that “nitric oxide” actually includes the nitrosyl radical itself plus the nitroxyl and 
nitrosonium ions [16–19]. Nitric oxide is quite reactive and can form covalent bonds with many 
biological molecules including its primary target guanylate cyclase; this is significant in itself as 
most signal transduction interactions do not involve formal covalent bond formation. As a 
hydrophobic gas NO can cross biological membranes easily and because of this it is considered to act 
as a “3-D” volume messenger unlike conventional transmitters that are typically limited to synaptic 
locations for transmission [20–24]. Additionally it can be appreciated that NO levels are affected by 
the redox status of a cell and there appears to be a complex relationship with oxygen gradients and 
so-called “metabolic budgets” [25,26]; this may have been an early function of NO in biological 
systems. There is data linking NO to mitochondrial function [27–36] and its half-life can be quite 
variable ranging from a few milliseconds to days depending on the chemical environment [9]. 
Despite this NO is considered a relatively short-range messenger acting in an autocrine and/or 
paracrine manner. These factors help explain why direct measurement of NO in living tissues is 
difficult. This has resulted in the development of a plethora of methods for NO detection and 
quantification. Although not the primary focus of this review it is probably useful to mention and 
provide references here to the main techniques for NO detection in living tissues. One of the first 
methods available to invertebrate neurobiologists utilized NO-sensitive electrodes and was rapidly 
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followed by fluorometric detection, spin-trapping and even capillary electrophoresis at the single cell 
level [37–55]. Probably in all invertebrate species examined the first task was not the detection of 
endogenous NO production but the far easier demonstration of the presumed primary source of NO 
in biological systems, namely the enzyme nitric oxide synthase (NOS). Initially this was 
demonstrated by NADPH-diaphorase histochemistry and is invariably cited in virtually all of the 
physiological function papers tabulated here (Table 1), many of which demonstrated NOS expression 
almost as a prerequisite to observing any effects NO might have. Again, the reader is referred to 
other sources for a proper discussion of this technique [56–59]. In 1990 Snyder’s research group 
isolated and purified so-called neuronal NOS (nNOS) from rat cerebella and used this to develop 
antibodies for immunohistochemical localization [60,61].  Finally it should be noted that there are in 
fact at least 7 potential enzymatic sources of NO production in living organisms. These include the 
so-called “classic” multi-domain NOS’s found in animals and slime molds [62,63], a prokaryotic 
“truncated” NOS found in many bacteria [7,64] and various nitrite reduction systems [7,28,65–73]. 

3. Nitric oxide synthase 

Despite multiple potential sources, the principal source producing NO in animals, including the 
subjects of this review, is the family of “classic” multi-domain NOS’s. As mentioned, the first 
constitutive NOS isoform was cloned from rat brain (nNOS) 4 years after the discovery that EDRF 
was NO in 1991 [74]. One year later 2 other isoforms were cloned; an inducible type (iNOS) from 
macrophages [75–77] and a second constitutive type (eNOS) from endothelium [78–82]. All 3 
NOS’s were similar to cytochrome P450 with reductase and oxygenase domains. It is thought 
parallel evolution occurred from a single truncated NOS a billion years ago and while iNOS is 
calcium independent, nNOS and eNOS are calcium-calmodulin dependent [83,84]. In all animal 
tissues NOS catalyzes NO production from a reaction between L-arginine and molecular oxygen 
with the release of L-citrulline [62,63]. In 1991 the first evidence for the function of NO in 
invertebrates (Limulus; the horseshoe crab) was published [85] quickly followed the next year by 
NOS histochemistry revealing widespread expression in several major invertebrate phyla including 
molluscs and arthropods. Currently it is thought that insects have one NOS gene while molluscs have 
two [56]. The two calcium-calmodulin dependent NOS’s (nNOS and eNOS) are activated by 
elevated intracellular calcium typically either from ligand- or voltage-gated calcium channels or 
internal stores. Inducible NOS is expressed and activated in the presence of bacterial 
lipopolysaccharides or damaging stimuli [9]. 
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Table 1. this table attempts to summarize the material discussed in this review including the animals comprising each of the groups, the 
main research topics studied and the principal references. 

