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Abstract: The orientation of antibodies, employed as capture molecules on biosensors, determines
biorecognition efficiency and bioassay performance. In a previous publication we demonstrated for
antibodies attached covalently to silicon that an increase in their surface amount Γ, evaluated with
ellipsometry, induces changes in their orientation, which is traced directly using Time-of-Flight Sec-
ondary Ion Mass Spectroscopy combined with Principal Component Analysis. Here, we extend the
above studies to antibodies adsorbed physically on a 3-aminopropyltriethoxysilane (APTES) mono-
layer. Antibodies physisorbed on APTES (0 ≤ Γ ≤ 3.5 mg/m2) reveal the Γ ranges for flat-on, side-on,
and vertical orientation consistent with random molecular packing. The relation between orientation
and Γ is juxtaposed for silicon functionalized with APTES, APTES modified with glutaraldehyde
(APTES/GA) and N-hydroxysuccinimide-silane (NHS-silane). Antibody reorientation occurs at
lower Γ values when physisorption (APTES) is involved rather than chemisorption (APTES/GA,
NHS-silane). At high Γ values, comparable proportions of molecules adapting head-on and tail-on
vertical alignment are concluded for APTES and the NHS-silane monolayer, and they are related
to intermolecular dipole–dipole interactions. Intermolecular forces seem to be less decisive than
covalent binding for antibodies on the APTES/GA surface, with dominant head-on orientation.
Independently, the impact of glutaraldehyde activation of APTES on vertical orientation is confirmed
by separate TOF-SIMS measurements.

Keywords: antibody orientation; antibody immobilization; random sequential adsorption; TOF-SIMS

1. Introduction

The immobilization of antibodies onto surfaces, to act as detection molecules in im-
munosensors, requires special attention due to the dependence between the various possible
antibody orientations and its binding activity [1,2]. Immunoglobulin G (IgG) is a Y-shaped
molecule with an Fc trunk and two antigen binding sites located on the two Fab arms that
can adapt on the surface four different orientations varying in accessibility of binding sites:
flat-on, site-on, head-on and tail-on [2]. As a consequence, the orientation of the surface-
immobilized antibodies is crucial for the analyte binding efficiency of the immunosensor
surface. Although various affinity coupling methods for IgG were established [3], random
immobilization by physical adsorption or covalent binding through the amine group on the
protein molecules is still widely applied due to its fast and simple procedure [3]. To enhance
antibody adherence to silicon or gold modified with self-assembled monolayers (SAM),
physical adsorption is commonly supplemented with covalent grafting, when the SAM sur-
faces are activated with chemical linkers such as glutaraldehyde (GA) for amino-terminated
monolayers [4–7]. However, this additional step of the immobilization protocol might mod-
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ify the orientation of IgG, as indicated for the activation of carboxyl-terminated SAM with
N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS/EDC) [6].

The arrangement of immobilized antibodies is a complex phenomenon that involves
molecule–molecule and molecule–surface interactions (reviewed in [8–10]). The dominant
antibodies orientation is determined by the amount of adsorbed molecules Γ [11,12] as
well as by physical (electrostatic, hydrophobic, van der Waals) forces and the reactivity of
amine groups on the protein molecule, which depends on immobilization conditions, e.g.,
the pH of solution [9,13]. It is of practical interest to compare the orientation of antibodies
immobilized on amino-terminated SAM with and without GA activation, and to view it in
relation to that on the NHS-terminated SAM surface. Since physical adsorption precedes
covalent immobilization [2,14], such a comparison could provide some information on the
impact on the final arrangement of the immobilized antibody of the molecule–molecule
and molecule–surface interactions characteristic of physisorption and chemisorption.

The determination of the orientation of surface-immobilized antibodies is also a
challenging issue [2]. Usually, the dominant antibody orientation can be inferred indirectly
from the antigen-binding efficiency or from its surface density Γ [2,3]. The surface density
Γ specifies the orientation of antibody, as the increase in Γ decreases the surface area
accessible to a single molecule, forcing its more vertical alignment. However, the geometric
relation between Γ and the IgG orientation [11], commonly applied to deduce the molecular
arrangement from the Γ values determined with surface analysis techniques (as reviewed
in [3]), cannot resolve the ambiguities of orientations available for the same Γ ranges
(e.g., tail-on vs. head-on). In addition, this approach assumes the questioned highly efficient
close-packed arrangement of molecules on the surface [15]. Only recently has this issue
been experimentally revisited [12] to show that the Γ values corresponding to a particular
IgG orientation are significantly lower than those deduced from the above approach.

