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Abstract The cytoskeleton – a collection of polymeric filaments, molecular motors, and cross-
linkers – is a foundational example of active matter, and in the cell assembles into organelles that 
guide basic biological functions. Simulation of cytoskeletal assemblies is an important tool for 
modeling cellular processes and understanding their surprising material properties. Here, we present 
aLENS (a Living Ensemble Simulator), a novel computational framework designed to surmount the 
limits of conventional simulation methods. We model molecular motors with crosslinking kinetics 
that adhere to a thermodynamic energy landscape, and integrate the system dynamics while effi-
ciently and stably enforcing hard-body repulsion between filaments. Molecular potentials are entirely 
avoided in imposing steric constraints. Utilizing parallel computing, we simulate tens to hundreds of 
thousands of cytoskeletal filaments and crosslinking motors, recapitulating emergent phenomena 
such as bundle formation and buckling. This simulation framework can help elucidate how motor 
type, thermal fluctuations, internal stresses, and confinement determine the evolution of cytoskeletal 
active matter.

Editor's evaluation
This article presents a new method for simulating cytoskeletal dynamics inside cells. This is an 
important problem in the life sciences, and the numerical methods and derived results described 
in the paper seem very promising to facilitate computational modelling of cell dynamics. Although 
the user- friendliness of the software can still be improved, the method will be of interest to a broad 
community of biologists and biophysicists.

Introduction
Living systems are built hierarchically, where smaller structures assemble themselves into larger func-
tional ones. Such organization is fundamental to life, where it is seen across scales from molecules 
to organelles to cells to tissues to organisms. An example is the cellular cytoskeleton, made up of 
polymer filaments (and other accessory proteins) crosslinked by motor proteins that exert forces by 
walking processively along filaments (Howard, 2001). Cytoskeletal assemblies such as the cortex, 
mitotic spindle, and cilia and flagella, underlie cell polarity, division, and movement (Bornens, 2008; 
Barnhart et al., 2015; McIntosh, 2016; Pollard and O’Shaughnessy, 2019). Cytoskeletal compo-
nents have been reconstituted outside of cells to study self-organization (Nédélec et al., 1997; Foster 
et al., 2015) and to create new active materials (DeCamp et al., 2015). Understanding how cytoskel-
etal structures assemble from their molecular components remains challenging, in part because of the 
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variety of motors and crosslinkers with different behavior. Improved understanding of the cytoskel-
eton would allow us to predict how molecular perturbations change cell behavior and to design new 
complex and adaptive materials (Li and Gundersen, 2008; Fletcher and Mullins, 2010; Needleman 
and Dogic, 2017).

Computational modeling of the cytoskeleton has elucidated principles of self-organization, 
suggested hypotheses for experimental test, and helped interpret results of experiments (Gao et al., 
2015b; Rincon et al., 2017; Bun et al., 2018; Saintillan et al., 2018; Varghese et al., 2020). Several 
software packages for cytoskeletal modeling are currently available, including Cytosim (Nedelec 
and Foethke, 2007), MEDYAN (Popov et al., 2016), AFINES (Freedman et al., 2017), and CyLaKS 
(Fiorenza et al., 2021). A challenge for molecular simulation is the large size of cytoskeletal systems, 
typically 104–107 or more filaments (Petry, 2016). While current simulations may reach ‍O(104 − 105)‍ 
filaments (Belmonte et al., 2017; Strübing et al., 2020), molecular modeling has required significant 
compromises in treating steric interactions and motor-proteins.

Figure 1. The computational model and demonstration of aLENS. (A) aLENS simulates dynamics of rigid filaments crosslinked and driven by motors, 
thermal fluctuations, and steric interactions. Motors bind to, unbind from, and walk along filaments. (B) To achieve high efficiency, aLENS computes 
motor forces implicitly, and steric interactions through a novel geometric constraint method that avoids filament overlaps. (C1-C3) Example simulation 
of microtubules organized into asters by minus-end-directed motors. The 300 s Brownian simulation contains 3200 microtubules, each 1 µm long, inside 
a sphere of radius 3 µm. The initial position of each microtubule is random and the half of each filament on the minus-end is colored pink. Three end-
pausing dynein motors are fixed at the minus-end of each microtubule and walk toward the minus-end of any microtubule they crosslink. After initial 
contraction into a single large aster, strong steric interactions in the aster center break up the system into several smaller asters and a bottle-brush 
structure. (C4) Motors are highly concentrated at the centers of asters.

The online version of this article includes the following video for figure 1:

Figure 1—video 1. Contraction and break-up of simulated microtubule asters.

https://elifesciences.org/articles/74160/figures#fig1video1

https://doi.org/10.7554/eLife.74160
https://elifesciences.org/articles/74160/figures#fig1video1


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yan et al. eLife 2022;11:e74160. DOI: https://doi.org/10.7554/eLife.74160 � 3 of 51

Here, we describe aLENS, a framework of computational methods and software designed to 
more efficiently and accurately simulate large cytoskeletal systems (Figure 1). Since motor proteins 
must bind, crosslink, and unbind from filaments to evolve such systems, aLENS simulates motors as 
traversing a (well-defined) free energy landscape Lamson et al., 2021. This prevents artificial energy 
flux during crosslinking and maintains detailed balance in the passive limit. As motors crosslink fila-
ments, the spacing between filaments is on the order of the length of motor proteins (10–100 ‍nm‍) 
(Figure 1A), comparable to the filament diameter. Therefore, steric interactions between filaments 
occur frequently and must be treated carefully to avoid unphysical filament overlap, stress, and defor-
mation (Figure  1B). Most other cytoskeletal simulation methods implement a repulsive pairwise 
potential between filaments, but this requires a small timestep for hard potentials because of the 
instability of timestepping methods (Heyes and Melrose, 1993). Therefore, potential-based models 
limit simulations to short timescales. To circumvent this limitation, here we utilize our recently devel-
oped constraint method to enforce hard-core repulsion between particles (Anitescu et  al., 1996; 
Yan et al., 2019). We further develop constraint-based modeling by introducing a related method to 
treat stiff spring forces due to crosslinking motors. Both steric interactions and crosslinking forces are 
incorporated in a unified implicit solver. This approach ensures numerical stability of the method and 
allows for timesteps two or more orders of magnitude larger than currently available. Additionally, 
aLENS is parallelized with OpenMP and MPI to reach length and timescales comparable to those of 
experiments (Figure 5 and 7).

As an illustration of aLENS, Figure 1C (and movie Figure 1—video 1) shows a simulation of 3200 
microtubules within a spherical volume driven by 9600 motors that, when bound, walk to the micro-
tubule minus-end (modeling the activity of dynein). Although the microtubules are initially unorga-
nized (C1), the combination of motor crosslinking and walking causes the microtubule minus-ends to 
contract into the center of a large aster (C2). The motor-driven steric interactions between filaments, 
however, eventually fragment this into smaller asters and bottle-brush-like structures (C3,C4). This 
simulation displays the complex interplay between steric and crosslinking forces in determining the 
dynamics and steady state configurations of cytoskeletal materials.

Methodology
In this work, we model filaments as rigid spherocylinders. (While not presented here, flexible filaments 
can be modeled within our framework as segmented, jointed filaments; See Appendix H.) Crosslinking 
motors are modeled as Hookean spring tethers connecting two binding domains referred to as heads, 
with steric interactions between motors neglected.

As outlined below, our algorithm performs three tasks sequentially at every timestep: motor diffu-
sion and stepping, motor binding and unbinding, and filament movement. The major computational 
challenges arise in task 2, computing binding and unbinding while maintaining realistic macroscopic 
statistics, and in task 3, updating filament position while overcoming stiffness constraints and main-
taining steric exclusion. The timestep is determined by the shortest characteristic timescale in the 
simulated system (filament collision, motor binding/unbinding kinetics, and filament motion). All other 
degrees of freedom (e.g. internal conformational changes of motor binding heads) are assumed to 
occur on shorter timescales.

1. Crosslinking motor diffusion and stepping
Each unbound motor executes Brownian motion independently. Each bound motor updates informa-
tion on the filament to which it is attached, following filament movement in the previous timestep. 
During the motor movement step, singly bound motors move ‍vm∆t‍ and doubly bound motors move 

‍vF∆t‍ along the filaments. Here, ‍vF‍ is the motor stepping velocity that depends on force on the motor 
head (Gao et al., 2015a):

	﻿‍ vF(Fproj) = vm max
(
0, min(1, 1 + Fproj/Fstall)

)
,‍� (1)

where ‍Fproj‍ is the projection of tether force along filament in the stepping direction. As typically 
found experimentally, this stepping model means that if ‍Fproj‍ is assisting stepping, the velocity satu-
rates at vm; while for ‍Fproj‍ hindering stepping, stepping is halted when ‍Fproj = −Fstall‍.

https://doi.org/10.7554/eLife.74160
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2. Crosslinker binding and unbinding
In filament networks, the spatial variation of unbound and bound motors is integral to network self-
organization. For example, crosslinking proteins concentrate in volumes with high filament densities, 
producing ripening effects as passive crosslinkers are depleted from the bulk (Weirich et al., 2017) 
(e.g. see Figure 1C). Furthermore, if motors or crosslinkers bind, unbind, or diffuse at rates not set 
by free energy barriers, the system’s energy and/or entropy can be artificially elevated or lowered, 
changing the system dynamics and steady-state configuration. Entropic forces bundle and increase 
overlaps among crosslinked filaments (Lansky et al., 2015; Gaska et al., 2020), and free-energy-
dependent binding kinetics contribute to organization of cortical microtubules (Allard et al., 2010) 
and induce actin bundling (Yang et al., 2006).

Ad-hoc models, like those that attach crosslinking motors to filaments at a fixed length or randomly 
sample a uniform distribution to set the binding length, are unlikely to recover the force or final 
configuration of bundled filaments. For example, if passive crosslinkers only bind in a non-stretched 
configuration, they will not generate entropic forces that drive bundle overlap, as seen experimentally 
(Lansky et al., 2015). Further, if crosslinkers are modeled as binding with a uniform length distribu-
tion and zero tether rest length, the contractile stress of networks will be overestimated, condensing 
filament networks with greater rapidity.

The assemblies of filaments/motors are assumed to explore an underlying free energy landscape, 
where all ‘fast’ degrees of freedom can be subsumed into an effective free energy that depends only 
on filament and crosslinking motor degrees of freedom. We require that our model correctly recapit-
ulates the distribution and chemical kinetics of crosslinking proteins in the passive limit, that is, when 

‍vm = 0‍ for the bound velocity of motor heads. We achieve this with a kinetic Monte Carlo procedure 
in which motor protein binding and unbinding events are modeled as stochastic processes. Transition 
rates recover the correct limiting (equilibrium) distribution by imposing detailed balance (Appendix 

Table 1. The transition rates between all possible states of a crosslinker ‍U ⇌ (SA, SB) ⇌ D‍.

‍
(
SA, SB

)
‍ means either head ‍A‍ or ‍B‍ is bound but the other is unbound. All binding rates account for 

the linear binding density ‍ϵ‍ is the length of filament ‍‍ with center-of-mass position ‍xi‍ and orientation 

‍pi‍ inside the capture sphere with cutoff radius ‍rc,S‍ relative to position of motor/crosslinker ‍x‍. The 
sum is over all possible candidate filaments ‍‍. The unbound-singly bound transition ‍U ⇌ (SA, SB)‍ is 
determined by the association constant ‍Ka‍ and the force-independent off rate ‍ko,S‍. Similarly, the 
singly bound-doubly bound transition ‍(SA, SB) ⇌ D‍ is determined by the association constant ‍Ke‍ and 
force-independent off rate ‍ko,D‍ is the Boltzmann factor. ‍E(ℓ)‍ in the in the ‍(SA, SB) ⇌ D‍ transition rates 
refers to the tether energy of a motor ‍E(ℓ) = 1

2κxl
(
ℓf − ℓ0

)2
‍. ‍ℓ0‍ is the free length of a motor, while 

‍ℓf ‍ is the length for computing the force when attached to filaments ‍‍ and ‍j‍ at locations si and sj: 

‍ℓf(si, sj, xi, pi, xj, pj‍). The dimensionless factor λ determines the energy dependence in the unbinding 
rate. Both binding and unbinding rates must depend on λ and ‍ko,d‍ such that the equilibrium 
constant recovers the Boltzmann factor ‍exp[−βE(ℓf)]‍ For force-dependent binding models, the ‍E(ℓ)‍ 
can be simply replaced by the tether force ‍F(ℓ)‍. This is not used for results shown in this work, but 
implemented in the code.

Process Rate Value

‍U → (SA, SB)‍ ‍Ron,S(x)‍
‍

ko,S
3ϵKa

4πr3
c,S

∑
i

Lin,i(x)
‍

 

‍(SA, SB) → U ‍ ‍Roff,S‍ ‍ko,S‍

‍(SA, SB) → D‍ ‍Ron, D(si)‍
‍

ko,DϵKe
∑

j

ˆ

Lj

dsj exp
[
−(1 − λ)βE(ℓf(s))

]
‍

 

‍D → (SA, SB)‍ ‍Roff,D(si, sj)‍ ‍ko,D exp
[
λE(ℓf)

]
‍

https://doi.org/10.7554/eLife.74160
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C). That is, we model binding and unbinding as passive processes, but it is in principle possible that 
certain such processes consume chemical energy.