 Number Group Source Refs Subjects Covered 

INSECT DEVELOPMENT 
 

Locusta migratoria, Schistocerca gregaria 
(locust) 

11 GP1 100–110 Embryonic development, neuronal migration, growth cone function and synaptogenesis. 

Drosophila melanogaster (fruit fly) 14 GP2 111–124 Adult development, visual system development, growth cone/filopodial function and tracheal 
development/response to hypoxia.

Manduca sexta (moth) 8 GP3 125–132 Development at all stages, sensory system development (olfactory and visual), neuronal migration, differentiation 
and arborization.

Gryllus bimaculatus 1 GP4 133 NO involved in environmentally-induced neurogenesis in the mushroom bodies. 

INSECT NITRIC OXIDE 
 

Apis mellifera (honeybee) 5 GP5 134–139 Established learning and memory system/proboscic extension for sucrose reward, NO involved at several levels of 
olfaction (Mushroom bodies and Antennal lobes).

Locusta migratoria & gregaria (locust) 16 GP6 140–155 NO affects several sensory modalities and motor pattern responses, heart regulation; neuropil architecture suits 3-D 
"volume transmitter" (= gas). 

Manduca sexta, Bombyx mori (moth) 9 GP7 156–164 NO involved in odor perception/short-term memory formation (enhance inward currents), variations with circadian 
rhythm, interactions with nicotinic receptors.

Drosophila melanogaster (fruit fly) 4 GP8 165–168 Retrograde transmitter at larval neuromuscular junction/vesicle release, NO-cGMP implicated in Antennal lobe 
function/projection neurons. 

Lampyridae (firefly), Neobellieria bullata 
(fleshfly), Phormia regina (blowfly). 

4 GP9 169–172 NO in fireflies controls flashing, cGMP in taste in blowflies and NO in olfaction in fleshflies. 

Chorthippus biguttulus (grasshopper) 4 GP10 173–176 No and cGMP involvement in central complex sound production and in juvenile hormone release (reproductive 
function).

Gryllus bimaculatus (cricket) 6 GP11 178–183 NO implicated in long-term memory formation via cGMP and PKA, affects Mushroom body neurogenesis and 
Kenyon cell function and may be involved in submissive behavior.

Periplaneta Americana, Blaberus craniifer 
(cockroach) 

6 GP12 148,184–
188

Allosterism of sGC, estradiol affects NO production, NO affects nicotinic currents and long-term memory. 

MOLLUSC DEVELOPMENT 

Lymnaea stagnalis (pond snail) 3 GP13 189–191 NO involved in embryonic development, neurite growth and synaptic re-modelling after injury, NO implicated in 
locomotion, heartbeat and feeding.

Helisoma trivolvis (pond snail) 11 GP14 122,192–
201

NO affects growth cone function via sGC, cGMP, Ca2+ (internal source) and PKG; NO chemotactic for 
pathfinding, affects K+ currents and ciliary function plus causes ADP-ribosylation.

Ilyanassa obsoleta (sea snail) 2 GP15 202–203 

Continued on next page 
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Number Group Source Refs Subjects Covered 

MOLLUSC NITRIC OXIDE 
 

Land snails 22 GP16 204–227 Peptides, membrane currents, analgesia, hypoxia, cold, nociception, synaptic and retrograde transmission, 
olfaction, activity vs rest and memory.

Limax Maximus, Limax Valentianus, 
Limax Marginatus (land slug)

8 GP17 228–235 NO-cGMP affects olfaction, discrimination and learning and memory in the oscillating procerebrum of this 
established odor processing model.