In contrast, antibody orientations can be directly deduced from microscopic visual-
izations of single molecules by AFM [16,17] compared with insights from Monte Carlo
and molecular dynamics (MD) simulations [16,18]. In turn, direct analysis of the domi-
nant IgG orientation can be provided by Time-of-Flight Secondary Ion Mass Spectroscopy
(TOF-SIMS) combined with Principal Component Analysis (PCA) [3,5,6,8,12,19,20]. While
TOF-SIMS examines the outermost region of adsorbed molecules with regard to their amino
acid composition, which is different for the exposed Fc and Fab domains (Figure 1a,b),
PCA enhances the chemical specificity of TOF-SIMS and enables a comparison of different
samples (as explained in Figure 1c–e). TOF-SIMS supported with PCA has been applied
to compare the orientations adopted by antibodies immobilized on different surfaces of
various types (e.g., gold or silicon modified with SAMs [5,6,20,21], polymer layers [20,22,23]
and brushes [24], protein monolayers [21,25]), in order to analyze the factors determin-
ing molecular orientation (other than surface amount Γ of molecules) and to correlate
them with protein biorecognition (as extensively reviewed in [8,26]). In fact, the above
approach provides the relation between different samples of the average composition of
the outermost regions of immobilized antibodies expressed by the PCA scores, reflecting
the average ratio fFc of the exposed area of Fc domain to the footprint area of the entire
molecule (that is, the sum of exposed Fc and F(ab)2). However, exact values of the fFc ratio
are not evaluated, and therefore, the question of the proportions of antibodies with head-on
and tail-on orientation, coexisting at high surface density Γ, cannot be resolved.
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Figure 1. (a,b) Comparison of the antibody orientation in different samples, based on TOF-SIMS
sensitivity of the outermost region of immobilized proteins (marked by red horizontal lines) (a) ex-
amined with regard to their amino acid composition (b), distinct for exposed Fc and Fab domains.
(c–e) PCA examines numerous TOF-SIMS measurements (points) in a multidimensional space with
axes spanned by intensities of different mass signals, and it determines a few sequential directions of
the greatest uncorrelated variations called Principal Components (PC1, PC2, PC3) (c). PCA results are
presented as the plots of scores on PCs from different TOF-SIMS measurements, which are separated
according to the features maximized by each PC (d) and the plots of loadings for PCs from mass
signals, which enable the interpretation of PCs (e).

In our recent publication [12], we addressed the issue of surface density Γ-dependent
orientation of adsorbed antibodies, with both the changes in Γ and in the orientation deter-
mined directly for the first time, using ellipsometry and TOF-SIMS with PCA, respectively.
Two covalent methods for coupling IgG to silicon surfaces were analyzed involving surface
chemical activation with N-hydroxysuccinimide-silane (NHS-silane) or amino-silane acti-
vated with glutaraldehyde (APTES/GA). The Γ ranges determined for subsequent flat-on,
side-on, and vertical orientations were consistent with random molecular packing. For
vertical orientations, the data together with the insights from MD simulations [16] allowed
us to evaluate the proportions of molecules with head-on and tail-on alignment.

Here, we extend the above TOF-SIMS and PCA studies on antibodies chemisorbed
on silane-modified surfaces [12] to those adsorbed physically on a surface with a 3-
aminopropyltriethoxysilane (APTES) monolayer. First, the impact of glutaraldehyde ac-
tivation of APTES [2,3,5] on the dominant vertical orientation of IgG (for the highest Γ
range) is examined. Second, the antibodies physisorbed on APTES [27] for a wide range of
Γ values, corresponding to all possible IgG orientations, are compared using TOF-SIMS
and PCA supplemented with ellipsometry. The Γ ranges for flat-on, side-on, and vertical
orientations are determined. Third, to evaluate how the immobilization method determines
changes in IgG orientation with surface density Γ, the PCA scores for antibodies on APTES,
NHS-silane [12] and APTES/GA modified surfaces [12] are compared with insights from
MD simulations [16] on the exposure fFc of the Fc domain for different IgG orientations
(i.e., flat-on, side-on, head-on and tail-on). Since the average fFc ratio values are linearly
related to the PCA scores, the latter values determined for flat-on and side-on orientations
can be used to evaluate, based on the PCA scores, the average fFc ratio for the vertical
mixed head-on and tail-on orientations. Then, using again the insights from the MD sim-
ulation, the proportion of antibodies adapting both vertical orientations can be resolved.
Furthermore, since the values of the fFc ratio can be related to the PCA scores obtained
for different immobilization methods, all these scores can be rescaled, and the relations
between orientation and surface density Γ for different surface functionalization schemes
can be juxtaposed and compared. This comparison, consistent with the examination of
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the first issue, differentiates the immobilization methods with respect to the characteristic
Γ values for IgG reorientation as well as the proportions of IgG molecules with head-on
and tail-on alignment for the highest Γ range. All of these issues are discussed in terms of
relevant molecule–molecule and molecule–surface interactions.

2. Results and Discussion
2.1. Dominant Vertical IgG Orientation: Comparison of the Results of IgG Physisorption on
Amino-Silane with Those of Conjugation on Amino-Silane Activated with Glutaraldehyde

The dominant vertical orientations, adapted for high surface density (Γ > 2.2 mg/m2 [12])
by the antibodies physisorbed on amino-silane layers or covalently bound on glutaraldehyde-
activated amino-silane layers, are compared by PCA analysis of TOF-SIMS data. For this
purpose, layers of goat anti-rabbit IgG antibody (IgG) as well as layers of Fc and F(ab)2
fragments of this antibody on APTES and APTES/GA surfaces, together with both bare
substrate types, were analyzed with TOF-SIMS. Details on sample preparation and analysis
are presented in Section 3. The TOF-SIMS data set, examined with PCA, consists of the
relative intensities of 36 ion fragments characteristic for amino acids [28] from 80 spectra.
PCA results are represented by the scores plot (PC3 vs. PC1) in Figure 2a. The first
principal component PC1, which captures the majority of the variance between samples
(76.79%), differentiates bare substrates from protein layers and, therefore, can reflect surface
coverage with proteins. While PC2 is not informative, PC3 describes composition changes
independent of those represented by PC1 due to the orthogonality of Principal Components.
Therefore, PC3, which captures the 3.25% of the variance, distinguishes reference samples
covered with Fc or F(ab)2 fragments of IgG molecules (Figure 2a). Therefore, for the
IgG layers, the scores on PC3 can be regarded as an indicator of the dominant vertical
orientation of immobilized antibodies.