To enforce the macroscopic thermodynamic statistics, including correct equilibrium bound-
unbound concentrations and distributions (Appendix C) (Gao et al., 2015a; Lamson et al., 2019; 
Allard et al., 2010), we explicitly model each crosslinker as a Hookean spring connecting two binding 
heads labeled as ‍A‍ or ‍B‍. Each crosslinker has four possible states: both heads unbound (‍U ‍), either ‍A‍ or 
‍B‍ singly bound (‍SA‍ or ‍SB‍), or both heads (doubly) bound (‍D‍). For each timestep ‍∆t‍, we first calculate 
the rates ‍R(t)‍ at which each head (‍A‍ and ‍B‍) transitions from their current state to a new binding state 
(i.e. for the transitions ‍U ⇌ (SA, SB) ⇌ D‍). The transition probabilities are modeled as inhomogeneous 
Poisson processes with the cumulative probability function

	﻿‍
P(∆t) = 1 − exp

(
−
ˆ ∆t

0
R(t)dt

)
= 1 − exp

(
−R(0)∆t + O(∆t2)

)
.
‍�

(2)

The transitions ‍U ⇌ (SA, SB)‍ do not stretch or compress the tether and so do not depend on tether 
deformation energy. However, the transitions ‍(SA, SB) ⇌ D‍ do account for tether deformation energy 
(Table 1).

3. Filament dynamics
We sought to develop a stable, large-timestep method for updating the position of filaments, subject 
to spring forces from crosslinking motors, steric interactions, and Brownian motion. This requires 
addressing two stability restrictions on the timestep ‍∆t‍. The first arises in models that use a stiff 
repulsive pairwise potential to prevent filament overlaps. For example, the Lennard-Jones potential 

‍V ∼ (σ/r)12 − (σ/r)6
‍, where ‍r‍ is the separation between filaments, is so steeply varying that it requires 

small ‍∆t‍ for stability. As a result, soft alternatives such as a harmonic potential are often used (Nedelec 
and Foethke, 2007). These soft potentials allow partial filament overlaps, and may therefore lead to 
unphysical system dynamics and stresses (Heyes and Melrose, 1993).

The second stability restriction arises from the fast relaxation times of crosslinking motors. 
When crosslinkers connect two parallel filaments, the spring tether length ‍ℓf ‍ relaxes according to 

‍ℓ̇f = −λ(ℓf − ℓ0)‍, where ‍ℓ0‍ is the preferred length and ‍λ = Nκxl/(4πηL/ log(2L/Dfil))‍ (Howard, 2001). 
Explicit timestepping schemes require ‍∆t < C/λ‍, for some constant ‍C‍. For ‍N = 10‍ motors, tether 
stiffness ‍κxl ≈100 pNµm−1

‍, and slender body drag coefficient ‍4πηL/ log(2L/Dfil) ≈0.003 pN sµm−1
‍ for 

‍1µm‍-long microtubules in aqueous solvent, we have ‍1/λ ≈3×10−6 s‍.
We overcome these difficulties with a novel, linearized implicit Euler timestepping scheme, which 

extends on our previous work on enforcing non-overlap conditions (Yan et al., 2019). This technique 
is inspired by constraint-based methods for granular flow (Tasora et al., 2013). When collisions occur 
between filaments, the minimal distance between them attains ‍Φcol = 0‍ with collision force ‍γcol > 0‍. If not 
colliding, ‍Φcol > 0‍ and ‍γcol = 0‍. This mutually exclusive condition is called a complementarity constraint, 
written as ‍0 ≤ Φcol ⊥ γcol ≥ 0‍. If one crosslinking motor connects these two filaments, its length ‍ℓf ‍ and 
force magnitude ‍γxl‍ satisfy the Hookean spring model ‍γxl = −κxl(ℓf − ℓ0)‍, which is an equality constraint.

We integrate the equation of motion such that these two types of constraints for all possible colli-
sions and all crosslinking motors are satisfied. We briefly derive the method here, and all details can 
be found in Appendix C. Because the method is specific to rigid particles with arbitrary shape, we shall 
use ‘particle’ and ‘filament’ interchangeably.

Each particle is tracked by its center location ‍x ∈ R3‍ in the lab frame and its orientation ‍θ = [s, p] ∈ R4
‍ 

as a quaternion (Delong et al., 2015). ‍[s, p]‍ are the scalar and vector parts of the quaternion, respec-
tively. Using a quaternion to track the rotational kinematics of a rigid body is a standard computational 
approach due to its compact memory footprint (4 floating point numbers) and its singularity-free nature. 
The geometric configuration at time ‍t‍ for all ‍N ‍ filaments can be written as a column vector with ‍7N ‍ entries:

	﻿‍ C(t) =
[
x1, θ1, . . . , xN, θN

]T ∈ R7N.‍� (3)

https://doi.org/10.7554/eLife.74160
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Similarly, we use the vectors ‍U ,F ∈ R6N ‍ to represent the translational & angular velocities, and 
forces & torques of all particles, respectively. We relate ‍U ‍ to ‍F ‍ via a mobility matrix ‍M ∈ R6N×6N ‍, 
dependent only upon the geometry ‍C‍, and relate ‍U ‍ to ‍̇C(t)‍ via a geometric matrix ‍G‍:

	﻿‍ Ċ(t) = GU , U = MF ,‍� (4)

Because the biological filaments we consider mostly have lengths on the ‍nm‍ to ‍µm‍ scales and 
inertial effects can be ignored. In the following, the subscript ‍c‍ refers to constraints, which includes 
both unilateral (with subscript ‍u‍) and bilateral (with subscript ‍b‍) constraints. For our problem, unilat-
eral constraints refer to collision constraints while bilateral constraints refer to crosslinking motor 
constraints. The subscript ‍nc‍ refers to non-constraint.

For unilateral constraints, we define the grand distance vector ‍Φu =
[
Φu,1,Φu,2, · · · ,Φu,Nu

]T ∈ RNu ,‍ 
where each ‍Φu,j‍ is the minimum distance between a pair of filaments. Similarly, for bilateral constraints 
we define the grand distance vector ‍Φb =

[
ℓf,1, ℓf,2, · · · , ℓf,Nb

]T ∈ RNb
‍, containing the length ‍ℓf,j‍ of 

the doubly bound motor ‍j‍. There are in total ‍Nu‍ possibly colliding pairs of filaments and ‍Nb‍ cross-
linking motors. The force magnitude corresponding to these constraints are also written as vectors, 

‍γu =
[
γu,1, γu,2, · · · , γu,Nu

]T ∈ RNu
‍ and ‍γb =

[
γb,1, γb,2, · · · , γb,Nb

]T ∈ RNb
‍. The two types of constraints 

can be summarized as:

	﻿‍

0 ≤ Φu(C) ⊥ γu ≥ 0,

K
[
Φb(C) −Φ0

b

]
= −γb.

‍�
(5)

Here, ‍Φu‍ and ‍γu‍ satisfy the complementarity (collision) constraints, while ‍Φb‍ and ‍γb‍ satisfy the 
Hookean spring law. Here, ‍K ∈ RNb×Nb‍ is a diagonal matrix consisting of all the stiffness constants, 
while ‍Φ

0
b‍ represents the rest length of every crosslinking motor.

Equations 4 and 5 define a differential-variational-inequality (DVI). This is solvable when closed by 
a geometric relation mapping the force magnitude ‍γu‍ and ‍γb‍ to the force vectors ‍Fu‍ and ‍Fb‍:

	﻿‍ Fu = Duγu, Fb = Dbγb,‍� (6)

where ‍Du‍ and ‍Db‍ are sparse matrices containing the orientation norm vectors of all constraint 
forces (Anitescu et al., 1996; Yan et al., 2020 and Appendix D). Next, we discretize this DVI using 
the linearized implicit Euler timestepping scheme with ‍∆t = h‍ at timestep ‍k‍:

	﻿‍
1
h

(Ck+1 − Ck) = GkUk, Uk = Mk
(
Fk

u + Fk
b + Fk

nc

)
,
‍�

(7a)

	﻿‍ Fk
u = Dk

uγ
k
u, Fk

b = Dk
bγ

k
b,‍� (7b)

	﻿‍ 0 ≤ Φk+1
u ⊥ γk

u ≥ 0,‍� (7c)

	﻿‍
Kk

[
Φk+1

b −Φ0
b

]
= −γk

b.
‍� (7d)

The unknowns to be solved for at every timestep are the constraint (collision and motor tether) 
force magnitude ‍γ

k
u,γk

b‍. This is a nonlinear DVI because ‍Φ
k+1
u ‍, ‍Φ

k+1
b ‍ are nonlinear functions of geometry 

‍Ck+1‍, although ‍Ck+1‍ is linearly dependent on ‍γ
k
u‍ and ‍γ

k
b‍. For a small timestep (‍h → 0‍), this nonlinearity 

can be linearized by Taylor expansion, for example, ‍Φ
k+1
u = Φk

u + h∇CΦuGkUk
‍. Then, this nonlinear 

DVI can be converted to a convex quadratic programming problem (Nocedal and Wright, 2006) 
(details in Appendix D):

	﻿‍
min
γ

f(γk) = 1
2
γk,TMkγk + qk,Tγ,

‍�
(8a)

	﻿‍
subject to

[
INu×Nu 0

]
γk ≥ 0.

‍� (8b)

Here, ‍γ
k = [γk

u,γk
b] ∈ RNu+Nb

‍ is a column vector, and

	﻿‍

Mk =


D

k,T
u

Dk,T
b


Mk

[
Dk

u Dk
b

]
+


0 0

0 1
hK

k,−1


 , q =




1
hΦ

k
u + Dk,T

u MkFk
nc

1
h

(
Φk

b −Φ0
b

)
+ Dk,T

b MkFk
nc


 .

‍� (9)

https://doi.org/10.7554/eLife.74160
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One way to understand the constraint optimization method is that the implicit temporal integration 
‘jumps’ on a timescale that bypasses the relaxation timescales of unilateral and bilateral constraints 
(collisions and crosslinking motor springs). In the limit of motor tethers being infinitely stiff (‍K−1 → 0‍), 
the quadratic term coefficient matrix ‍M‍ is still symmetric-positive-semi-definite (SPSD) and the Equa-
tion 8 is still convex and can be efficiently solved. Physically speaking, in this case the bilateral 
constraints degenerate from deformable springs to non-compliant joints.

Instantiation in a massively parallel computing environment
Our methods naturally lend themselves to high-performance parallel computing architectures. We 
utilize both MPI and OpenMP and use standard spatial domain decomposition to balance the number 
of motors and filaments across MPI processors. The motor update step samples the vicinity of every 
motor, where we use a parallel near-neighbor detection algorithm and update all motors in parallel. 
The most expensive part of the method is finding the solution to Equation 8, because of its very 
large dimension, equal to the total number of close pairs of filaments plus the number of crosslinking 
proteins. We use a fully parallel Barzilai-Borwein Projected Gradient Descent (BBPGD) solver (Yan 
et al., 2019) because the gradient ‍∇f = Mγ + q‍ is efficiently computed by one parallel sparse matrix-
vector multiplication operation.

aLENS is written in a modular design using standard object-oriented C ++ and is available on 
GitHub as discussed at the end of the Discussion section.

Verification and benchmarks
To validate and benchmark aLENS, we first note that its collision handling approach has already been 
benchmarked for the pure-filament phase, and shown to accurately reproduce the equation of state 
and the isotropic-nematic liquid crystal phase transition of densely packed rigid Brownian rods (Yan 
et al., 2019). This capacity to accurately compute the dense packing phase of fibers makes aLENS 
valuable to simulate many dense biological filament assemblies. The accurate treatment of steric 
interactions extends beyond other simulation methods and software, where steric interactions are 
often approximated by soft repulsive potentials or neglected.

We now further benchmark of aLENS by simulating mixtures of filaments and motors and directly 
comparing simulation results with experimental data. Although there are many parameters in our 
motor model, these comparisons don’t involve fitting of model parameters to experimental data. 
Instead, we chose motor parameters as measured from experimental data (Scharrel et  al., 2014; 
Fürthauer et al., 2019) or estimate them based on similar motor proteins (Cross and McAinsh, 2014).

Figure 2. Directed transport velocity and displacement of microtubules driven by mixed active and inactive 
Kinesin-1 motors. The total number of active and inactive motors is fixed at ‍N = 100‍ for all simulations. ‍NA‍ is 
the number of active motors. Left panel: comparison of microtubule velocities as a function of ‍NA/N ‍ from aLENS 
simulations (blue diamonds) with from the reference experiment (orange circles) (Scharrel et al., 2014). Right 
panel: displacement vs. time of the transported microtubule obtained from simulation for several values of ‍NA/N ‍. 
The free walking velocity of active motors was set to ‍1.0µm s−1

‍ to match the experimental sliding velocity at 

‍NA/N = 1‍. There are no other fitting parameters. All motor parameters are estimates based on experiments on 
Kinesin-1 (Scharrel et al., 2014) or similar motor proteins (Cross and McAinsh, 2014).

https://doi.org/10.7554/eLife.74160
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Directed transport of microtubules by mixed active and inactive motors
We begin by verifying our motor model by reproducing results from experiments on directed micro-
tubule transport (Scharrel et al., 2014). As in the experimental system, the simulation begins with a 
fixed number of motors with one head attached to a fixed surface while the other head interacts with 
one microtubule. Some motor heads are active and can drive gliding of the microtubule, while other 
heads are inactive and behave as passive crosslinkers that hinder microtubule motion. Here, ‍NA‍ is the 
number of active motors and ‍N ‍ is the total number of motors (active and inactive). The microtubule 
velocity increases as ‍NA/N ‍ increases from 0 to 1 in experiments (Scharrel et al., 2014) and in our 
simulations. As shown in Figure 2, our simulations quantitatively reproduce the experimental data. 
To achieve this agreement, we set the active motor velocity to ‍1.0µm s−1

‍, so the sliding velocity at 

‍NA/N = 1‍ matches experiment. Apart from this one experimentally constrained velocity, there are no 
fitting parameters in our simulation (further motor parameters are in Appendix B). In initial trial simu-
lations, we found that changing the total motor number ‍N ‍ didn’t noticeably affect the microtubule 
transport velocity. Therefore, for the results shown here we fixed ‍N = 100‍, similar to the experimental 
system. Since the transport trajectory is stable without stochastic noise, as shown in Figure 2, there 
is no need to perform ensemble average to determine the transport velocity. Therefore, we ran 1 
simulation for 10 s for each ratio ‍NA/N ‍.