Lymnaea stagnalis, Helisoma trivolvis, 
Planorbarius corneus (pond snails) 

25 GP18 215,226,236
–258

Feeding behavior and rythmic activity in buccal ganglion, internal Ca2+ release, synaptic transmission, long-term 
memory and conditioning, response to glutamate and iNOS expression.

Stramonita haemastoma (sea snail) 2 GP19 259 & 260 NO associated with sensory afferents and response to environmental stress. 

Crenomytilus grayanus, Mytilus edulis, 
Pecten irradians (bivalve molluscs) 

6 GP20 261–266 Transcutaneous electrical nerve stimulation (TENS) system model for pain, neuroprotective mechanisms for 
temperature, hypoxia and pollution, NO involved in ciliary activity regulation.

Aplysia (and other sea slugs) 
 

Aplysia, Pleurobranchaea californica, 
Onchidium (sea slugs)

24 GP21 267–289 Feeding/swallowing, NO affects buccal ganglion, modulates/affects dopamine, acetylcholine, glutamate, histamine 
and Met-encephalin-induced membrane currents plus directly depolarizes and neuropathic pain model. 

Crustacean Development 
 

Homarus americanus (lobsters). 2 GP22 290 & 291 NO in development and injury of olfactory system, Stomatogastric ganglion responsiveness, possible involvement 
in transcription.

Crustacean Nitric Oxide 

Homarus americanus (lobster) 4 GP23 292–295 NO and neuropeptides in heart control. 

various Crabs 6 GP24 296–301 Pigment in the retina, nociceptive stimulii processing and somatogastric ganglion activity. 

Pacifastacus leniusculus (crayfish) 12 GP25 302–313 Glial cell apoptosis (Photodynamic therapy), sensory processing and plasticity and retrograde synaptic transmission 
at the neuromuscular junction. 

Calanus finmarchicus (zooplankton) 1 GP26 314 N/A 
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4. Nitric oxide effectors 

As mentioned earlier, the primary mechanism of action of NO is thought to be via the activation 
of soluble guanylate cyclase (sGC) which produces the secondary messenger cyclic guanosine 
monophosphate (cGMP) [86]. The term soluble is probably not ideal as at least one isoform of GC is 
thought to actually bind to PDZ domains of synaptic scaffolding proteins so is not “free” in the 
cytoplasm as the name implies [87]. Guanylate cyclase is a dimeric enzyme with 2 subunits and an 
NO-binding heme group [88]. The covalent binding of NO to sGC causes the production of cGMP 
from GTP [89]. Cyclic GMP can then activate several major types of effectors including cGMP-
dependent protein kinases (PKGs), cGMP-gated ion channels and various phosphodiesterases which 
also degrade cGMP back to GMP; the reader is referred to the review by Francis et al. for an in-depth 
discussion of this topic [90]. Additionally NO can covalently react with redox-sensitive cysteine 
residues in many proteins causing S-nitrosylation which can cause, for example, changes in enzyme 
activity, protein-protein binding, membrane targeting, transport systems and protein folding and 
stability. Currently around 3000 different affected proteins have been identified [91–99]. 

5. Actions of nitric oxide on invertebrate model systems 

The remainder of this review will attempt to summarize the actions of NO on selected 
invertebrate model systems, specifically molluscs, insects and their watery cousins the crustaceans. 
Additionally the table (Table 1) will present much of this data in a more accessible form complete 
with selected references. Each “family” (molluscs vs. insects vs. crustaceans) is divided into 
developmental or direct effects of NO on neurons and nervous systems and then further divided into 
groups (together with their selected references; see Table 1) of either individual species or closely 
related species depending on the amount of research performed utilizing that species; there are 26 
groups in total. 