The scores on PC3, corresponding to the measurements of the whole IgG molecules
and IgG fragments immobilized (Figure 2b), provide insight into antibody orientation. The
data points for IgG molecules (green diamonds) are clearly divided into two groups with
different mean PC3 scores, as confirmed by the ANOVA test. Furthermore, the different
values of PC3 scores corresponding to whole IgG molecules on the APTES/GA and APTES
surfaces are shifted toward those representing the Fc and F(ab)2 fragments, respectively.
These results, obtained for high surface density Γ, indicate differences in the vertical
IgG orientations induced by GA activation of APTES that result in a higher fraction of
immobilized molecules with inactive head-on rather than active tail-on alignment compared
to APTES. This is consistent with the conclusions of Section 2.3.

The uncorrelated composition changes, attributed above to PC1 and PC3 with the
results for the reference samples (bare substrates and substrates modified with IgG frag-
ments), are confirmed by the loadings plots for both Principal Components, as presented
in Figure 3. PC1 is negatively loaded mainly by the signals corresponding (in addition to
amino acids) to the bare substrate: CH4N+ derived (also) from APTES and C2H5S+ over-
lapping with SiO2H+ from silicon oxide (Figure 3a). On the contrary, the intense signals
derived from proteins (C4H8N+, C4H10N+, C5H10N+, C5H12N+ and C2H6N+) load PC1
positively. Therefore, PC1 can reflect the coverage of the substrate with proteins. In turn,
PC3 is loaded (Figure 3b) positively and negatively by the ion fragments characteristic
for amino acids abundant in the domain Fc (proline, arginine, histidine, phenylalanine)
and the domain F(ab)2 (serine, alanine, leucine, and threonine), respectively. Hence, PC3
can be related to the orientation of IgG. These results are in agreement with our previous
TOF-SIMS studies of the same antibody [12] and with data from the literature on the amino
acid composition of other IgG1 molecules [5,20].
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Figure 2. TOF-SIMS and PCA analysis of the orientation of the IgG (goat anti-rabbit IgG antibody)
molecules on surfaces modified with APTES and APTES/glutaraldehyde. (a) PC1 vs. PC3 scores plot
of TOF-SIMS signals recorded for PCA model involving bare substrates, IgG coated substrates, as well
as substrates coated with F(ab)2 and Fc antibody fragments as reference layers. The ellipses around
each of the grouped data points represent the 95% confidence limit. (b) The PC3 scores for individual
measurements show the difference in the dominant orientation for antibodies immobilized on APTES
and APTES/GA-modified silicon surfaces (* significantly different from each other, p < 0.05). Solid
and dashed lines represent the mean values of the scores on PC3 and the standard deviation of the
mean, respectively.
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Figure 3. Loadings plots for the principal components presented in Figure 2. (a) Loadings plot for
PC1. (b) Loadings plot for PC3: amino acid ion fragments abundant in the Fc domain (red underlined)
load in the positive direction, while amino acid fragments with higher content in the F(ab)2 domain
(blue italic) load in the negative direction.

2.2. Surface Density Dependent Orientation of IgG Molecules Physisorbed on Amino-Silane

To analyze the surface density Γ-dependent orientation of antibodies physisorbed
on APTES monolayer, a PCA model able to capture the relevant features of TOF-SIMS
data characteristic for antibodies with distinct orientations, as well as those of reference
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samples, must first be constructed [12]. TOF-SIMS spectra were recorded for reference sub-
strates modified with APTES without proteins or coated with the Fc and F(ab)2 fragments
of goat IgG as well as for substrates modified with APTES coated with whole goat IgG
molecules with Γ values corresponding to different orientations [12]: (i) flat-on, (ii) side-on,
and (iii) vertical alignment. Such samples were obtained using the IgG solutions with con-
centrations adjusted according to a previously determined adsorption isotherm (Section 3
and Figure S1 in the Supplementary Materials). Then, a PCA model was developed for
the data set based on 40 recorded TOF-SIMS spectra but taking into account only the
relative intensities of the ion fragments characteristic for amino acids (listed in Figure S2,
the same as in [12]). The obtained PCA model is represented by the PC3 vs. PC1 scores
plot (Figure 4a) and respective loadings plots (Figure S2 in the Supplementary Materials).
Due to the contributions of signals from the substrate to the signals characteristic for amino
acids, PC1 that captures the majority of the variance (95.78%) is related to the coverage
of the substrate with proteins. While PC2 is not informative, PC3 (capturing 1.14% of the
variance) describes uncorrelated composition changes reflecting immobilized IgG orienta-
tion. This can be concluded based on the separation on the PC3 axis of the projections of
data points corresponding to reference samples coated with the fragments Fc and F(ab)2
(Figure 4a). In addition, this can be confirmed by the positive and negative loadings on PC3
of the ion fragments of amino acids abundant in the Fc and F(ab)2 domains, respectively
(Figure S2). These loadings are in agreement with those for the same antibody immobilized
by chemisorption [12].