Self-straining state of actively crosslinked microtubule networks
As an additional verification, we compare aLENS with results of recent experiments of Fürthauer 
et al., 2019 in which many-microtubule assemblies are densely packed into a nematic bundle and 
crosslinked by a large number of motors. In this heavily crosslinked nematic regime, microtubules 
are found to be transported by motors along the nematic director direction at a constant velocity in 
a direction determined by individual microtubule polarity. Experimentally, microtubule velocity was 
found to be independent of the local average polarity of the ensemble, as has been observed in 
extract spindles (Needleman et al., 2010), and (over the range of experimental conditions) indepen-
dent of motor density. This phenomenon of oppositely oriented, constant velocity microtubule fluxes 
was referred to as ‘self-straining motion’, with the system interpreted as being composed to two polar 
microtubule gels whose inter-connecting motors pulled them past one another.

We simulate this experiment using 3,000 model microtubules with ‍L =0.5µm‍. Initially the fila-
ments are confined in a tube of diameter ‍D =1µm‍, randomly initialized with their orientations along 
the ‍+x‍ (pink) and ‍−x‍ (white) directions, and packed at about 30% volume fraction. The simulated 
system is periodic along the ‍x‍ direction, with periodic tube length ‍3µm‍. There are approximately 
25 motors per microtubule according to the experimental estimates, and in our simulations we 
vary the motor-to-microtubule number ‍Nm‍ from 10 to 30. There is no accurate measurement for 

Figure 3. Sampled microtubule straining motion velocity vs local polarity in actively crosslinked microtubule network. The left panel shows the 
simulation geometry and the sampling procedure. Microtubules are randomly initialized with orientations along the ‍+x‍ (pink) or ‍−x‍ (white) directions. 
XCTK2 motors are colored green. ‍Nm‍ is the number of XCTK2 motors per microtubule. We sample the local average polarity and straining velocity 
by inserting planes orthogonal to the ‍x‍-axis into the collected data, matching the photobleaching technique used in experimental measurement 
(Fürthauer et al., 2019). For every sampling plane (e.g. the blue pane in the snapshot), we choose five sample points symmetrically on this plane and 
draw a square sampling window with edge length ‍0.2µm‍ around each sample point. For each sampling window, we compute the average polarity ‍Px‍ 
along the ‍x‍-axis for all microtubules intersecting this sampling window at a given time. We then compute the velocities, averaged over ‍10 s‍ (a duration 
chosen to match the experimental timescale), of microtubules intersecting each sampling window and moving along the ‍+x‍ and ‍−x‍ directions. ‍V+x‍ 
and ‍V−x‍ are computed from those two groups for each sampling window. The straining velocity is computed as ‍Vx = V+x − V−x‍. Therefore, for every 
sampling window at each sampling timestep we have a pair of data values ‍Px, Vx‍. The right three panels show the joint probability distribution of 

‍(Px, Vx)‍ computed from 900,000 sampling planes for each simulation, for ‍Nm = 10, 20, 30‍, respectively.

https://doi.org/10.7554/eLife.74160
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the XCTK2 motor in these experimental conditions. Therefore, we used experimental estimates of 
‍46 nm s−1‍ for the walking speed of NCD motors (Furuta and Toyoshima, 2008). To approximate 
the experimental measurement of velocity that used line photobleaching (Fürthauer et al., 2019), 
we sample the local polarity and straining velocity using virtual sampling planes, as shown in the 
left panel of Figure 3. As in Fürthauer et al., 2019, Figure 3 shows that the straining velocity ‍Vx‍ is 
largely independent of the number of motors ‍Nm‍ and the local average polarity ‍Px‍ over the range 
simulated.

Intuitively, the straining velocity ‍Vx‍ is predominantly determined by the free walking velocity of the 
motors in limit of many cross-linkers. From our simulations, we find a straining velocity of approxi-
mately ‍26 nm s−1‍, close to the experimental measurement of ‍18.6 ± 0.9‍.

Large-scale parallelization efficiency
Simulation of cellular-scale cytoskeletal assemblies requires methods that can reach large system 
sizes and timescales. Therefore, we developed aLENS to efficiently utilize modern high-performance 
computing resources. Millions of objects and constraints can be simulated with aLENS. Figure  4 
shows detailed parallel efficiency measurements for one large-scale test case, similar to that in Figure 
6, but more than 10 times larger. Here we track 1 million microtubules and 3 million motors for 100 
timesteps. The performance is benchmarked on a cluster interconnected with infiniband and each 
node has two AMD EPYC 7742 CPUs, each having 64 cores at 2.5 GHz. We launched hybrid MPI 
+ OpenMP  jobs such that each MPI rank has 16 OpenMP threads. On average at each timestep 
the constraint optimization solver handles approximately 8 million collision and doubly bound motor 
constraints. The number of constraints changes at every timestep due to a variable number of collision 
pairs and to stochastic binding and unbinding of motors.

We achieve nearly ideal linear speed up as the number of cores increases (Figure 4). At 1536 cores, 
the efficiency remains at 93% and each timestep takes less than 1 s, making it possible to track such 
large systems on experimental timescales (a few seconds) within days or weeks of computing time. 
More importantly, the constraint optimization allows a ‍∆t‍ that is one or two orders of magnitude 
larger than conventional pairwise potential methods. For the system simulated in Figure 4, aLENS can 
reach ‍1 s‍ physical time per day, using a timestep size of ‍1.0‍.

Figure 4. Strong scaling (fixed system size while increasing number of cores) efficiency of a system similar to but 
more than 10 times larger than that shown in Figure 6, comprising 1 million microtubules and 3 million motors. 
There are in total approximately 8 million constraints per time step, which is changing from step to step because 
collision pairs are changing and crosslinkers are stochastically binding and unbinding. The simulation is run for 100 
computing steps with 1 data-saving step and the average per-step wall-clock time is shown in the figure.

https://doi.org/10.7554/eLife.74160
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Results
Here, we illustrate the ability to use aLENS to study the interplay between microscopic dynamics 
and macroscopic order in active cytoskeletal assemblies. The specific examples shown here are the 
formation and extension of a band of microtubule bundles, polarity sorting of short microtubules on 
a spherical shell, the development of asters with and without thermal fluctuations, and the effect of 
confinement on assembling microtubule-motor mixtures. For the results presented here, all simula-
tions were conducted in solvent with viscosity ‍η =0.01 pN sµm−2

‍ at room temperature, using a fixed 
timestep ‍∆t =10−4 s‍ unless otherwise stated.

Bundle formation and buckling in a filament band
Microtubules driven by crosslinking motors can bundle; sliding of microtubules within the bundles 
causes them to fracture dynamically (Sanchez et  al., 2012; Foster et  al., 2015; Roostalu et  al., 
2018). We study such phenomena through a large-scale simulation of 100,000 filaments modeling 
microtubules and 500,000 minus-end-directed motor proteins modeled after dynein (Figure 5). Motor 
crosslinking drives contraction of initially disordered, bundled filaments (Figure 5A and B). Aligning 
steric and crosslinking forces drive the system into a series of well-aligned bundles spanning several 
filament lengths (Figure 5C, see Figure 5—video 1 and Figure 5—video 2). The motors slide fila-
ments parallel to each other, generating macroscopic extensile motion. Later, the extended network 
buckles and fractures (Figure 5C).

The macroscopic stresses and dynamics depend on the spatial organization of filaments and 
motor-driven sliding. To characterize this, we measure the joint probability distribution of the local 
nematic order parameter ‍Slocal‍ and the number ‍Nd‍ of neighboring filaments crosslinked to a fila-
ment (Figure 5D). While the network contracts, the distribution of ‍Nd‍ does not change significantly 
because the number of motors per filament and the maximum number of neighboring filaments within 
a densely packed structure remain roughly constant. As filaments align, they become near-perfectly 
nematic (‍Slocal ≈ 1‍), although less-ordered regions occur between aligned bundles of different orien-
tations (Figure 5C1 and D2).

Inside the bundles, filament sliding by motors leads to transport along the local nematic director. 
Projecting filament trajectories onto the lab-frame ‍x‍-axis, we observe left- and right-moving filaments 
that speed up early in the simulation, and then maintain constant average velocities at later time 
(‍t > 4 s‍ in Figure 5E), as filaments align due to steric and motor forces (Figure 5F). Note that velocity 
and stresses plateau only when the nematic order saturates.

The filament motions created by motors cause the densely-packed filaments to collide often, 
creating a net extensile stress along the bundles’ axes (Figure 5F). However, the fixed simulation box 
size hinders the networks’ elongation, causing the bundles aligned with ‍x‍-axis to buckle due to the 
net extensile stress (Figure 5F, see Figure 5—video 1 and Figure 5—video 2). In contrast, bundles 
not aligned with the ‍x‍-axis are not constrained and so evolve into straight spikes. This misalignment 
of bundles is seen as a small net stress in the ‍y, z‍-directions for ‍t ≥4 s‍ (Figure 5F).

Polarity sorting in a spherical shell
Crosslinking motors on antiparallel filaments drive polarity sorting, which transports filaments to 
regions of like polarity. This has been well-studied on a planar periodic geometry, e.g. (Gao et al., 
2015b). Here, we use aLENS to examine the effect of confinement geometry on polarity sorting 
(Figure 6). The geometry is designed to explore the polarity sorting phenomena where initial filament 
alignment occurs in a spherical geometry and significantly affects the dynamics and steady state of 
the system. In this simulation, 100,000 filaments with aspect ratio ‍L/Dfil = 10‍ are confined between 
two closely spaced concentric spherical shells at 40% volume fraction. The shell gap is ‍∆R =0.102µm‍, 
shorter than the filament length, with ‍∆R/Dfil ≈ 4‍ so filaments can move over each other in a restricted 
way. The filaments are initialized such that the nematic directors are along the meridians everywhere. 
200,000 motors, modeled after kinesin-5 tetramers, drive relative filament sliding (Figure  6A). 
Brownian motion is modeled at room temperature ‍300 K‍ and timestep ‍∆t‍ is set to ‍1‍. Motors move 
toward minus ends of bound filaments at ‍vm =1.0µm s−1

‍. Once they reach the minus ends, they imme-
diately detach.

Motors walk along the filaments, driving sliding of antiparallel filaments (Figure 6B). This leads 
to polarity-sorted regions at the north and south ‘poles’ of the sphere, meaning that the filament 

https://doi.org/10.7554/eLife.74160
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Figure 5. Results for the bundling-buckling simulation of 100,000 microtubules and 500,000 dynein motors in the periodic simulation box of 

‍600 × 10×10µm‍. Brownian motion of microtubules is turned off. Each dynein has one non-motile head permanently attached to a microtubule and 
the other motile head walks processively with maximum velocity ‍1µm s−1

‍. If bound, the motile head moves toward the microtubule minus-end, and 
detaches upon reaching it. Detailed parameters for this motor are tabulated in the Appendix 1. Every microtubule has 5 dynein motors permanently 
attached to randomly chosen, fixed locations along the length. The initial configuration of microtubules is randomly generated, with their orientations 
sampled from an isotropic distribution and centers uniformly distributed within a cylinder of length ‍600µm‍ and diameter ‍0.3µm‍. The motile heads 

of all dynein motors are unbound initially. (A, B, C) The bundle at ‍t =0 s‍, ‍4 s‍, and ‍7 s‍. Microtubules are colored by their local nematic order parameter 

‍
Slocal =

√
3
2 QijQij ‍

, with ‍Qij = ⟨pipj⟩ − 1
3δij‍, ‍p‍ being the unit orientation vector of each microtubule pointing from the minus to the plus end, and ‍δ‍ 

the Kronecker delta tensor. The average ‍⟨.⟩‍ is taken over each microtubule plus all microtubules that are directly crosslinked to it by dynein motors. 
(A1, B1, and C1) Zoom-in views of the small region marked by red box in A, B, and C. (C2) The same region in C1 but colored by ‍Nd ‍, the number of 
microtubules averaged over when computing ‍Slocal‍. (D1 and D2) The joint probability distributions ‍Slocal‍ and ‍Nd ‍ for each microtubule for the entire 

Figure 5 continued on next page
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orientation ‍p‍ on average points toward the poles. Filaments with reversed initial polarity are trans-
ported to the equatorial region (Figure 6C1). In contrast to the planar geometry (Gao et al., 2015b), 
we did not observe the formation of polar lanes with boundaries between polarity-sorted regions 
approximately parallel to the polarity direction. Instead, on the sphere the boundaries between 
polarity-sorted regions are approximately orthogonal to the polarity directions, as more clearly illus-
trated by plotting the polarity divergence (Figure 6C1).