6. Insect development (Groups 1–4) 

Group 1 involves developmental research utilizing locusts and the effects of NO (Locusta 
migratoria and Schistocerca gregaria). In the embryonic locust the NO-cGMP system is permissive 
for neuronal development and migration (antagonized by carbon monoxide); research using the 
enteric nervous system has produced videos of actual neuronal migration. It is implicated in the 
development of the central complex which is thought to be involved in spatial orientation/awareness. 
Nitric oxide also affects axon growth and regeneration in locusts including growth cone function, 
synaptogenesis and neuronal maturation [100–110]. 

Group 2 includes development observed in Drosophila melanogaster (fruit fly). The NO-cGMP 
system is essential for proper development, specifically affecting neuronal proliferation, re-
modelling, specificity and differentiation. Nitric oxide-cGMP is strongly implicated in the 
development of the visual system including effects on growth cone filopodia and may act as a 
retrograde transmitter at neuromuscular junctions (NMJ’s) and in eye development. The NO-cGMP-
PKG system is used by fruit flies in response to hypoxia [111–124]. Group 3 concerns the moth 
Manduca sexta. The NO-sGC-cGMP system is implicated in all stages of development from embryo 
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to larva to pupal/adult. Nitric oxide is thought also to be involved in neuronal migration, 
differentiation and arborization. In particular NO appears necessary for the development of various 
sensory systems including the visual system and the antennal lobes (AL’s)/olfactory system. Nitric 
oxide also stimulated motorneurons and was involved in the development and migration of the 
peripheral nerve plexus which gives rise to neurons in the ventral nerve cord in the larval stage. It is 
worth noting that Gibson et al. reported disruption of AL development after blocking NO-mediated 
ADP-ribosylation [125–132]. Group 4 used the cricket Gryllus bimaculatus as a model system. It 
may have been more appropriate to place this in group 1 with its larger relatives but Cayre et al. nicely 
demonstrate that endogenous NO has a key role in environmentally-induced neurogenesis of the 
mushroom bodies (MB’s), structures thought to be involved in associative learning in insects [133]. 