Subsequently, the TOF-SIMS data recorded for all examined APTES surfaces with
different Γ amounts of immobilized antibodies (0 ≤ Γ ≤ 3.5 mg/m2) were projected onto
the developed PCA model to provide the mean values of PC3 scores that are plotted as a
function of surface density Γ (Figure 4b). Each point in this plot represents one sample,
with Γ determined as an average from a set of spectroscopic ellipsometry measurements,
and the mean value of PC3 scores determined from a set of recorded TOF-SIMS spectra.
Since the scores values on PC3 differentiate between the compositions characteristic of the
Fc and F(ab)2 fragments, they also characterize the antibody orientation, which is reflected
by the ratio Fc/F(ab)2 of the areas of the exposed Fc and F(ab)2 domains. The data points in
Figure 4b, corresponding to the physisorbed IgG molecules, can be assigned to three groups
(marked as gray rectangles) with distinct values of the mean PC3 scores, as confirmed by
the ANOVA test. They reflect three different dominant antibody orientations as well as the
changes, induced by increasing IgG surface density Γ, between flat-on, side-on and vertical
(mixed head-on/tail-on) alignment. While flat-on orientation is expected for the lowest
Γ values [11,12], a shift of the data points to higher PC3 score values is observed for the
range 0.8 ≤ Γ ≤ 2.2 mg/m2 (Figure 4b), reflecting an adaptation of a side-on orientation
for the IgG molecules. In turn, a shift of data points in the opposite direction is observed
in Figure 4b for a further increase in surface density Γ (above 2.2 mg/m2). The level of
PC3 scores attained by the data points is similar to that of IgG in flat-on orientation. This
is interpreted as a transition to vertical antibody orientation with a mixed tail-on and
head-on alignment, which reduces the ratio Fc/F(ab)2 to a value similar to that for flat-on
orientation for comparable proportions of molecules with head-on and tail-on arrangements
(Figure 4c). These proportions will be evaluated in the next section, where the analysis
of surface density-dependent orientation of IgG molecules will be discussed for various
immobilization methods.
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Figure 4. TOF-SIMS and PCA analysis of the surface density-dependent orientation of IgG molecules
on APTES-modified silicon substrates. (a) PC1 vs. PC3 scores plot for a developed PCA model
involving bare substrate, representative immobilized IgG layers with surface densities corresponding
to different orientations (I—flat-on, II—side-on and III—vertical orientation), as well as reference
surfaces with immobilized antibody fragments F(ab)2 and Fc. The ellipses around each of the grouped
data points represent the 95% confidence limit. (b) Mean values of the scores on PC3 versus the surface
density Γ of IgG molecules. Three data points groups corresponding to different IgG orientations
(in sequence flat-on, side-on, and tail-on/head-on) can be distinguished (* significantly different
from each other, p < 0.05). Error bars are standard deviations determined from 6 to 10 TOF-SIMS
measurements and 5 ellipsometry measurements of the same sample. (c) Scheme of subsequent
orientations of immobilized IgG molecules, adapted with increasing protein surface density Γ, with
the corresponding values of the areal fraction of the exposed Fc domain (fFc) deduced from MD
simulations by Vilhena et al. [16].
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2.3. Comparison of Surface Density Induced Orientation Changes of Antibodies Immobilized by
Physical Adsorption and Two Covalent Coupling Methods

The changes in the dominant antibody orientation with surface density examined
for IgG molecules physisorbed on the APTES monolayer (Figure 4b) are compared with
those determined [12] for the same molecules chemisorbed on APTES modified with glu-
taraldehyde (Figure 5a) or on an NHS-silane monolayer (Figure 5b). Both surface density Γ
and IgG molecules orientation, represented by the scores on PC3, are determined in the
same way. To compare the scores on PC3, obtained within individual PCA models, we
apply the following approach: First, since the scores on Principal Components describing
the TOF-SIMS data show linear correlation with the organic surface composition [29,30],
an assumption is made about the linear relationship between the scores on PC3 and the
composition of the outermost IgG region (i.e., examined with TOF-SIMS). The latter is
described by the ratio fFc of the exposed area of the Fc domain to the footprint area of the
whole molecule in each particular orientation. Second, to allow comparison of the extent
of changes in PC3 scores between different PCA models (i.e., different immobilization
schemes), it is assumed [12] that the levels of PC3 scores for flat-on and side-on alignments
correspond to fFc values of 0.28 and 0.34, respectively, which are provided by MD simula-
tions [16]. Under these assumptions, dominant antibody orientations are specified in terms
of the fFc values, marked in Figure 5a,b as an additional ordinate axis.

The overall behavior of the surface density Γ-dependent orientation of the IgG an-
tibody (Figure 5a,b) physisorbed on amino-silane layers (solid squares) resembles those
determined for the same molecule immobilized applying the two covalent coupling meth-
ods (open squares or circles). The transition to a more vertical orientation is expected every
time the surface mass density Γ reaches a critical value (ΓindΦ∞), which is specified by
the packing efficiency Φ∞ and the mass loading Γind of the individual molecule in a given
orientation. In particular, for all the immobilization strategies, the Γind values revealed by
geometric considerations [11,16] produce critical values, 1.1 mg/m2 [11] to 1.4 mg/m2 [16]
for flat-on, and ca. 1.9 mg/m2 [16] for side-on alignment, which are comparable with the
observations only when random (Φ∞ ≈ 0.55 [15]) rather than close packing (Φ∞ ≈ 0.91) of
IgG molecules is allowed.