Motors also accumulate in some regions according to the filament polarity (Figure 6C1). These 
motor accumulation regions are actually regions where the divergence of filament polarity field is 
positive, meaning areas of overlap of filament minus-ends (Figure 6C2, C5 and G). This accumulation 
is illustrated by the positive correlation between motor density ‍n‍ and ‍∇ · p‍ at ‍t =4 s‍ in Figure 6D. 
Furthermore, motor accumulation regions appear to show slightly lower filament volume fraction 
(Figure  6C2 and C4), as shown in Figure  6F. These correlations can be understood through the 
behavior of crosslinking motors near filament ends (Figure 6G). Once polarity sorted regions of fila-
ments form, as the blue arrows represent, ‍∇ · p > 0‍ in regions where minus-ends meet minus-ends 
and vice versa in regions where plus-ends meet plus-ends. Minus-end directed motors accumulate 
in regions with ‍∇ · p > 0‍, while plus-end motors accumulate in regions with ‍∇ · p < 0‍. Once motors 
accumulate, they may attach to both minus ends and push them away such that the distance between 
minus ends is the length of motors. As a result, the volume fraction of filaments in that region is below 
average.

In contrast, if the motors stop walking but do not detach when they reach the minus ends (end-
pausing, EP), the filament network contracts (Fig. 6E1-5) with volume fraction increases from 40% to 
60% and eventually freezes at ‍t =0.27 s‍. We observe neither substantial polarity sorting nor motor 
accumulation. This indicates that the ability of motors to continuously walk, without end-pausing, is 
crucial to effective polarity sorting.

Aster formation in bulk
Aster formation is driven by motor pausing at ends of rigid filaments (end-pausing). Previous work 
has focused on how motor biophysics affects aster formation (Belmonte et al., 2017; Roostalu et al., 
2018). An additional contributor to aster formation may be thermal fluctuations, which are difficult 
to tune experimentally but can be easily modulated in simulations (Figure 7). To examine this, we 
simulated 40,000 filaments and 80,000 processive, minus-end-directed, end-pausing motors starting 
from the same spatially uniform and orientationally isotropic random configuration (Figure 7A). In 
one version of the model, we included thermal fluctuations that drive filament motion (Figure 7D 
and movie Figure 7—video 1), while in the other thermal fluctuations of filaments were neglected 
(Figure  7E and movie Figure  7—video 2). The resulting structure of the system is significantly 
different in the absence of filament thermal motion, showing that thermal fluctuations influence the 
asters’ shape, structure, and ultimate spatial organization. With filament thermal motion, a number 
of dispersed, spherically symmetric, dense asters form. By contrast, in the absence of thermal motion 
the number of asters is larger and more regularly spaced, but their shape is more irregular and they 
contain fewer filaments (Figure 7D vs E).

These differences are clear in the radial distribution function of filament minus ends, which are 
clustered by motors paused at filament ends (Figure 7B). On large length scales, the radial distribu-
tion reflects larger and denser asters for the simulation with thermal fluctuations that drive filament 

systems at ‍t =0.1 s‍, when the dyneins crosslink microtubules but microtubules barely move from initial configuration, and at ‍t =7 s‍, when the bundle 
is nematic. (E) The average trajectories (solid lines) and their standard deviation (shaded area) of left-moving and right-moving microtubules. Dashed 
lines show linear fits to the average trajectory after ‍t =4 s‍, with results ‍VR ≈ VL ≈250 nm s−1

‍. (F) The normal stresses and the weighted average ‍Slocal ‍ 
over time. Due to the symmetry in the ‍y, z‍ directions, only their average is shown ‍⟨σ⟩yy,zz = 1

2
(
σyy + σzz

)
‍. Collision stress is positive (extensile) and 

crosslinker stress is negative (contractile). The weighted average ‍Slocal =
∑

Ni
dSi

local/
∑

Ni
d ‍.

The online version of this article includes the following video for figure 5:

Figure 5—video 1. Contraction and buckling of a long microtubule-motor bundle.

https://elifesciences.org/articles/74160/figures#fig5video1

Figure 5—video 2. Motor motion and stretching during the contraction and buckling of a long microtubule-motor bundle.

https://elifesciences.org/articles/74160/figures#fig5video2

Figure 5 continued

https://doi.org/10.7554/eLife.74160
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Figure 6. Results for the polarity sorting simulation in a spherical shell. Initially, 100,000 0.25 µm-long filaments modeling microtubules and 200,000 
motors modeling crosslinking kinesin-like proteins are placed between two concentric spherical shells with radii ‍rin =5µm‍ and ‍rout =5.102µm‍, to 
maintain the volume fraction of filaments between these two shells at 40%. Initially, all filaments are evenly distributed on the spherical shell, with 
their orientation randomly chosen to be either ‍±eθ‍ at each point, where ‍eθ‍ is the polar basis norm vector of spherical coordinate system. The pure 
filament system is relaxed for ‍1 s‍ to resolve the overlaps in the initial configuration. Afterwards at ‍t = 0‍, ‍200, 000‍ motors are added to the system 
homogeneously distributed between the two shells. Sample points are evenly placed to measure the statistics by averaging the volume within ‍0.25µm‍ 
from each sample point. (A) The configuration at ‍t = 0‍. Filaments are colored by their polarity, while motors are colored as black dots. Only randomly 
selected 10% of all motors (same after) are shown in the image to illustrate the distribution. (B) Randomly selected trajectories of filaments from ‍t =0 s‍ to 
‍1 s‍. Trajectories are colored by time. It is clear that filaments move along the meridians. (C1-C5) Configuration and statistics at ‍t =4 s‍. (C1) The filaments 
and motors. Motors clearly concentrate in some areas. (C2) The motor number density, that is, number of motors per ‍1µm3

‍. (C3) The nematic director 
field (shown as black bars) and the nematic order parameter ‍S‍. (C4) The filament volume fraction. (C5) The divergence of polarity field ‍∇ · p‍ non-
dimensionalized by filament length, that is, change of mean polarity per filament length. (D) The development of the correlation between motor number 
density ‍n/nave‍ and the polarity divergence field, at different times of the simulation. Clearly high ‍n/nave‍ are correlated with positive polarity divergence. 
(E1-E5) Configuration and statistics at ‍t =0.27 s‍ for a comparative simulation where motors have end-pausing, arranges in the same style as C1-C5. 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.74160
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movement. In simulations of both cases, two prominent peaks appear in the radial distribution funca-
tion at small length scales ‍r =25 nm= Dfil‍ and ‍r =78 nm= ℓ0 + Dfil‍ which correspond to scale on which 
filaments bind to or are crosslinked by motors, respectively (Figure 7B, D2 and E2). The relatively 
small peak between these two maxima correspond to filaments that are geometrically confined 
between two crosslinked filaments.

These differences arise from the fact that athermal filaments do not move unless driven by motors, 
which requires that two filaments are close enough to become crosslinked. This suggests that, at 
steady state, athermal aster centers are separated by twice the filament length. In contrast, with 
thermal motion filaments may diffuse ∼‍1µm‍ in ‍1 s‍. This allows filaments to diffuse until they are 
captured in regions of high motor density, such as aster centers. Furthermore, with thermal fluctua-
tions the asters themselves diffuse, which leads to aster coalescence (Figure 7D1). These observations 
and estimated lengthscale are quantitatively confirmed by analyzing the static structure factor of aster 
centers (details in Appendix F), which shows that the athermal simulation has approximately three 
times more asters than the thermal case (Figure 7D vs E).

The differences in the dynamics of aster formation are also reflected in stress measurements 
(Figure 7C), where the more crowded filament configurations of the thermal case produces a larger 
stress throughout the simulation. In both cases, the motor-induced stress ‍ΠLinker‍ initially increases 
quickly, reaching a peak at roughly ‍t =4 s∼5 s‍, similar to the behavior during bundle contraction shown 
above (Figure 5F), before declining. The average time required for motors to walk to filament ends, 

‍τwalk = L/vm ≈5 s‍, determines the initial contraction timescale. After reaching minus ends, motors 
pause and relax toward their equilibrium lengths. As a result, both the motor and collision stress grow 
in magnitude as more motors accumulate at minus ends.

Confined filament-motor protein assemblies
Confinement of cytoskeletal structures plays an important role in cells, where the cytoskeleton is 
spatially constrained by membranes, organelles, and other cellular structures. Although in the previous 
examples we studied open periodic geometry, here we show results of cylindrical confinement. The 
microtubule motor system is constrained inside a cylinder with periodic boundary conditions at the 
cylinder ends. The impermeable boundary of the cylinder surface to motors and filaments was imple-
mented by our complementarity constraints.

Similar to the previous bulk cases, motors move filaments to create high-density crosslinked fila-
ment aggregates that coexist with a relatively low density vapor of non-crosslinked filaments. In bulk 
systems as shown above and in previous work, end-pausing motors drive aster formation because 
crosslinking motors pull filament ends together. A confining cylindrical boundary strongly modifies 
the conformation of these aggregated structures (Figure  8). These simulations used ‍0.25µm‍ long 
filaments at a fixed packing fraction (‍ϕ = 0.16‍), confined in two cylinders with diameters ‍Dcyl =0.25µm‍ 
and ‍0.75µm‍.

For a small-diameter cylinder where one filament length can fit across the cylinder (‍Dcyl/L = 1‍, 

‍Dcyl =0.25µm‍), the cylinder is too narrow for asters to form. Instead, motor sliding and end-pausing 
drive the filaments into polarity-sorted bilayers (PSBs, Figure 8A and movie Figure 8—video 1). A 
single polarity-sorted bilayer contains a central interface of highly crosslinked filament minus-ends 
between two antiparallel polar layers of filaments (Figure 8). At steady state, the system consists of 
individual PSBs separated by low-density vapor regions containing few motors. As expected, the local 
nematic order parameter ‍S

x
local(x)‍ nearly reaches 1 within PSBs. Even the the vapor phase is close to 

nematic ‍S
x
local ≈ 0.6‍ (Figure 8A4), due to the strong confinement effect.

Next we increased the diameter of the cylinder to ‍Dcyl/L = 3‍ (‍Dcyl =0.75µm‍) to weaken the confine-
ment (Figure 8B and movie Figure 8—video 2). Here, the polarity-sorted bilayers are not present, 
because the larger cylinder diameter allows filaments to reorient and organize into bottle-brush-like 
aggregates (BBs). In the bottle brushes, filament plus ends are oriented radially outward from the 

This case shows significant contraction instead of polarity sorting as filaments are pulled away from the north and south poles and the overall volume 
fraction significantly increases to approximately 60%. The structure becomes densely packed and does not significantly evolve further. (F) The correlation 
between motor number density ‍n/nave‍ and the local filament volume fraction. For the polarity sorting case at ‍t =4 s‍ the motor number density correlates 
with low filament volume fraction. This is not seen in the end pausing (EP) case. (G) A schematic for the correlations shown in D and F.

Figure 6 continued
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Figure 7. Results for the aster formation simulations with Brownian motion of simulated microtubules turned on (BMT) and off (NBMT). Initially, 
40,000 ‍0.5µm‍-long filaments modeling microtubules and 80,000 motors modeling crosslinking kinesin-like proteins are placed in a periodic cubic 
box of ‍10 × 10×10µm‍ with uniform distribution. Filament orientations are isotropic and motors are all in the unbound state. Motors are assumed to 
have two minus-end-directed walking heads with symmetric properties. They are assumed to pause when they reach the minus end of filaments until 
detaching. Detailed parameters are tabulated in Appendix B. (A, D, and E) Simulation snapshots. Each filament is shown as a cylinder colored in half 
pink (minus end) and half white (plus end). (A) The initial configuration for both NMT and BNMT cases. Each motor is colored as a green dot. (D and 
E) The snapshot for both cases at ‍t =35 s‍. D1-2 and E1-2 Expanded views of a aster core for D and E. Only doubly bound motors are shown in D and E 
(in green color), and in D1-2 and E1-2 (colored by the spring force). Negative values mean the crosslink forces are contractile (attractive). (B) The radial 
distribution function (RDF) ‍g(r)‍ for the minus ends of all filaments at ‍t =0.1 s‍ (dashed lines) and ‍t =35 s‍ (solid lines). The first peak of ‍g(r)‍ at ‍r =25 nm‍ 
corresponds to close contacts between filaments. The second peak of ‍g(r)‍ at ‍r =78 nm=25 nm+53 nm‍ corresponds to the minus ends of filaments 
crosslinked by motors whose rest length is ‍53 nm‍. Blue and red lines are results for the BMT and NBMT cases, respectively. (C) The collision (solid) and 
crosslinker (dashed) pressure for BMT (blue) and NBMT (red) cases. Pressure is defined as the trace of the stress tensor: ‍Π = 1

3 Trσ‍. The collision pressure 
‍ΠCol‍ is positive (extensile), and the motor pressure ‍ΠLinker‍ is negative (contractile). The inset plot shows the pressure for the NBMT case in the initial 
stage of the simulation. The black dashed lines mark the time ‍t =4 s‍.

Figure 7 continued on next page
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cylinder axis, forming a hedgehog line defect capped by half asters (Figure 8B2). Motors become 
highly concentrated along the line defects at the center of the cylinder (Figure  8B3). The radial 
hedgehog structure of BBs is evidenced by a negative local nematic order parameter (Figure 8B4, 
blue line). The splayed nature of the BBs produces a lower relative packing fraction of ‍∼ 2.5‍ times the 
vapor when compared to the PSBs (Figure 8B4, red line).

Discussion
We designed aLENS to (i) model crosslinking motor kinetics conforming to an underlying free energy 
landscape, (ii) circumvent the timescale limitation imposed by conventional explicit timestepping 
methods, and (iii) efficiently utilize modern parallel computing resources to allow simulation of 
cellular-scale systems. This efficient framework allows both modeling the individual building cytoskel-
etal building blocks (filaments, motors) and gathering mesoscale statistical information such as stress 
and order parameters from a large system. This multiscale capability will make it possible to directly 
compare simulations with experimental observations on mesoscopic and macroscopic scales over 
timescales from seconds to minutes.