7. Insect physiology (Groups 5–12) 

The next 8 groups (5–12) summarize the direct effects of NO on neurons and nervous systems 
of insects. Group 5 involves research on Apis mellifera (the honey bee). The honey bee is an 
established associative learning and habituation model system, typically monitoring proboscis 
extension to a sucrose reward. This response may actually involve activation of PKA as opposed to 
PKG by the NO-cGMP system. In the AL’s NO manipulation can affect odor discrimination. 
Mushroom body neurons in vitro show increases in intracellular calcium with nitric oxide confirming 
NO’s significance throughout this insect’s olfactory system. Nitric oxide also appears crucial for the 
conversion of short into long term memory [134–139]. Group 6 summarizes direct effects of NO on 
neurons and nervous systems of locusts (Locusta migratoria and Schistocerca gregaria). Here NO has 
been implicated in several important functions such as affecting motor patterns for feeding and egg 
laying and regulating the heart. Nitric oxide appears to be involved in several sensory modalities 
including taste, olfaction and vision; NO is implicated in significant sensory and motor function in 
the locust. Apparently the chemosensory response to NaCl is regulated by NO as is the response of 
leg hairs to mechanical stimulation. The response to salt is thought to be cGMP-independent and 
research involving the cockroach and locust has suggested allosterism occurring in the response of 
sGC to NO. Interestingly, NO has been shown to affect spreading depression in the locust 
metathoracic ganglion via the cGMP-PKG system; if activated, spreading depression is increased. Of 
particular significance is the research that suggests NO’s ability to act as a 3-D “volume transmitter,” 
due to it being a gas, suits the physical arrangement of ganglia neuropil in the locust [140–155]. 
Group 7 utilizes moths to study the effects of NO (2 species here; Manduca sexta and Bombyx mori). 
This group focuses on olfaction primarily and increases in NO with odor stimulation can be observed 
in the AL’s projection neurons in an apparently sGC-independent manner (an NO-insensitive sGC 
has been isolated from Manduca). The stimulation causes an increase in inward depolarizing 
membrane currents. Nitric oxide appears necessary for olfactory short term memory but not for 
discrimination. Additionally basal NO levels appear to vary with circadian rhythm and that there 
appears to be a relationship between nicotinic acetylcholine receptors and cGMP levels via NO, 
probably due to gating voltage-sensitive calcium channels [156–164]. Group 8 uses Drosophila 
melanogaster, typically the larval stage, for NO studies. Detailed characterization of the Drosophila 
NOS has shown it to be Ca2+-calmodulin sensitive and very similar to mammalian nNOS. As per 
Manduca, a virtually insensitive to NO sGC has also been isolated and may be necessary for a 
response to hypoxia. Using the established larval wall NMJ preparation, NO has been implicated as a 
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retrograde transmitter capable of increasing cGMP levels in pre-synaptic terminals and enhancing 
vesicle release in a calcium-independent manner. Nitric oxide is again implicated in AL projection 
neuron function with increasing NO levels decreasing cholinergic spontaneous excitatory post-
synaptic potentials [165–168]. The next group (9) contains some rarer but novel fly models (Photinus 
and Photuris fireflies, the blowfly Phormia regina and the fleshfly Neobellieria bullata). Nitric oxide 
appears to mediate neuronal control of flashing in fireflies while in blowflies taste receptors may use 
cGMP for signal transduction. The fleshfly also probably uses NO in olfaction [169–172]. Group 10 
looks at NO in Chorthippus biguttulus (grasshopper); I have separated locusts, grasshoppers and 
crickets for the sake of this review. This model was used extensively by the Heinrich group to look at 
central complex function specifically with respect to producing the appropriate sound production for 
reproduction. Disruption of the NO-cGMP system affects this function; if the environment is 
unsuitable for reproduction, elevated NO raises the behavioral threshold for sound production. The 
endocrine gland the corpora allata releases juvenile hormone also necessary for reproduction; NO 
and cGMP may be involved with NO possibly acting as a retrograde transmitter [173–176]. Group 
11 looks at NO in the cricket Gryllus bimaculatus. It was found that long term memory formation 
may be due to PKA being activated by cGMP via adenylate cyclase and cyclic adenosine 
monophosphate unlike the situation observed in the honeybee [139,177]. Mushroom body 
neurogenesis appears affected by NO which also increases the probability of calcium channel 
opening in the principal MB neurons the Kenyon cells; the mechanism here may involve PKG. 
Apparently submissive behavior in the cricket may involve NO [178–183]. The cockroach was 
utilized by researchers in group 12 (Periplaneta Americana) and Ott et al. demonstrate that in both 
the cockroach and locust sGC activity can be increased via an allosteric, NO-independent mechanism 
as observed in mammals. An estradiol found in many animals can apparently modify NO production 
in the giant cockroach (Blaberus craniifer). Nitric oxide-cGMP-PKG can affect nicotinic currents in 
these animals and NO is implicated in MB function yet again. In fact disruption of NO production 
appears to impair long term but not short term memory. The modulatory Dorsal Unpaired Median 
cells (DUM) display increased calcium entry with increasing cGMP levels [148,184–188]. 

8. Molluscan development (Groups 13–15) 

Group 13 used Lymnaea stagnalis (pond snail) to study the effects of NO on development. A 
role was found for NO in neurite growth and synaptic re-modelling after injury but this may not be 
entirely due to NO acting via cGMP and PKG. Nitric oxide regulates embryonic development and 
affects locomotion, heartbeat and feeding. Researchers found that in the buccal ganglion NO may act 
both synaptically and non-synaptically in neuronal communication [189–191]. Group 14 chose 
Helisoma trivolvis (pond snail), another aquatic snail, for their research. Rehder in particular 
investigated growth cone function extensively using this system. Nitric oxide significantly affects 
growth cone filopodial pathfinding and appears to act as a chemotactic agent itself. This response 
involves the standard sGC-cGMP-PKG pathway including an increase in intracellular calcium from 
intracellular sources. Additionally NO acting as a 3-D volume transmitter affects neurons via 
apamin-sensitive potassium channels. Nitric oxide also produced ADP-ribosylation and affected 
ciliary function in the embryo [122,192–201]. Finally group 15 used the marine mollusc Ilyanassa 
obsolete; Gifondorwa and Leise demonstrate NO is involved in both metamorphosis and apoptosis in 
this animal [202,203]. 
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9. Molluscan physiology (Groups 16–20) 