However, a more detailed examination of Figure 5a,b also reveals differences be-
tween the various immobilization methods. The change from flat-on to side-on dominant
alignment occurs at a lower Γ value (≈0.8 mg/m2) for IgG physisorption on the APTES
monolayer than for chemisorption (≈1.2 mg/m2) either on APTES/GA (Figure 5a) or
on the NHS-silane modified substrate (Figure 5b). In the course of protein adsorption
on a surface, its density increases up to a maximum plateau value Γ determined by the
adsorption isotherm. This process results in a reduction of the average area accessible to
each molecule and increased repulsive intermolecular interactions, which force a more
vertical molecular arrangement once a critical surface mass density value (ΓindΦ ∞) is
reached. More vertical average orientation can be achieved due to IgG monolayer building
mechanisms [10,31–33], such as orientational rearrangements of adsorbed proteins, the
displacement of more horizontally aligned molecules in favor of more vertically ordered,
and the filling of interstices between the more horizontally aligned proteins with the more
vertically ordered ones. Most of these different mechanisms would be more effective for
physisorption than covalent immobilization. Therefore, a transition to a more vertical dom-
inant orientation is expected at lower equilibrium values Γ for antibodies on APTES rather
than APTES/GA or NHS-silane surfaces, as it is can be concluded by the data presented in
Figure 5a,b.

Different values of the areal fraction of exposed Fc domains are obtained for vertical
alignment (Γ > 2.2 mg/m2) of antibodies immobilized following different approaches, with
fFc ≈ 0.3 for physical adsorption on the APTES layer and fFc ≈ 0.25 and ≈0.4 for covalent
coupling to NHS-silane and APTES/GA monolayers, respectively (Figure 5). fFc values
for IgG molecules on APTES and NHS-silane correspond to comparable proportions of
IgG molecules with head-on and tail-on alignment: 4:3 for APTES and 1:1 for NHS-silane.
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On the contrary, a significantly different behavior is determined for antibodies on APTES
modified with GA, where a proportion of 3:1 is determined. These findings confirm the
conclusions of Section 2.1: GA activation of the APTES layer results in a higher fraction of
molecules with head-on rather than tail-on alignment of adsorbed IgG molecules as the
surface density increases (Figure 5c).

Figure 5. Comparison of the surface density-dependent orientation of IgG immobilized by physical
adsorption on the APTES layer or by covalent coupling on the APTES/GA or NHS-silane layers [12].
Juxtaposition of the surface density dependence of the scores on the PC3 reflects changes in dominant
IgG orientation for molecules physisorbed on APTES and covalently bound on APTES/GA (a) or
NHS-silane modified surfaces (b). (c) Schematic presentation of the mechanism of immobilization of
IgG molecules on examined silane layers by physical absorption or covalent attachment. Diagrams
show the dominant IgG orientation revealed from TOF-SIMS studies for a high protein surface
density corresponding to the vertical arrangement of molecules. The underlined terms mark the
initial physisorption or covalent binding that is decisive for the final arrangement of antibodies.

The differences in the specific vertical orientations attained by the IgG molecules on
various silane monolayers can be explained in terms of molecule–surface and molecule–
molecule interactions. The experimental conditions applied in the different immobilization
procedures, in particular the use as an IgG solution of a buffer with pH 7.4, do not cause
effective surface charging of APTES, APTES/GA, and NHS-silane monolayers [12]. In
turn, electric dipoles are formed between the Fc and F(ab)2 domains at neutral pH [8].
Electrostatic interactions between antibody dipoles and the low-charged surface are not ex-
pected to affect our results, which are depicted schematically in Figure 5c. On the contrary,
electrostatic dipole–dipole forces between proteins adsorbed with high surface density can
promote the opposite orientation in neighboring dipoles [34]. Hence, the comparable pro-
portions of head-on and tail-on orientation are adapted by the IgG molecules physisorbed
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on APTES silane. In turn, covalent binding of the antibody to aldehyde and NHS-silane
can occur by reaction with ε-amine of lysine, which is randomly distributed in all antibody
domains, and with a more reactive (due to lower pKa) α-amine of N-terminus located on
the F(ab)2 domains. As a result, this covalent protein coupling promotes head-on orienta-
tion more than tail-on alignment, which competes with the opposite dipole orientations
of neighboring antibodies characteristic for physisorption. Therefore, a mixed head-on
and tail-on molecular arrangement concluded for IgG molecules immobilized on NHS-
silane modified surface indicates effective intermolecular dipole–dipole interactions and
the dominant role of physisorption that precedes covalent bonds formation [12]. In contrast,
intermolecular forces, which are effective during physisorption, appear to be less decisive
than covalent binding for the final arrangement of antibodies on a glutaraldehyde-activated
APTES monolayer. The 3:1 proportion of IgG molecules with head-on to tail-on orientation
correlates well with immobilization through the reactions with α-amine-groups of the
N-terminus being more reactive than the ε-amine-groups of lysine residues [12,35]. The
different impacts of intermolecular forces on the alignment of IgG molecules chemisorbed
on NHS-silane and on APTES/GA-modified surfaces reflect the different roles of initial
physical adsorption between these two surfaces compared to pure physisorption on APTES.
This could be due to the faster immobilization of proteins on the APTES/GA surfaces that
contain amine groups [12,14].