The aLENS framework is not limited to a specific motor model. Because of the modular design 
of the motor code, the motor model can be extended to include additional physics such as force-
dependent binding and unbinding rates, or even entirely replaced, say, with a passive crosslinker or 
other model. Dynamic instability and branching of cytoskeletal filaments can also be integrated with 
the constraint minimization problem, as we showed previously in modeling the division-driven growth 
of bacterial colonies (Yan et al., 2019). Long and flexible polymers can be simulated by chaining short 
and rigid segments together with flexible connections (Appendix H), even with nonlocal interactions 
mediated by hydrodynamics, electrostatics, or other fields (Shelley, 2016; Nazockdast et al., 2017; 
Maxian et al., 2021). For example, in ongoing work we have used aLENS to simulate chromatin in the 
nucleus as a bead-spring chain moving through the nucleoplasmic fluid, and confined by the nuclear 
envelope.

Recent years have seen considerable innovation in computational approaches to cytoskeletal 
modeling, implemented in powerful simulation packages including Cytosim (Nedelec and Foethke, 
2007), MEDYAN (Popov et al., 2016), and AFINES (Freedman et al., 2017). These packages utilize a 
variety of coarse-grained representations of cytoskeletal elements and numerical simulation schemes, 
with the diversity of approaches in part reflecting the diversity of cytoskeletal systems and phenomena 
of interest. aLENS brings a powerful set of new capabilities to the table, significantly expanding the 
range of accessible time and length scales in simulations of systems in which excluded volume and 
crosslink-mediated interactions play an important role.

aLENS has been open-sourced on GitHub: https://github.com/flatironinstitute/aLENS (copy 
archived at swh:1:rev:f2dd484f82443735562ad7b480fe7ed9fc020fb0; Adam, 2022) and precompiled 
binary executable is available on DockerHub: https://hub.docker.com/r/wenyan4work/alens. Our 
GitHub documentation provides a clear roadmap for developing additional user-specific modules.
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Figure 8. Results for the confined filament-motor protein assembly simulations with ‍9, 216‍ filaments modeling microtubules and ‍27, 648‍ motors 
modeling crosslinking kinesin-like proteins at a cylinder diameter of ‍Dcyl =0.25µm‍ and ‍0.75µm‍. Initially, ‍0.25µm‍ long filaments are uniformly 
distributed and aligned along the ‍x‍-axis, with equal numbers oriented in the ‍+x‍ and ‍−x‍ directions. Crosslinking motor proteins are initially unbound 
and distributed uniformly as well. A and B: Snapshots of the simulation with ‍Dcyl =0.25µm‍ and ‍0.75µm‍ at ‍t =58 s‍ and ‍t =120 s‍. A1 and B1: All 
9,216 simulated filaments. In A1, the the cylinder is too long to be displayed contiguously, therefore a stacked representation is shown. The filaments 
are colored by the value of ‍cos θ‍ where θ is the angle between the filament direction vector ‍p‍ (oriented from the minus-end to the plus-end) and 
the positive ‍x‍-axis (pointing to the right). A2 and B2: Zoomed-in view of the filaments in the boxed regions in A1 and B1. A3 and B3: Doubly-bound 
motors in the boxed regions, colored by their binding force. Negative values represent contractile force while positive values indicate extensile force. 

A4 and B4: The local packing fraction (red line) and the local nematic order parameter (blue line), ‍S
x
local(x) =

∑N(x)
i Wi(x)Sx

local(x)i‍ where a filament 

‍ ‍ contributes ‍S
x
local(x)i = 1

2 (3 cos2 θi − 1)‍ to the local order at ‍x‍. Filament contributions are weighted by ‍Wi(x)‍ and summed over all filaments at ‍x‍. 

Figure 8 continued on next page
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Appendix 1
Crosslinker and motor properties

Appendix 1—table 1. The parameters of the two springs controlling extension and bending, 
respectively.

Parameter Explanation Unit

End-pausing True or False ND

One head fixed True or False ND

λ energy factor ND

‍λP,AP‍ parallel to anti-parallel factor ND

‍ℓ0‍ free length ‍µm‍

rc capture radius ‍µm‍

κ Hookean spring constant ‍pNµm−1
‍

‍Fstall‍ stall force ‍pN‍

‍dU ‍ unbound diffusivity ‍µm2 s−1
‍

‍ϵ‍ binding site density ‍µm−1
‍

vm max walking velocity ‍µm s−1
‍

‍Ka‍ association constant (‍U ⇌ S‍) ‍
(
µmol/L−1

‍

‍ko,S‍ off-rate constant (‍U ⇌ S‍) ‍s−1‍

‍Ke‍ effective association constant (‍S ⇌ D‍) ND

‍ko,D‍

force-independent off-rate constant 
(‍S ⇌ D‍) ‍s−1‍

‍dS‍ singly bound head diffusivity ‍µm2 s−1
‍

‍dD‍ doubly bound head diffusivity ‍µm2 s−1
‍

‍vS‍ singly bound walking velocity ‍µm s−1
‍

xc force-dependent unbinding length ‍µm‍

Appendix 1—table 2. Properties of crosslinkers used in the main text.
ND means dimensionless. Parameters given as an array ‍[a, b]‍ means the two values are used for each 
each of a crosslinker, respectively. Kinesin-5 parameters are adapted from Blackwell et al., 2017. 
Dynein parameters are adapted from Foster et al., 2017. Kinesin-1 parameters are adapted from 
Scharrel et al., 2014.

Parameter Kinesin-5 Dynein Kinesin-1
Inactivated 
Kinesin-1

End-pausing True False False False

One head fixed False True True True

λ 0.258 0.5 0.5 0.5

‍λP,AP‍ 1 1 1 1

‍ℓ0‍ 0.053 0.040 0.05 0.05

rc 0.039 0.033 0.038 0.038

κ 300.0 100.0 100.0 100.0

Appendix 1—table 2 Continued on next page
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Parameter Kinesin-5 Dynein Kinesin-1
Inactivated 
Kinesin-1

‍Fstall‍ 5.0 1.0 7.0 7.0

‍dU ‍ 1.0 1.0 1.0 1.0

‍dS‍ 0 0 ‍[0, 10−2]‍ ‍[0, 0]‍

‍dD‍ 0 0 ‍[0, 10−2]‍ ‍[0, 0]‍
‍ϵ‍ 1,625 400 400 400

vm ‍[−0.1,−0.1]‍ ‍[0,−1.0]‍ ‍[0, 1.0]‍ ‍[0, 0]‍

‍Ka‍ ‍[90.9, 90.9]‍ ‍[100.0, 100.0]‍ ‍[0, 10.0]‍ ‍[0, 10.0]‍

‍ko,S‍ ‍[0.11, 0.11]‍ ‍[0.1, 0.1]‍ ‍[0, 1.0]‍ ‍[0, 0.1]‍

‍Ke‍ ‍[90.9, 90.9]‍ ‍[100.0, 100.0]‍ ‍[0, 10.0]‍ ‍[0, 10.0]‍

‍ko,D‍ ‍[0.11, 0.11]‍ ‍[0.1, 0.1]‍ ‍[0, 1.0]‍ ‍[0, 0.1]‍

Appendix 1—table 2 Continued
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Appendix 2
Crosslinker binding and unbinding
Kinetic Monte-Carlo: crosslinking protein-filament interactions

Appendix 2—figure 1. Labels and definition of kinetic rates for crosslinking proteins binding to filaments (green) 
implemented in the kinetic Monte Carlo algorithm. Crosslinking proteins (blue) exist in three different states: 
neither head attached to a filament (unbound), bound with one head attached to a filament (singly bound), and 
crosslinking two filaments (doubly bound). Motors and crosslinkers may have different rates for separate binding 
heads (A,B).

Our molecular model simulates distinct filaments and crosslinking proteins (crosslinking motor 
proteins, passive crosslinkers, etc.). This model includes fluctuations in bound protein number and 
binding kinetics that recovers the equilibrium distribution of static crosslinking proteins Gao et al., 
2015a; Blackwell et al., 2017; Rincon et al., 2017; Lamson et al., 2019; Edelmaier et al., 2020. 
Modeled crosslinking proteins in solution bind to one filament and then crosslink two filaments 
(Appendix 2—figure 1). In dense filament networks, the spatial variation of unbound proteins play 
an important part in the network’s reorganization. To account for inhomogeneous concentrations, 
we explicitly model unbound crosslinkers and develop a method that reproduces one head bound 
and doubly bound distributions consistent with a mean-field model (Appendix C.2). All binding and 
unbinding rate calculations are summarized in Appendix 2—table 1.

Unbound crosslinking proteins rapidly diffuse in the surrounding fluid until a head binds to a 
filament. Heads of modeled crosslinking proteins in solution bind to filaments described by the 
reversible chemical reaction

	﻿‍ H + B = HB,‍� (10)

where ‍H‍ is a head and ‍B‍ is a binding site on a filament. The association constant ‍Ka‍ of the heads 
to binding sites is described by the equilibrium equation

	﻿‍ Ka = [HB]
[H][B] = kon,S

koff,S
,‍� (11)

where ‍[X]‍ defines the concentration of substance ‍X ‍. The association constant has units of inverse 
molarity, and relates the the on- and off-rate constants ‍kon,S‍ and ‍koff,S‍.

https://doi.org/10.7554/eLife.74160
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Unbound crosslinkers are modeled as diffusing points with center of mass positions ‍xo(t)‍ and 
diffusion constants du. The heads of a crosslinker have spatial- and time-dependent concentrations 

‍[H] = c(x, t)‍. The head binding rate is the volume integral over the product of the on-rate constant, 
binding site density, and crosslinker concentration

	﻿‍
RA

on,S(t) = kA
on,S

∑
i

ˆ

Li

ds
ˆ

dx3ϵδ3(x − xi(s))c(x, t),
‍�

(12)

where ‍k
A
on,S = KA

a kA
off,S‍ and ‍ϵ‍ is the linear binding site density along filaments. The lab position 

along the ith filament ‍xi(s)‍ is parameterized by ‍s‍.
The binding probability in a timestep ‍∆t‍ is an in-homogeneous Poisson process with the 

cumulative probability function

	﻿‍
Pon,S(∆t) = 1 − exp

(
−
ˆ ∆t

0
dtRon,S(t)

)
.
‍�

(13)

We assume the tight binding limit ‍kon,S ≫ koff,S‍ and do not consider multiple binding and 
unbinding events of one crosslinker during a timestep ‍∆t‍. The average number of multiple events 
may be calculated from binding parameters and the timestep allowing one to set a probability 
threshold (Lamson et al., 2021). Heads of the same crosslinking protein are forbidden to be bound 
to the same filament at the same time.

To describe ‍c(x, t)‍ during a timestep, we first consider a crosslinking protein with two heads 
connected by a flexible but relatively stiff polymer tether with length ‍ℓo‍. Because of the tether’s 
stiffness, the radius of gyration of an unbound protein is assumed to be ‍rg = ℓo/2‍. The binding heads 
at the tether’s ends move by the tether’s rotation and translation. Depending on the timestep’s 
length, either rotation or translation will dominate the evolution of the head distributions.

For most biological crosslinking proteins, the rotational diffusion is fast compared to translational 
diffusion. When the crosslinker’s center does not diffuse far from its position at the beginning of a 
timestep, that is, ‍

√
6dU∆t < rg‍, rotational diffusion dominates and we approximate heads to be within 

a sphere of radius ‍rc,S = rg‍ centered at ‍xo‍. Realistically, the head distributions can vary within this 
volume but because ‍ℓo‍ is small compared to filament lengths, we approximate the head distribution 
as being uniform, that is, ‍c(x, t) = (4πr3

c,S/3)−1(1 −Θ(|x| − rc,S))‍, where ‍Θ(x)‍ is the Heaviside step 
function. For larger crosslinking proteins, more detailed spatial distributions may be calculated using 
freely-jointed or worm-like chain models.

For uniformly distributed heads, the head binding rate is

	﻿‍
Ron,S(t) = 3ϵkon,S

4π(rc,S)3

∑
i Lin,i(t),‍� (14)

where ‍Lin‍ is the filament ‍‍’s length segment within ‍rc,S‍. To account for cylindrical filaments with 
diameter ‍Dfil‍, we augment the binding radius such that ‍rc,S = rg + Dfil/2‍. Since this scenario exists 
within a regime where the crosslinker or motor does not diffuse far from its initial position in a 
timestep, we approximate ‍Ron,S(t) ≈ Ron,S(ti)‍, for ‍t ∈

(
ti, ti + ∆t

)
‍.

However, it is uncommon that an unbound crosslinker or motor will diffuse less than rg in a 
timestep, and so we must account for the protein’s translational diffusion. The diffusion equation 
models the mean spatial distribution of a unbound crosslinking protein’s center

	﻿‍
∂co(x, t)

∂t
= dU∇2co(x, t),

‍�
(15)

which has the solution

	﻿‍
co(x, t) = 1(

4πdU
)3/2 exp

[
−|x−xo |2

4dUt

]
.
‍�

(16)

If the characteristic diffusion length ‍
√

dU∆t ≫ rg‍, then equation (14) underestimates binding 
(Appendix  2—figure 2). The large diffusion distance also allows us to approximate the head 
distribution as matching the protein’s spatial distribution, ‍co(x, t) ≈ c(x, t)‍. Substituting the binding 

https://doi.org/10.7554/eLife.74160
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rate equation (12) and the solution to the diffusion equation (16) into the integral of equation (13) 
gives

	﻿‍

ˆ ∆t

0
dtRon,S(t) =

∑
i

ˆ ∆t

0
dt

kon,Sϵ(
4πdUt

)3/2

ˆ

Li

dsi

ˆ
dx3δ3(x − x′i(si)) exp

[
−|x − xo|2

4dUt

]
.
‍�

(17)

For straight, rigid filaments, we take the volume and time integrals while reparameterizing ‍|x − xo|2‍ 
by the crosslinker’s perpendicular ‍h‍ and parallel ‍s‍ distances from a filament segment’s center. This 
gives the linear binding probability density for a filament

	﻿‍

pon,S(h⊥, si,∆t) =
ˆ ∆t

0
dt
∂Ron,S
∂si

=
Kaϵko,S
4πdU


 1√

h2
i + s2

i

erfc



√

h2
i + s2

i√
4dU∆t




 .