The next 5 groups summarize the direct effects of NO on neurons and nervous systems of 
selected molluscs. In this section there are sufficient numbers of significant publications to separate 
the species even more than for development; accordingly group 16 only covers land snails while 
pond and marine snails are covered subsequently in separate groups (Helix pomatia, Cepaea 
nemoralis, Helix lucorum, Helix aspersa, Megalobulimus abbreviates). The range of NO related 
research is quite extensive with publications ranging from NO interacting with peptidergic 
transmission (FMRFamide and GSPYFVamide) to the relationship between iron metabolism and NO 
to the effect of magnetic fields on opioid analgesia in which NO is implicated. Again NO is 
implicated in the response to hypoxia, cold and nociception. It affects the type of response to 
glutamate on N-methyl-D-aspartate (NMDA) receptors. Additionally NO is implicated as a 
secondary messenger for serotonin or even a co-transmitter and may act as a retrograde transmitter as 
well. Nitric oxide-generated cGMP can modulate the effect of an eicosanoid on cholinergic receptor 
function; it decreases an inward depolarizing current. Behaviorally NO is implicated in olfaction, 
memory formation, rest versus activity and the withdrawal reflex. Both PKA and PKG are probably 
involved in olfactory behavior in the procerebrum. Finally, as mentioned previously, the author 
performed his PhD thesis on Helix aspersa and this was aided immensely by the extensive mapping 
paper published by Kerkut et al. in the mid-seventies [204]. Unlike mammalian nervous systems, the 
simplicity and peripheral arrangement of large bodied neurons in molluscan nervous systems 
facilitates the production of such a resource and apart from being able to identify a particular neuron 
by its position and size, one now knew the pharmacological profile of that neuron which could 
confirm identity. The author used F1 which was a large, easily identifiable neuron to firstly confirm 
that NO could be produced endogenously and then, using NO-donors, to observe any direct effect on 
membrane potential. Diaphorase histochemistry and immunocytochemistry had previously 
demonstrated the presence of NOS in the nervous system of Helix aspersa [205,206]. The author 
confirmed the ability of neurons near to F1, and possibly F1 itself, to produce NO caused by 
acetylcholine-induced depolarization resulting in calcium entry and subsequent stimulation of NOS 
using the fluorescent NO reporter 4-amino-5-methylamino-2’,7’-difluorofluorescein (DAF-FM). The 
author then went on to show NO and membrane-permeable cGMP appeared to have a direct 
hyperpolarizing effect on F1 and might interact with dopamine-induced hyperpolarization. This is 
interesting when one compares to results obtained from Helix pomatia where the NO-cGMP system 
appears to decrease a calcium-activated potassium current so increasing excitability. As in many 
insect papers previously discussed, the 3-D volume effect was cited as particularly important for 
NO’s functions in these animals’ nervous systems [207–227]. Group 17 used the land gastropod 
Limax (L. maximus, L. valentianus, L. marginatus) to investigate the effects of NO on neural tissue. 
In particular these animals have been used to investigate odor processing in the procerebrum with 
researchers such as Watanabe and Gelperin demonstrating the importance of NO in this function. 
The NO-cGMP system is thought to be involved in synchronizing system oscillations necessary for 
discrimination and learning and memory [228–235]. Group 18 focused on the pond snails Lymnaea 
stagnalis, Helisoma trivolvis and Planorbarius corneus as model animals. Feeding behavior was 
studied in this group and NO-cGMP are strongly implicated as they are in certain types of learning 
and memory and conditioning. Additionally the buccal ganglion, which regulates gut motility, is 
modulated by NO; rhythmic activity of these neurons is affected. Again NO is implicated in the 
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response to hypoxia and linked to iron metabolism. Nitric oxide appears to modulate serotinergic 
synaptic transmission and may be a co-transmitter; again researchers linking effects specifically to 
NO’s ability to act in a 3-D manner due to being a hydrophobic gas. Nitric oxide can also affect the 
nature of the neuronal response to glutamate and the NO-sGC-PKG pathway and ADP ribosylation 
can release calcium from internal stores. Nitric oxide was implicated in the regulation of neuronal 
excitability and the ability to fire action potentials. Finally and quite significantly, the invertebrate 
equivalent of microglial cells respond to bacterial lipopolysaccharides by expressing iNOS similarly 
to mammals [215,226,236–258]. The next group (19) used the predatory sea snail Stramonita 
haemastoma and looked at the ability of the CNS to produce NO via NOS expression. Expression 
was particularly associated with sensory afferents plus it was discovered NO is probably involved in 
the response to environmental stress [259,260]. Group 20 includes the bivalve molluscs 
Crenomytilus grayanus, Mytilus edulis and Pecten irradians. As it might be expected with such filter 
feeders, they have been utilized for studies on neuroprotection from pollution, temperature stress and 
hypoxia in which NO has been implicated. Most interestingly though may be the utilization of 
Mytilus for transcutaneous electrical nerve stimulation (TENS) research; similarly to the system 
found in mammals, TENS causes NO production via opiate signaling which is related to a subject 
currently causing great social concern. In addition NO appears to be involved in regulating gill 
filament ciliary activity; dopaminergic inhibition is antagonized by endogenous opioids acting via 
novel receptors and whose effect is mimicked by NO donors [261–266]. 