3. Materials and Methods
3.1. Silicon Substrates Functionalization and Proteins Immobilization

Before modification with 3-aminopropyltriethoxysilane (APTES, Sigma-Aldrich, Darmstadt,
Germany), silicon substrates with native SiO2 layers (Si-Mat GmbH, Kaufering, Germany)
were cleaned by subsequent sonication in toluene and ethanol for 10 min and by treatment
in oxygen plasma for 30 s. Silanization was performed by immersion of the substrates in a
1% (v/v) APTES solution in toluene for 10 min, which is followed by washing with toluene
and ethanol in an ultrasonic bath, drying under nitrogen stream and backing for 20 min at
120 ◦C [12]. Subsequent surface activation with aldehyde groups for APTES/GA samples
was performed by the immersion of APTES-modified substrates in a 2.5% (v/v) aqueous
glutaraldehyde solution (Sigma-Aldrich, Darmstadt, Germany) for 20 min, which was
followed by washing with distilled water and drying under nitrogen stream. Polyclonal
goat anti-rabbit IgG antibody (Thermo Fisher Scientific, Rockland, MA, USA), as well as
F(ab)2 (Thermo Fisher Scientific, Rockland, MA, USA) and Fc (US Biological, Salem, MA,
USA) domains of this antibody were immobilized on APTES and APTES/GA-modified
substrates. To compare the dominant orientation of the antibodies on APTES before and
after GA activation, the substrates were incubated with a 100 µL droplet of a 500 µg/mL
solution of whole IgG, F(ab)2 domain, or Fc domain in PBS buffer (pH 7.4, 0.15 M, Sigma-
Aldrich, Darmstadt, Germany) for 30 min. This concentration provides a high IgG surface
density with Γ > 2.2 mg/m2 (see Figure S1 in Supplementary Materials). Furthermore, to
determine the surface density-dependent orientation of antibodies on APTES-modified
substrates, several samples were prepared similarly by incubation with IgG solutions with
concentrations ranging from 5 µg/mL to 1 mg/mL. After incubation with the IgG solution,
all samples were extensively washed with distilled water and dried under a nitrogen
stream prior to examination with surface science techniques. The uniformity of the IgG
layers was confirmed by AFM examination and TOF-SIMS imaging (see Section S3 in the
Supplementary Materials). AFM images were recorded with an Agilent 5500 microscope
working in non-contact mode. AFM probes with a spring constant of about 2 N/m, tip
radius of about 7 nm and resonant frequencies of about 70 kHz were used.

3.2. Surface Density Determination with Spectroscopic Ellipsometry

The Sentech SE800 (Sentech Instruments GmbH, Berlin, Germany) Spectroscopic
Ellipsometer was applied to determine the surface density of the antibodies. Measurements
were performed over a wavelength range of 320–700 nm and at a fixed incidence angle equal
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to 70◦. To estimate the average thickness of the protein layer, the obtained spectra were
analyzed with SpectraRay 3 software and fitted by the Cauchy dispersion two-layer model
consisting of the silicon substrate/mixed SiO2 and silane/protein layer. Fixed refractive
index values equal to n = 3.87 for Si, n = 1.46 for SiO2, APTES and glutaraldehyde, and
n = 1.53 for protein were used [12] The thickness of the native SiO2 layer and APTES layers
determined for bare and silane-modified silicon substrates were equal to 2.7 ± 0.1 nm and
0.8 ± 0.1 nm, respectively, and they were taken as a constant to fit the thickness of the
protein layer. The protein surface density Γ was estimated from the thickness d of the
protein layer following the Cuypers one-component approach [12].

3.3. TOF-SIMS Characterization

TOF-SIMS analysis was performed with a TOF.SIMS 5 instrument (ION-TOF GmbH,
Münster, Germany) equipped with a 30 keV liquid metal ion gun. Bi3+ ion clusters were
applied as the primary beam, and a low energy electron flood gun was used for charge
compensation. For all measurements, the ion dose was kept below 1012 ion/cm2 to en-
sure static mode conditions, and a 0.5 pA current was applied. High mass resolution
TOF-SIMS spectra and maps of positive ions were recorded from ten non-overlapping
100 µm × 100 µm areas of each sample with resolution of 128 × 128 points. Spectra mass
calibration was performed based on peaks of H+, H2

+, CH+, C2H2
+ and C4H5

+. The mass
resolution (m/∆m) was above 8000 at C4H5

+ for all measurements.

3.4. Multivariate PCA Analysis of TOF-SIMS Data

Principal Component Analysis was performed using the PLS Toolbox (Eigenvector
Research, Manson, WA, USA) for MATLAB (MathWorks, Inc., Natick, MA, USA). Before
PCA was run, the intensities of selected peaks from each spectrum were normalized
to the sum of selected peaks and mean-centered. The fluctuation of normalized TOF-
SIMS signals derived from amino acids is below 10% for the spectra recorded in different
TOF-SIMS operations.

4. Conclusions

The dominant orientation of IgG antibodies physically adsorbed on the APTES-
modified silicon substrate was examined as a function of their surface density Γ (Figure 4):
IgG orientation was characterized by Principal Component (PC) scores calculated by pro-
jection of TOF-SIMS spectrometry data on the developed PCA model, and Γ values were
determined by ellipsometric spectroscopy. The results for antibodies physically adsorbed on
amino-silane monolayers were compared with those [12] for antibodies covalently attached
to glutaraldehyde-modified APTES (APTES/GA) and NHS-silane surfaces (Figure 5). The
revealed Γ ranges for flat-on, side-on, and vertical orientation are consistent with random
molecular packing. However, antibody reorientation occurs at lower Γ for physisorption
than chemisorption, which is in accord with monolayer building models [10,31–33].