‍�

(18)

Integrating over si gives the binding probability of one crosslinker head to a single filament. The 
total binding probability is then

	﻿‍
Pon,S(∆t) = 1 − exp

(
−

N∑
i

ˆ

Li

dsipon,S(hi, si,∆t)

)
,
‍�

(19)

where ‍N ‍ is the number of filaments surrounding the crosslinker head.

Appendix 2—figure 2. Comparison of initially unbound passive crosslinkers binding to a ‍1µm‍ filament with 
binding radii set to a crosslinker’s radius of gyration versus a binding radius ‍∼

√
dU∆t‍. (A, D) Number of 

singly bound crosslinkers over time as the unbound diffusion constant ‍dU ‍ (A) and time step ‍∆t‍ (D) vary while 
binding radius remains unchanged ‍rc,S = (ℓo + Dfil)/2‍. Red lines mark the steady-state number of singly 
bound crosslinkers for a homogeneous reservoir calculated from equations (26)-(30). (B, E) Same as A and 
D but binding radius scales as the root mean square of diffused distance in a time step ‍rc,S =

√
6dU∆t‍. (C, 

F) Comparison of the steady-state number of singly bound crosslinkers as a function of ‍dU ‍ (C) and ‍∆t‍ (F) for 
both definitions of ‍rc,S‍. Simulation parameters: periodic box length ‍=2µm‍, filament length ‍L =1µm‍, linear 

binding site density ‍ϵ =27µm−1
‍, crosslinker number ‍N = 4000‍, crosslinker length ‍ℓo =50 nm‍, association 

constant ‍Ka =90.9 (µmol/L)−1
‍, unbinding rate ‍ko,S = 5 s−1

‍. Unless otherwise stated unbound diffusion constant 

‍dU =1µm2/s‍ and timestep ‍∆t =0.0001 s‍

Calculating the binding probability from this function and ensuring that the protein unbinds so 
that detailed-balance is satisfied is computationally prohibitive. Instead, setting ‍rc,S‍ to the root mean 
square diffusion distant ‍

√
6dU∆t‍ and using the rate equation 14, we obtain a useful approximation 

to equation 19. This is computationally efficient and mitigates the low binding rates when diffusion 
or times steps are large (Appendix 2—figure 2). We note that the accuracy of this approximation 

https://doi.org/10.7554/eLife.74160
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is dependent on the length of filaments in the simulation with longer filaments reducing the error 
from edge effects. Future work will focus on developing methods to more accurately reproduce the 
above binding distribution.

Once bound, a crosslinking protein’s head unbinds with a constant rate

	﻿‍ koff,S = ko,S.‍� (20)

If implementing equation 14, the protein unbinds into a uniform sphere of radius ‍rc,S‍. This ensures 
crosslinkers bind to and from regions in a way that satisfies detailed-balance.

With one head bound, a crosslinker’s tether deforms to bind its other head to adjacent filaments. 
Deforming a tether requires energy, implying crosslinking kinetics depend on tether deformation. 
For passive crosslinkers and motors with rapid kinetic rates compared to stepping rate, the ratio of 
binding and unbinding rates to and from a position on a filament is proportional to the Boltzmann 
factor of the binding free energy.

With one head bound to filament ‍‍ at position si, the binding rate constant ‍kon,[, D]‍ for binding to 
a location sj on filament ‍j‍ is

	﻿‍ kon,D(si, sj) = Keko,De−βUi,j(si,sj),‍� (21)

where ‍ko,[, D] = koff,[, D](Ui,j = 0)‍ is the unbinding-rate of crosslinking proteins when no force is 
applied, ‍Ke‍ is a binding association constant similar to ‍Ka‍, and ‍Ui,j‍ is the free energy contribution 
from the tether

	﻿‍ Ui,j = κxl
2 (ℓ(si, sj) − ℓo − Dfil)2

‍� (22)

Before crosslinking, the unbound motor head explores an effective volume ‍Vbind‍ centered around 
the bound motor head. Not considering steric interactions with filaments, this volume is the free 
head’s position weighted by the Boltzmann factor integrated over all space.

	﻿‍
Vbind =

ˆ
e−βUi,j dr3 = 4π

ˆ rc,D

0
e−βUi,j r2dr.

‍�
(23)

We impose an integration cutoff radius ‍rc,D‍ where the integrand becomes sufficiently small, 
making the factor consistent with a finite lookup table Lamson et al., 2021. The binding head’s 
positional distribution must also satisfy the Boltzmann factor. We recover the proper binding 
distribution through inverse transformation sampling of equation (21) Lamson et al., 2021.

Theory and experimental evidence suggests that binding rates depend not only on energy but 
also force Evans and Ritchie, 1997; Dudko et al., 2006; Walcott, 2008; Guo et al., 2019. This 
allows for catch-bond-like behavior where proteins remain crosslinked for longer if under tension 
and release quicker if compressed. We replicate this behavior with the function

	﻿‍
fF(si, sj) = κxl

(
λ
2 (ℓ(si, sj) − ℓo)2 + xc(ℓ(si, sj) − ℓo)

)
‍� (24)

where λ and xc are the energy factor and characteristic length specifying the behavior of the 
energy- and force-dependent binding/unbinding, respectively. For values of ‍xc < 0‍, you see catch-
bond like behavior whereas values of ‍xc > 0‍ exhibit slip bond behavior Walcott, 2008; Edelmaier 
et al., 2020. This formalism can also be used to add in angle dependence.

When we include an effective energy and/or force dependence, the unbinding rate becomes

	﻿‍ koff,D(si, sj) = ko,DeβfF(si,sj).‍� (25)

This does not change the final stored energy of either bound state but does effect the frequency 
at which the motors will switch between having one head bound and crosslinking.

Appendix 2—table 1. The transition rates between all possible states of a crosslinker 

‍U ⇌ (SA, SB) ⇌ D‍.

‍
(
SA, SB

)
‍ means either head ‍A‍ or ‍B‍ is bound but the other is unbound. All binding rates account for 

the linear binding density ‍ϵ‍ is the length of filament ‍‍ with center-of-mass position ‍xi‍ and orientation 

‍pi‍ inside the capture sphere with cutoff radius ‍rc,s‍ relative to position of motor/crosslinker ‍x‍. The 
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sum is over all possible candidate filaments ‍‍. The unbound-singly bound transition ‍U ⇌ (SA, SB)‍ is 
determined by the association constant ‍Ka‍ and the force-independent off rate ‍ko,s‍. Similarly, the 
singly bound-doubly bound transition ‍(SA, SB) ⇌ D‍ is determined by the association constant ‍Ke‍ and 
force-independent off rate ‍ko,d‍ with an additional factor ‍Vbind‍, the effective volume explored by the 
unattached head while the motor/crosslinker is singly bound. Energy dependence in the ‍(SA, SB) ⇌ D‍ 
transition rates is imposed by the Boltzmann factor that is a function of ‍β = 1/(kBT)‍, the tether 
length of the motor/crosslinker attached to filaments ‍‍ and ‍j‍ at locations si and sj‍ℓ(si, sj, xi, pi, xj, pj‍), 
the characteristic length of the tether not under load ‍ℓo‍, and the filament diameter ‍Dfil‍. The 
dimensionless factor λ determines the energy dependence in the unbinding rate while the xc is the 
characteristic length that determines the force dependence. The latter is not used in the simulations 
of the main text but is implemented in the code base.
Process Rate Value

‍U → (SA, SB)‍ ‍Ron,S(x, t)‍
‍

3ϵKako,S
4πr3

c,S

∑
i

Lin,i(x, t)
‍

 
 

‍(SA, SB) → U ‍ ‍Roff,S ‍ ‍ko,S ‍

‍(SA, SB) → D‍ ‍Ron,D(si, t)‍ ‍

ϵKeko,D
Vbind

∑
j

ˆ

Lj

dsj exp
[
−βκxl

(
1 − λ

2
(
ℓ− ℓo − Dfil

)2 − xc
(
ℓ− ℓo − Dfil

))]

‍

 
 

‍D → (SA, SB)‍ ‍Roff,D(si, sj, t)‍ ‍
ko,D exp

[
βκxl

(
λ

2
(
ℓ− ℓo − Dfil

)2 + xc
(
ℓ− ℓo − Dfil

))]

‍
 

Mean-field theory for crosslinking proteins
We expand on our previous mean-field motor density model to include motors that have dissimilar 
heads, diffusion and walking in singly and doubly bound states, and a time-dependent homogeneous 
concentration of unbound crosslinking proteins Lamson et al., 2021. This last addition imposes the 
condition that the total number of proteins when all bound and unbound states are accounted for 
remains constant.

This requires a system of equations with ‍N(N − 1)‍ crosslinking densities ‍ψ
A,B
i,j ‍, ‍2N ‍ singly bound 

densities ‍χ
A
i ‍ and ‍χ

B
i ‍, and an unbound density ‍C‍ to model all crosslinking proteins between ‍N ‍ 

filaments. By convention,‍ψ
A,B
i,j = ψB,A

j,i ‍

	﻿‍

∂ψA,B
i,j
∂t

+ ∂

∂si

[
−dA

i,j
∂ψA,B

i,j
∂si

+ (vA
drag,i,j + vA

walk,i,j)ψ
A,B
i,j

]
+ ∂

∂sj

[
−dB

i,j
∂ψA,B

i,j
∂sj

+ (vB
drag,i,j + vB

walk,i,j)ψ
A,B
i,j

]

= ϵ(kA
on,i,jχ

B
i + kB

on,i,jχ
A
j ) − (kA

off,i,j + kB
off,i,j)ψ

A,B
i,j , ‍�(26)

	﻿‍

∂ψB,A
i,j
∂t

+ ∂

∂si

[
−dB

i,j
∂ψB,A

i,j
∂si

+ (vB
drag,i,j + vB

walk,i,j)ψ
B,A
i,j

]
+ ∂

∂sj

[
−dA

i,j
∂ψB,A

i,j
∂sj

+ (vA
drag,i,j + vA

walk,i,j)ψ
B,A
i,j

]

= ϵ(kB
on,i,jχ

A
i + kA

on,i,jχ
B
j ) − (kA

off,i,j + kB
off,i,j)ψ

B,A
i,j , ‍�(27)

	﻿‍

∂χA
i

∂t
+ ∂

∂si

[
−dA

i
∂χA

i
∂si

+ vA
walk,i χ

A
i

]
= ϵkA

on,SC − kA
off,sχ

A
i +

∑
j

ˆ

Lj

dSj

(
kB

off,i,jψ
A,B
i,j − ϵkB

on,i,jχ
A
i

)
,
‍� (28)

	﻿‍

∂χB
i

∂t
+ ∂

∂si

[
−dB

i
∂χB

i
∂si

+ vB
walk,i χ

B
i

]
= ϵkB

on,SC − kB
off,sχ

B
i +

∑
j

ˆ

Lj

dSj

(
kA

off,i,jψ
B,A
i,j − ϵkA

on,i,jχ
B
i

)
,
‍� (29)
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	﻿‍

∂C
∂t

=
∑

i

ˆ

Li

dsi

[
kA

off,Sχ
A
i + kB

off,S
V

− ϵ
(

kA
on,S + kB

on,S

)
C

]
.
‍�

(30)

For heads ‍A‍ and ‍B‍, crosslinking diffusion constants ‍d
A
i,j‍ and ‍d

B
i,j‍, the drag speeds ‍v

A
drag,i,j‍ and ‍v

B
drag,i,j‍, 

and walking speeds ‍v
A
walk,i,j‍ and ‍v

B
walk,i,j‍ have been shown to depend on the force exerted on the 

binding heads and thus the stretch of the tether ‍ℓ(si, sj)‍. No tether force acts on singly bound motor 
proteins but the singly bound diffusion constants ‍d

A
i ‍ and ‍v

B
i ‍ and walking speeds ‍v

A
drag,i‍ and ‍v

B
drag,i‍ may 

depend on si through some other physical mechanism such as crowding or state of the filament’s 
lattice. The total number of crosslinking proteins of the system is

	﻿‍
N =

∑
i

∑
j

ˆ

Li

dsi

ˆ

Lj

dsjψ
A,B
i,j +

∑
i

ˆ

Li

dsi

(
χA

i + χB
i

)
+ CV

‍�
(31)

and is constant in time.

https://doi.org/10.7554/eLife.74160
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Appendix 3
Filament dynamics
Constraint quadratic programming
In the main text we discussed specifically filament. In fact, our method is applicable to rigid bodies 
of arbitrary shapes. Here we derive the detailed equations.