10. Aplysia and other sea slugs (Group 21) 

Although molluscs, the sea slugs/hares deserve their own group as becomes their principal 
genus Aplysia as the invertebrate model used extensively for research into conditioned reflexes and 
learning and memory by such luminaries as Eric Kandel. Pleurobranchaea californica and 
Onchidium are also included in this group. Applying a filter to this group to just consider significant 
NO publications still reveals a wide range of important topics. Again NO appears involved in some 
forms of feeding and this can be localized to some extent to the buccal ganglion. Specifically NO is 
involved in swallowing and may even function in memory formation concerning swallowing. Nitric 
oxide is also implicated in preparing for egg laying. Nitric oxide possibly produced by interneurons 
can affect synaptic transmission, especially between sensory neurons and motorneurons; 
chemosensory areas of the mouth show NOS expression. Additionally it appears histamine and NO 
are likely co-transmitters. Sung et al. looked at the phenomenon of long-term hyperexcitability 
induced by axotomy which involves the NO-sGC-PKG pathway. This could potentially be a model 
for studying neuropathic pain targets. This group in particular is also a treasure trove of direct effects 
of NO on neurons. Nitric oxide apparently can inhibit or enhance inward depolarizing Na+ currents 
and potentiates a cAMP-mediated cation current. Nitric oxide also affects acetylcholine-(K+), 
dopamine-(K+), met-encephalin-(K+) and glutamate-induced (Cl-) hyperpolarizing currents principally 
via cGMP. It was found that NO can also modulate acetylcholine release at synapses [267–289]. 
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11. Crustacean development (Group 22) 

This group involves development studies using the lobster Homarus americanus. In this animal 
NO is involved in development, especially of the olfactory system and in its response to injury. At 
hatching expression of NOS and sGC was particularly noticeable in the olfactory system and many 
neurons responded to NO by increasing cGMP production suggesting the standard NO-cGMP 
pathway. Interestingly neurons in the stomatogastric ganglion become responsive to NO at 
metamorphosis during which the nervous system is completely re-organized. Elevated cGMP was 
also observed in the cell nuclei possibly suggesting a role in transcription [290,291]. 