Furthermore, the immobilization method determines the vertical orientations of IgG
molecules at high Γ, which is reflected by the values of the areal fraction fFc of the exposed
Fc domain. For APTES and NHS-silane, the fFc values indicate comparable proportions of
molecules adapting head-on and tail-on alignment, which are related to intermolecular
dipole–dipole interactions. In turn, molecules immobilized on APTES/GA are character-
ized by a 3:1 proportion of head-on to tail-on orientation, which is linked with covalent
binding. Moreover, the impact of glutaraldehyde activation of APTES, which is one of the
most commonly applied methods for chemical activation of silicon surfaces [2,3], on the
vertical orientations of adsorbed IgG molecules was confirmed by PCA analysis of separate
TOF-SIMS measurements (Figures 2 and 3).

Due to the high impact of the dominant antibody orientation on the biorecognition
efficiency and bioassay performance, the presented approach to compare surface density-
dependent antibody orientation for different immobilization methods can be applied to
develop and optimize the protocols for biosensor functionalization.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27123672/s1, Section S1: Adsorption isotherm of IgG on
APTES-modified substrate; Figure S1: Adsorption isotherm of goat anti-rabbit IgG on the SiO2 surface
modified with APTES, APTES/GA and NHS-silane; Table S1: Binding capacity (BC) and affinity
constant (AC), determined within the Langmuir and Random Sequential Adsorption model for
adsorption data of goat anti-rabbit IgG on SiO2 surface modified with APTES, APTES/GA and NHS-
silane; Section S2: Loading plots of the PCA model developed to examine surface density dependent
orientation of IgG molecules adsorbed on APTES-modified substrate; Figure S2: TOF-SIMS and PCA
analysis of the surface density-dependent orientation of IgG molecules on APTES-modified silicon
substrates. PCA loadings plot for PC3 and for PC1; Section S3: Evaluation of IgG layers uniformity;
Figure S3: Representative AFM topographic images of IgG molecules layers immobilized on SiO2
substrates functionalized with APTES with different surface density; Figure S4: Representative TOF-
SIMS maps (Si+ ion from substrate and two protein derived ions C4H8N+ and C5H12N+) recorded on
layers of IgG molecules immobilized on SiO2 substrates functionalized with APTES with different
surface density.

Author Contributions: Conceptualization, K.G. and A.B.; methodology, K.G.; validation, K.G., A.B.
and P.P.; investigation, K.G.; data curation, K.G.; writing—original draft preparation, K.G. and
A.B.; writing—review and editing, P.P.; visualization, K.G. and A.B.; supervision, A.B.; project
administration, K.G.; funding acquisition, K.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was financed by the Polish National Science Centre (NCN) under Grants
2016/21/N/ST5/00880 and 2021/43/D/ST5/02231.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples are not available from the authors.

References
1. Gopinath, S.C.B.; Tang, T.H.; Citartan, M.; Chen, Y.; Lakshmipriya, T. Current Aspects in Immunosensors. Biosens. Bioelectron.

2014, 57, 292–302. [CrossRef] [PubMed]
2. Trilling, A.K.; Beekwilder, J.; Zuilhof, H. Antibody Orientation on Biosensor Surfaces: A Minireview. Analyst 2013, 138, 1619–1627.

[CrossRef] [PubMed]
3. Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and Characterization of Immobilized Antibodies for Improved

Immunoassays (Review). Biointerphases 2017, 12, 02D301. [CrossRef] [PubMed]
4. Chen, S.; Liu, L.; Zhou, J.; Jiang, S. Controlling Antibody Orientation on Charged Self-Assembled Monolayers. Langmuir 2003, 19,

2859–2864. [CrossRef]
5. Wang, H.; Castner, D.G.; Ratner, B.D.; Jiang, S. Probing the Orientation of Surface-Immobilized Immunoglobulin G by Time-of-

Flight Secondary Ion Mass Spectrometry. Langmuir 2004, 20, 1877–1887. [CrossRef]
6. Lebec, V.; Boujday, S.; Poleunis, C.; Pradier, C.-M.; Delcorte, A. Time-of-Flight Secondary Ion Mass Spectrometry Investigation

of the Orientation of Adsorbed Antibodies on Sams Correlated to Biorecognition Tests. J. Phys. Chem. C 2014, 118, 2085–2092.
[CrossRef]

7. Bañuls, M.-J.; Puchades, R.; Maquieira, A. Chemical Surface Modifications for the Development of Silicon-Based Label-Free
Integrated Optical (IO) Biosensors: A Review. Anal. Chim. Acta 2013, 777, 1–16. [CrossRef]

8. Gajos, K.; Awsiuk, K.; Budkowski, A. Controlling Orientation, Conformation, and Biorecognition of Proteins on Silane Monolayers,
Conjugate Polymers, and Thermo-Responsive Polymer Brushes: Investigations Using TOF-SIMS and Principal Component
Analysis. Colloid Polym. Sci. 2021, 299, 385–405. [CrossRef]

9. Gao, S.; Guisán, J.M.; Rocha-Martin, J. Oriented Immobilization of Antibodies onto Sensing Platforms—A Critical Review. Anal.
Chim. Acta 2021, 1189, 338907. [CrossRef]