The configuration of each particle is tracked by its center location ‍x‍ in the lab frame and its 
orientation ‍θ = [s, p] ∈ R4

‍ as a quaternion Delong et al., 2015. This ‍p‍ is the vector component of 
the quaternion, not the unit orientation vector. There are other choices to specify the orientation, 
such as Euler-angles and rotation matrices, but we prefer quaternions for simplicity. The geometric 
configuration ‍C‍ for all ‍N ‍ filaments can be written as a column vector:

	﻿‍ C =
[
x1, θ1, . . . , xN, θN

]T ∈ R7N,‍� (32)

which is a function of time: ‍C(t)‍. The translational and angular velocity ‍U,Ω‍ of all filaments can 
also be written as a column vector:

	﻿‍ U =
[
U1,Ω1, . . . , UN,ΩN

]T ∈ R6N.‍� (33)

Similarly we can write the force and torque ‍F, T ‍ applied on all filaments as a column vector:

	﻿‍ F =
[
F1, T1, . . . , FN, TN

]T ∈ R6N.‍� (34)

The kinematic equation of motion 35 maps ‍U ‍ to ‍̇C(t) = ∂C/∂t‍, via a geometric matrix ‍G‍.

	﻿‍ Ċ(t) = GU .‍� (35)

‍G ∈ R7N×6N ‍ is a block diagonal matrix, with one ‍3 × 3‍ and one ‍4 × 3‍ block for each particle:

	﻿‍

G =




I3

Ψ1

I3

Ψ2
. . .




.

‍�

(36)

‍I3‍ is the ‍3 × 3‍ identity matrix, same for every particle. Each ‍I3‍ block simply corresponds to the 
translational motion ‍̇xj = Uj‍ of each particle ‍j‍. Each ‍Ψj ∈ R4×3

‍ refers to the rotational motion 

‍θ̇j = ΨjΩj‍ of each particle, where for each ‍j‍:

	﻿‍

Ψ(θ) = 1
2


 −pT

sI − P


 , Pij = ϵikjpk.

‍�
(37)

Here ‍ϵikj‍ is the Levi-Civita symbol for cross-product in 3D space.
The biological filaments we consider mostly have lengths on the nm to ‍µm‍ scales. At these scales, 

solvent viscosity dominates and inertia effects can be ignored, which is the so-called Stokes regime 
where the mobility matrix ‍M‍ maps the force ‍F ‍ linearly to the velocity ‍U ‍:

	﻿‍ U = MF , F = FC + FL + FB + FE.‍� (38)

‍F ‍ includes collision force ‍FC‍ between particle-particle and particle-container pairs, linker force 
between particle pairs ‍FL‍ generated by doubly bound crosslinkers, Brownian force on each particle 

‍FB‍ generated by thermal fluctuations, and other externally applied forces ‍FE‍ through gravity and 
electrostatic fields.

In principal, Equation 35 together with Equation 38 can be integrated directly because both ‍M‍ 
and ‍F ‍ are functions of the geometry ‍C‍ and time only. However, this approach is usually impractical, 
because ‍FC‍ or ‍FL‍ is usually very stiff functions of the geometry. For example, the collision force 
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‍FC‍ is usually computed by assuming a very stiff pairwise potential between filaments, such as the 
Lennard-Jones or WCA potential. This stiffness poses severe limits on the stability of all explicit 
temporal integrators. We discussed this problem in detail for collision forces ‍FC‍ in our previous 
work on Brownian spherocylinders Yan et al., 2019 and rigid spheres in Stokes flow Yan et al., 2020. 
Instead of computing ‍FC‍ using repulsive potentials, we imposed non-overlapping constraints on the 
geometry ‍C‍ while integrating Equation 35.

Equation of motion with geometric constraints
In the following, the subscript ‍c‍ refers to constraints, which includes both unilateral (with subscript ‍u‍) 
and bilateral (with subscript ‍b‍) constraints. Unilateral constraints refer to those inequality constraints, 
i.e., constraints imposed from one side, while bilateral constraints refer to equality constraints. In 
our system, unilateral constraints come from collisions and bilateral constraints come from doubly 
bound crosslinkers. The subscript ‍nc‍ refers to non-constraint, i.e., physical components that are 
independent of the constraints.

For unilateral constraints, we define the grand distance function ‍Φu‍ between every pair of 
particles as a column vector:

	﻿‍ Φu =
[
Φu,P1Q1 ,Φu,P2Q2 , · · · ,Φu,PNu QNu

]T ∈ RNu ,‍� (39)

where each ‍Φu,PjQj‍ is the minimal distance between particles with indices ‍Pj‍ and ‍Qj‍. Similarly, we 
define the grand distance function ‍Φb‍ for bilateral constraints:

	﻿‍
Φb =

[
Φb,P1Q1 ,Φb,P2Q2 , · · · ,Φb,PNb QNb

]T
∈ RNb ,

‍�
(40)

where each ‍Φb,PjQj‍ is the distance between two fixed points on particles ‍Pj‍ and ‍Qj‍, respectively. 
Physically, ‍Φb,Pj,Qj‍ is simply the length of each doubly bound crosslinker. With this definition, there 
are in total ‍Nu‍ unilateral and ‍Nb‍ bilateral constraints in the system. In other words, there are in total 
‍Nu‍ possibly colliding pairs of filaments and ‍Nb‍ doubly bound crosslinkers. Both kinds of constraints 
are functions of the system geometry, so we shall write them as ‍Φb(C)‍ and ‍Φu(C)‍ in the following 
when necessary.

The force magnitude between all pairs of particles for unilateral and bilateral constraints can be 
written similarly as column vectors:

	﻿‍ γu =
[
γu,1, γu,2, · · · , γu,Nu

]T ∈ RNu ,‍� (41)

	﻿‍ γb =
[
γb,1, γb,2, · · · , γb,Nb

]T ∈ RNb .‍� (42)

For each ‍Φu,PjQj‍ or ‍Φb,PjQj‍, there is a corresponding force magnitude ‍γu,j‍ or ‍γb,j‍, the (normalized) 
direction vector ‍̂ePj = −êQj‍ of this force, and the location ‍yPj‍ and ‍yQj‍ where this force is applied on 
the filament ‍Pj‍ and ‍Qj‍ respectively, as shown in Appendix 3—figure 1. With norm vectors defined in 
this way, ‍γu‍ or ‍γb‍ is positive when the force is repulsive between two filaments.

For unilateral constraints ‍Φu‍ and ‍γu‍ satisfy this complementarity condition:

	﻿‍ 0 ≤ Φu(C) ⊥ γu ≥ 0‍� (43)

This condition means ‍Φu(C)‍ and ‍γu‍ are orthogonal to each other, and all components of ‍Φu(C)‍ 
and ‍γu‍ are non-negative Yan et al., 2019.

For bilateral constraints ‍Φb‍ and ‍γb‍ satisfy this linear equality condition because they are modeled 
as Hookean springs:

	﻿‍
K

[
Φb(C) −Φ0

b

]
= −γb.

‍� (44)

‍K ∈ RNb×Nb‍ is a diagonal matrix, with the stiffness constant κ for each spring on its diagonal 

‍
[
κ1,κ2, . . .

]
‍. Obviously every constant ‍κj‍ is positive. ‍Φb(C)‍ and ‍Φ

0
b‍ represent the current and free 

length of every spring.
Both unilateral and bilateral constraints change over time, as particles move and springs attach 

to and detach from particles.

https://doi.org/10.7554/eLife.74160


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yan et al. eLife 2022;11:e74160. DOI: https://doi.org/10.7554/eLife.74160 � 32 of 51

All combined together, we reach the equation of motion with geometric constraints:

	﻿‍ Ċ(t) = G(C)U ,‍� (45a)

	﻿‍ U = MF = M
(
Fu + Fb + Fnc

)
,‍� (45b)

	﻿‍ 0 ≤ Φu(C) ⊥ γu ≥ 0,‍� (45c)

	﻿‍
K

[
Φb(C) −Φ0

b

]
= −γb.

‍� (45d)

These equations are solvable when closed by a geometric relation, which maps the force 
magnitude ‍γu‍ and ‍γb‍ to the force vectors ‍Fu‍ and ‍Fb‍:

	﻿‍ Fu = Duγu, Fb = Dbγb,‍� (46)

where ‍Du‍ and ‍Db‍ are sparse matrices containing all orientation vectors of unilateral and bilateral 
forces, i.e., all ‍̂e‍ vectors as shown in Appendix 3—figure 1. More details about the definition of ‍D‍ 
can be found in the following.

Both ‍Du‍ and ‍Db‍ depend only on the geometry norm vectors ‍êPj , êQj‍ and location of constraints 

‍yPj
, yQj‍, together with the particle indices ‍Pj, Qj‍, i.e., which particles appear within the vicinity of each 

other and which are bound to each other by springs.
Further, this constraint formulation is also applicable to the case where one constraint is not 

between a pair of particles but between one particle and one externally imposed confinement or 
boundary, for example, a flat substrate or a spherical shell. The only necessary modification in this 
case is to ignore one side of the collision geometry when constructing the matrix ‍Du‍ and ‍Db‍. For 
example, if a particle ‍P‍ collides with a fixed substrate, we only include ‍êP‍ and ‍yP‍ in ‍Du‍, because this 
substrate does not appear in the mobility matrix ‍M‍.

Appendix 3—figure 1. The geometry for a pair of rigid particles. The distance between two marked points 

‍Φ = |r|‍, where ‍r = xP + yP − xQ − yQ‍.

Temporal discretization and convex quadratic programming
Equations 45 and 46 generate a differential variational inequality (DVI), which can be solved when 
equipped with a timestepping scheme. In this work we use the linearized implicit Euler timestepping 
scheme, similar to our previous work Yan et al., 2020; Yan et al., 2019, for three reasons:

•	 It is straightforward to integrate with both the Brownian motion and the stochastic binding and 
unbinding of crosslinkers into an Euler scheme.

•	 The scheme cannot be explicit. Otherwise ‍∆t‍ is limited to be tiny by the temporal stiffness of 
collision and doubly bound crosslinkers.

•	 The implicit scheme is linearized to avoid expensive large-scale non-linear problems.
With timestep ‍∆t = h‍, Equations 45 and 46 are discretized at timestep ‍k‍ as:

https://doi.org/10.7554/eLife.74160
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	﻿‍
1
h

(Ck+1 − Ck) = GkUk,
‍�

(47a)

	﻿‍
Uk = Mk

(
Fk

u + Fk
b + Fk

nc

)
,
‍� (47b)

	﻿‍ Fk
u = Dk

uγ
k
u, Fk

b = Dk
bγ

k
b,‍� (47c)

	﻿‍ 0 ≤ Φk+1
u ⊥ γk

u ≥ 0,‍� (47d)

	﻿‍
Kk

[
Φk+1

b −Φ0,k
b

]
= −γk

b.
‍� (47e)

The unknowns to be solved at every timesteps are the constraint force magnitude ‍γ
k
u,γk

b‍. 
Equations 47d and e are nonlinear because ‍Φ

k+1
u ‍ and ‍Φ

k+1
b ‍ are nonlinear functions of ‍Ck+1‍. Therefore, 

we linearize these two terms:

	﻿‍
0 ≤ Φk

u + h∇CΦ
k
uGkMk

[
Fk

nc + Dk
uγ

k
u + Dk

bγ
k
b

]
⊥ γk

u ≥ 0,
‍� (48a)

	﻿‍
0 = Φk

b −Φ0
b + h∇CΦ

k
bG

kMk
[
Fk

nc + Dk
uγ

k
u + Dk

bγ
k
b

]
+ K−1γk

b ⊥ γk
b ∈ R.

‍� (48b)

Here we have also rewritten the Equation 47 e into a equivalent form, similar to Equation 47 d. 
The right side, ‍γu ≥ 0‍ and ‍γb ∈ R‍ should be understood in the component-wise sense. Equations 
48 a and b are now closed and ‍γ

k
u,γk

b‍ can be solved. We shall drop the superscript ‍k‍ in the following 
derivations because we shall repeat this solution process at every timestep.

Then equation (48) can be written in the block-matrix form:

	﻿‍

0 ≤

0 =


A

D


 +


B C

E F




γu

γb


 ⊥


γu

γb


≥ 0

∈ R‍�
(49)

where the blocks are clear from equation (48)

	﻿‍ A = 1
hΦu + DT

uMFnc‍� (50a)

	﻿‍ B = ∇CΦuGkMDu = DT
uMDu‍� (50b)

	﻿‍ C = ∇CΦuGMDb = DT
uMDb‍� (50c)

	﻿‍
D = 1

h

(
Φb −Φ0

b

)
+ DT

bMFnc‍� (50d)

	﻿‍ E = ∇CΦbGMDu = DT
bMDu‍� (50e)

	﻿‍ F = ∇CΦGMDb = DT
bMDb + 1

hK
−1

‍� (50f)

Here we used the fact that:

	﻿‍ ∇CΦuG = DT
u ,‍� (51a)

	﻿‍ ∇CΦbG = DT
b .‍� (51b)

The first relation has been well known in the problem of collision constraints Anitescu et al., 
1996. In this work we extend this result to bilateral constraints. A proof of this is detailed in Section 
Symmetry of the geometrically constrained optimization problem.

This formulation means that the coefficient matrix is Symmetric-Positive-Semi-Definite (SPSD), 
because the mobility matrix ‍M‍ is SPD and ‍

1
hK

−1
‍ is positive & diagonal:

https://doi.org/10.7554/eLife.74160


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yan et al. eLife 2022;11:e74160. DOI: https://doi.org/10.7554/eLife.74160 � 34 of 51

	﻿‍


B C

E F


 =


D

T
u

DT
b


M

[
Du Db

]
+


0 0

0 1
hK

−1



‍�

(52)

Because of this SPSD property, solving Equations 48 is equivalent to solving a constrained 
quadratic programming (CQP) due to the Karush-Kuhn-Tucker condition Nocedal and Wright, 2006:

	﻿‍ minγ f(γ) = 1
2γ

TMγ + γTq,‍� (53a)

	﻿‍
subject to

[
INu×Nu 0

]
γ ≥ 0.