12. Crustacean physiology (Groups 23 to 26) 

These final groups bring together research on the physiological effects of NO on various 
selected crustaceans including the lobster Homarus americanus, Pacifastacus leniusculus (crayfish), 
Calanus finmarchicus (zooplankton) and various crabs including Cancer productus, Neohelice 
granulate, Hemigrapsus sanguineus and Cancer pagurus. In the lobster (group 23) NO appears 
involved in feedback in neuropeptide control of the heart whereby NO released by heart tissue 
affects neurons in the cardiac ganglion possibly in a retrograde manner [292–295]. In various crabs 
(group 24) pigment dispersal in the retina appears to depend on NO. Nitric oxide is also implicated in 
processing nociceptive stimuli and the so-called gastric mill in the stomatogastric ganglion’s 
spontaneous activity is significantly affected by NO. It should be noted that a membrane-located GC 
was found in this ganglion [296–301]. In crayfish (group 25) NO appears to be involved in glial cell 
apoptosis induced by photodynamic therapy (PDT) which is used in cancer treatment. Again NO is 
implicated in sensory perception, especially if plasticity is involved. Additionally NO and cAMP are 
involved in regulating swimmeret motorneurons and NO is implicated as a retrograde transmitter at 
NMJ’s where it appears to act presynaptically. For all these actions the standard NO-sCG-cGMP 
pathway appears to be the principal mechanism [302–313]. Finally there has even been some 
published research to suggest functions of the various gaseous transmitters (NO, CO and H2S) in 
zooplankton (group 26) [314]. After this brief survey the final section of this review will attempt to 
discuss some of the more important common functions of NO in these wonderful and intriguing animals. 

13. What these wonderful animals have taught us about nitric oxide 

Some of the obvious advantages to using invertebrate models such as those listed here have 
already been mentioned. Accessibility, size, relative simplicity and economy are all worth 
considering when compared to mammalian models especially when many basic neuronal phenomena 
appear to have common or similar mechanisms. For the vast majority of NO’s actions the same basic 
pathway of NO acting on sGC to produce the secondary messenger cGMP and acting on targets 
typified by PKG appears to be the common mechanism. However ADP-ribosylation should not be 
ignored as a potential means to affect the function of many proteins. Additionally, in many of these 
organisms NO has been strongly implicated as a retrograde synaptic transmitter. For development 
affected by NO in insects (groups 1–4) these model organisms have enabled us to video and directly 
observe neuronal development, including that of the behaviorally significant central complex. Nitric 
oxide is implicated in embryogenesis, neurogenesis and synaptogenesis. Development in molluscs 
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(groups 13–15) appears similarly affected by NO. Again embryogenesis and metamorphosis are 
affected together with cellular-level events such as neurite growth and apoptosis. Here, as in many 
areas, the fact that NO is a gas and can act 3-D volume transmitter appears crucial to its function. As 
for development in crustaceans (group 22), lobsters also need NO for metamorphosis and 
development of the olfactory system. Summarizing NO’s physiological actions on neurons, in insects 
(groups 5–12) it is strongly implicated in associative learning and in various stages of memory 
formation as well as regulating heart function. Nitric oxide is also implicated in sensory function, in 
particular olfactory discrimination; again NO acting as a 3-D volume transmitter appears crucial to 
its function. Molluscan neurophysiology (groups 16–21) has demonstrated that NO is implicated in 
neuropeptide function, iron metabolism, responses to hypoxia, cold and nociception. Again it is 
implicated in olfaction and odor processing and some types of learning and memory. Finally in 
crustaceans (groups 23–26) NO can affect the heart and gut and is implicated in sensory perception 
and apoptosis. Hopefully this brief summary has helped illustrate how useful invertebrate model 
systems can be when examining the function of such a novel messenger molecule as NO. 
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