10. Rabe, M.; Verdes, D.; Seeger, S. Understanding Protein Adsorption Phenomena at Solid Surfaces. Adv. Colloid Interface Sci. 2011,
162, 87–106. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27123672/s1
https://www.mdpi.com/article/10.3390/molecules27123672/s1
http://doi.org/10.1016/j.bios.2014.02.029
http://www.ncbi.nlm.nih.gov/pubmed/24607580
http://doi.org/10.1039/c2an36787d
http://www.ncbi.nlm.nih.gov/pubmed/23337971
http://doi.org/10.1116/1.4978435
http://www.ncbi.nlm.nih.gov/pubmed/28301944
http://doi.org/10.1021/la026498v
http://doi.org/10.1021/la035376f
http://doi.org/10.1021/jp410845g
http://doi.org/10.1016/j.aca.2013.01.025
http://doi.org/10.1007/s00396-020-04711-7
http://doi.org/10.1016/j.aca.2021.338907
http://doi.org/10.1016/j.cis.2010.12.007


Molecules 2022, 27, 3672 14 of 15

11. Buijs, J.; Lichtenbelt, J.W.T.; Norde, W.; Lyklema, J. Adsorption of Monoclonal IgGs and Their F(Ab′)2 Fragments onto Polymeric
Surfaces. Colloids Surf. B Biointerfaces 1995, 5, 11–23. [CrossRef]

12. Gajos, K.; Szafraniec, K.; Petrou, P.; Budkowski, A. Surface Density Dependent Orientation and Immunological Recognition of
Antibody on Silicon: TOF-SIMS and Surface Analysis of Two Covalent Immobilization Methods. Appl. Surf. Sci. 2020, 518, 146269.
[CrossRef]

13. Gao, S.; Rojas-Vega, F.; Rocha-Martin, J.; Guisán, J.M. Oriented Immobilization of Antibodies through Different Surface Regions
Containing Amino Groups: Selective Immobilization through the Bottom of the Fc Region. Int. J. Biol. Macromol. 2021, 177, 19–28.
[CrossRef]

14. Mateo, C.; Torres, R.; Fernández-Lorente, G.; Ortiz, C.; Fuentes, M.; Hidalgo, A.; López-Gallego, F.; Abian, O.; Palomo, J.M.;
Betancor, L.; et al. Epoxy-Amino Groups: A New Tool for Improved Immobilization of Proteins by the Epoxy Method. Biomacromolecules
2003, 4, 772–777. [CrossRef] [PubMed]

15. Adamczyk, Z. Modeling Adsorption of Colloids and Proteins. Curr. Opin. Colloid Interface Sci. 2012, 17, 173–186. [CrossRef]
16. Vilhena, J.G.; Dumitru, A.C.; Herruzo, E.T.; Mendieta-Moreno, J.I.; Garcia, R.; Serena, P.A.; Pérez, R. Adsorption Orientations and

Immunological Recognition of Antibodies on Graphene. Nanoscale 2016, 8, 13463–13475. [CrossRef]
17. Hou, W.; Liu, Y.; Zhang, B.; He, X.; Li, H. Adsorption-Associated Orientational Changes of Immunoglobulin G and Regulated

Phagocytosis of Staphylococcus Epidermidis. J. Biomed. Mater. Res. Part A 2018, 106, 2838–2849. [CrossRef]
18. Zhou, J.; Tsao, H.-K.; Sheng, Y.-J.; Jiang, S. Monte Carlo Simulations of Antibody Adsorption and Orientation on Charged Surfaces.

J. Chem. Phys. 2004, 121, 1050–1057. [CrossRef]
19. Madiona, R.M.T.; Welch, N.G.; Muir, B.W.; Winkler, D.A.; Pigram, P.J. Rapid Evaluation of Immobilized Immunoglobulins Using

Automated Mass-Segmented ToF-SIMS. Biointerphases 2019, 14, 1450. [CrossRef] [PubMed]
20. Liu, F.; Dubey, M.; Takahashi, H.; Castner, D.G.; Grainger, D.W. Immobilized Antibody Orientation Analysis Using Secondary Ion

Mass Spectrometry and Fluorescence Imaging of Affinity-Generated Patterns. Anal. Chem. 2010, 82, 2947–2958. [CrossRef]
21. Gajos, K.; Budkowski, A.; Pagkali, V.; Petrou, P.; Biernat, M.; Awsiuk, K.; Rysz, J.; Bernasik, A.; Misiakos, K.; Raptis, I.; et al.

Indirect Immunoassay on Functionalized Silicon Surface: Molecular Arrangement, Composition and Orientation Examined
Step-by-Step with Multi-Technique and Multivariate Analysis. Colloids Surf. B Biointerfaces 2016, 150, 437–444. [CrossRef]
[PubMed]

22. Kosobrodova, E.; Jones, R.T.; Kondyurin, A.; Chrzanowski, W.; Pigram, P.J.; Mckenzie, D.R.; Bilek, M.M.M. Orientation and
Conformation of Anti-CD34 Antibody Immobilised on Untreated and Plasma Treated Polycarbonate. Acta Biomater. 2015, 19,
128–137. [CrossRef] [PubMed]

23. Welch, N.G.; Madiona, R.M.T.; Payten, T.B.; Easton, C.D.; Pontes-Braz, L.; Brack, N.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Surface
Immobilized Antibody Orientation Determined Using ToF-SIMS and Multivariate Analysis. Acta Biomater. 2017, 55, 172–182.
[CrossRef] [PubMed]

24. Awsiuk, K.; Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Dabczyński, P.; Kostruba, A.; Ohar, H.; Shymborska, Y.;
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