‍� (53b)

Here ‍γ = [γu,γb] ∈ RNu+Nb‍ is a column vector, and

	﻿‍

M =


B C

E F


 , q =


A

D


 .

‍�
(54)

This can be conveniently understood as following. ‍q‍ represent the current values of the constraint 
functions ‍Φ‍ plus the (linearized) changes due to non-constraint forces ‍F ‍, such as Brownian 
fluctuations. ‍M‍ represent the linearized relation between the unknown constraint force ‍γ‍ and the 
changes of the constraint functions ‍Φ‍.

Solving one global optimization problem at every timestep is usually expensive, because the 
dimension of this problem (53) can be very large in a system with many particles and constraints. 
However, this CQP. (53) is a class of well understood optimization problem and fast algorithms 
exist. We previously developed a fully parallel Barzilai-Borwein projected gradient descent (BBPGD) 
method Yan et al., 2020; Yan et al., 2019 to efficiently solve this problem for unilateral constraints 
only. In this work we found that the same BBPGD method also works very well for the current 
problem.

One way to understand the constraint optimization method is that the temporal integration 
‘jumps’ on a timescale that the relaxation timescales of unilateral and bilateral constraints (collisions 
and crosslinker springs) are bypassed. As a special case, in the limit of infinitely stiff springs where 
‍K−1 → 0‍ the quadratic term matrix ‍M‍ is still SPSD and the Equation 53 is still easily solved. Physically 
speaking, in this case the bilateral constraints degenerate from deformable springs to non-compliant 
joints.

Last but not least, due to the linearization in Equations 48 our geometric constraint method 
has some inevitable numerical errors in imposing both types of constraints for any finite timestep 
size ‍∆t = h‍. In other words, there may be some slight residual overlaps between filaments even 
if Equation 48 are exactly solved. Such residual overlaps converge to zero as the timestep size 
‍∆t = h‍ decreases to zero, which follows the typical first order numerical convergence. In principal, 
such residual overlaps due to linearization errors can be eliminated if the full nonlinear constraint 
problem is solved. However, the cost for a full nonlinear solution is prohibitive. Therefore, in our 
implementation we do not pursue the elimination of such residual overlaps. Instead, we focus on the 
stability of temporal integration, i.e., the temporal integration of trajectory is stable even if very large 
forces suddenly appear on some particles due to, for example, Brownian noise or a large number of 
doubly bound crosslinkers. We have also benchmarked our algorithm such that the average physical 
properties of the entire suspension converge to the reference values. For example, our method 
accurately captures the system stress, the equation of state and isotropic-nematic phase transition 
of rigid Brownian spherocylinders Yan et al., 2019.

Symmetry of the geometrically constrained optimization problem
We briefly prove the symmetry of Equation 51. The derivation in this section is applicable to rigid 
particles with arbitrary shapes.

The configuration of each particle is tracked by its center location ‍x‍ in the lab frame and its 
orientation as a unit quaternion ‍θ = [s, p] ∈ R4

‍. For an arbitrary 3D vector ‍Y ‍ which is attached to a 
particle and follows the particle’s motion, its image ‍y‍ in the lab frame following the particle’s rotation 
is:

https://doi.org/10.7554/eLife.74160
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	﻿‍ y = RY.‍� (55)

where ‍R ∈ R3×3‍ denotes the rotation matrix generated by the unit quaternion ‍θ‍.
For both unilateral and bilateral constraints, ‍D‍ has a sparse column structure:

	﻿‍ D =
[
DP1Q1 , DQ2Q2 , · · ·

]
,‍� (56)

where ‍Pi, Qi‍ are particle indices for the ‍‍-th column. For example, for a system with 4 particles 
‍0, 1, 2, 3‍ and two possible collision pairs ‍0, 1‍ and ‍1, 3‍, the ‍Du‍ matrix for collision (unilateral) constraints 
is:

	﻿‍ D =
[
D0,1, D1,3, · · ·

]
.‍� (57)

Because of this structure, to prove Equation 51 we only need to prove the equality ‍DPQ = ∇CΦPQG‍ 
for a pair of particles ‍P, Q‍, as shown in Appendix 3—figure 1.

We consider two rigid particles centered at ‍xP, xQ‍, each has a point fixed on the body (not 
necessarily on the surface). ‍yP‍ and ‍yQ‍ are vectors in the lab frame from the particle centers to the 
points. The distance between these two points follows the rigid body motion of both particles:

	﻿‍ r = xP + yP − xQ − yQ = xP + RPYP − (xQ + RQYQ),‍� (58)

where ‍RP‍ and ‍RQ‍ are the well-known rotation matrices. ‍YP‍ and ‍YQ‍ are locations of those two 
points in their intrinsic coordinate systems. ‍ΦPQ = |r|‍ is simply the distance between the two points, 
dependent on the motion of the two rigid particles.

According to our definition, ‍DPQ‍ maps the force magnitude γ between the two particles to force 
and torque vectors on each particle:

	﻿‍ DPQ = [eP, yP × eP, eQ, yQ × eQ]T,‍� (59)

	﻿‍ eP = r/|r| = −eQ‍� (60)

‍
(
∇CΦ

)
G‍ can also be explicitly written as follows:

	﻿‍

∇CΦPQG =




∂Φ/∂xP

∂Φ/∂θP

∂Φ/∂xQ

∂Φ/∂θQ







I3

ΨP

I3

ΨQ



‍�

(61)

Further, we notice the symmetry of P and Q in the above equations of ‍DPQ‍ and ‍∇CΦPQG‍, we only 
need to prove the following equality for P:

	﻿‍


∂Φ/∂xP

∂Φ/∂θP




I3

ΨP


 =


 eP

yP × eP



‍�

(62)

In Equation 62 the only difference between unilateral and bilateral constraints are how the two 
points on particles P and Q are picked. For unilateral (collision) constraints, the two points are where 
the distance ‍Φ‍ reaches the minimal distance between the two particles. For bilateral constraints, 
there is no such restriction and the two points are arbitrary. Obviously, we only need to prove this 
latter case, i.e., to prove Equation 62 when ‍YP‍ is an arbitrary vector.

The first row of Equation 62 is straightforward because

	﻿‍ ∂Φ/∂xP = ∂|r|/∂xP = r/|r| = eP‍� (63)

The second row can be proved as follows. We first derive some general results about quaternions 
and rotation matrices, dropping the subscript ‍P‍ to simplify equations. When the particle rotates with 
an angular velocity ‍ω‍, the motion of ‍y‍ satisfies

https://doi.org/10.7554/eLife.74160
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	﻿‍
ẏ = ω × y, i.e., ẏi = ∂yi

∂t
= ϵiαβωαyβ = ϵiαβωαRβγYγ‍�

(64)

‍̇y‍ can also be directly computed by applying the chain rule on Equation 55, because ‍Y ‍ is intrinsic 
to the particle invariant over time:

	﻿‍
ẏi =

∂Rij
∂θk

θ̇kYj
‍�

(65)

The matrix ‍Ψ‍ bridges angular velocity and quaternion by definition:

	﻿‍ θ̇k = Ψklωl, Ψkl ∈ R4×3
‍� (66)

We have

	﻿‍
ωl

∂Rij
∂θk

ΨklYj = ϵiαβRβγYγωα
‍�

(67)

This must be valid for arbitrary ‍ω‍, which is only possible when

	﻿‍

∂Rij
∂θk

ΨklYj = ϵilβRβγYγ
‍�

(68)

Now for another arbitrary vector ‍r‍:

	﻿‍
ri
∂Rij
∂θk

ΨklYj = riϵilβRβγYγ = ϵlβiRβγYγri =
[
(RY) × r

]
l‍�

(69)

Using Equation 69 we can prove the second row of Equation 62. We first calculate the derivatives 
of Equation 62 using dummy indices:

	﻿‍

∂Φ

∂θk
= ∂Φ

∂ri

∂ri
∂θk

= 1
Φ

ri
∂ri
∂θk

= 1
Φ

ri
∂Rij
∂θk

Yj
‍�

(70)

Multiply the matrix ‍Ψkl‍ on both sides:

	﻿‍

∂Φ

∂θk
Ψkl = 1

Φ
ri
∂Rij
∂θk

YjΨkl
‍�

(71)

Substitute the right side by Equation 69, we get:

	﻿‍

∂Φ

∂θk
Ψkl = 1

Φ
ϵlβiRβγYγrl = 1

Φ

[
(RY) × r

]
l .

‍�
(72)

This is exactly the right side of Equation 62 because by definition ‍yP = RPYP‍ and ‍eP = r/Φ‍. 
Therefore Equation 62 holds and the equality Equation 51 holds.

Implementation
As mentioned above, at each timestep we first update the crosslinkers and then the filaments. We 
implement the two steps in a fully parallelized C ++ codebase, utilizing MPI and OpenMP and 
scalable to hundreds of CPU cores.

In the crosslinker-update step, we have assumed that every crosslinker has binding-unbinding 
probabilities independent of other crosslinkers. Therefore, it is straightforward to parallelize this 
step, we only need to search the vicinity of each crosslinker to find the candidate filaments that 
this crosslinker may bind to. This can be conveniently accomplished by a standard near neighbor 
detection operation based on bounding volume hierarchy Iwasawa et al., 2016, where the search 
radius is determined by the maximum stretch of each crosslinker. Once the candidate filaments for 
each crosslinker have been found, we compute the k-MC probabilities using a precomputed lookup 
table with interpolation to speed up the numerical integration while maintaining accuracy. This step 
is also parallel on all CPU cores.

After the positions of crosslinkers have been updated, we update the set of bilateral constraints 

‍Φb‍ in the constraint solver. If one crosslinker has changed its status from doubly bound to singly 

https://doi.org/10.7554/eLife.74160
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bound, the corresponding constraint is removed from ‍Φb‍, and vice versa. The geometric matrix ‍Db‍ 
is also updated according to the current geometry, that is, those locations ‍yP, yQ‍ and norm vectors 

‍̂eP, êQ‍. Then, a near neighbor detection operation is performed for all filaments to determine the 
unilateral constraints ‍Φu‍ and its geometry ‍Du‍. If two filaments are far away from each other, there 
is no need to include this pair in the constraint solver because it is impossible for them to collide 
within this time step ‍∆t‍. Therefore, we include only close pairs whose minimal distance is below 
some threshold value ‍δc‍. ‍δc‍ is controlled by system dynamics, that is, how far each filament may move 
within each timestep. Empirically, we take ‍δc‍ to be the diameter of each filament.

Once the constraint problem Equation 48 has been constructed, we run a fully parallel iterative 
Barzilai-Borwein Projected Gradient Descent (BBPGD) solver Yan et al., 2019 to solve for constraint 
forces ‍γb‍ and ‍γu‍, together with the velocities ‍Ub‍ and ‍Uc‍ due to constraint forces ‍Fb‍ and ‍Fu‍ by 
solving the equivalent CQP 53. The cost of every BBPGD iteration scales as ‍O(Nu + Nb)‍, that is, the 
total dimension of the linear constraint problem. The number of iterations needed depends on the 
complexity of the structure. For example, if all filaments are far from each other such that almost 
no collisions or no doubly bound crosslinkers exist, the solution converges almost immediately. If all 
filaments are densely packed and many doubly bound crosslinkers form between the filaments, many 
iterations may be necessary. Empirically, the solution of Equation 53 converges in a few hundred 
BBPGD iterative steps for common biological structures such as microtubule asters or bundles. 
However, each iteration of BBPGD is cheap because we only need to compute ‍∇f = Mγ + q‍. This 
sparse matrix-vector multiplication spmv is a well optimized standard mathematical operation. The 
BBPGD solver is implemented using the Trilinos package for distributed linear algebra operations. 
Once ‍Ub‍ and ‍Uc‍ have been solved, the filament configuration is updated and then next timestep 
starts.

https://doi.org/10.7554/eLife.74160
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Appendix 4

Performance measurements
The bundle contraction-buckling simulation runs on 2 nodes connected by Infiniband, and each node 
has two AMD EPYC 7742 64-Core CPUs 2.25 GHz. Appendix 4—figure 1 shows the performance of 
the solver. Different from the aster formation case shown in Appendix 4—figure 2, computational 
time spent on crosslinkers is negligible. This is because as the fixed head of each dynein is permanently 
attached to the microtubule, we only need to update the status of the free head. Also, the free heads 
only experience the ‍S ⇌ D‍ transition, which further reduces the computational cost. On the other 
hand, the collisions in this case is more difficult to resolve compared to the aster cases, because in 
nematic bundles more collisions happen and collisions may happen anywhere along the microtubule 
instead of only at the center of each aster. Similar to the aster case, we see that computational time 
for constraint solution is proportional to the number of BBPGD steps.

Appendix 4—figure 1. Performance of aLENS for the buckling simulation shown in Figure 5 of main text. The left 
panel shows the wall clock time that every timestep takes. The right panel shows the number of BBPGD steps to 
solve the constraint optimization problem at every timestep.

For the aster formation in bulk problem, each case runs on 1 node of dual Intel Xeon 14-core CPUs 
E5-2680 v4 2.40 GHz. Appendix 4—figure 2 shows the performance of the solver for simulations 
with and without thermal fluctuations. Updating the binding states of kinesin-5 motors requires 
roughly the same wall clock time per timestep for the entire simulation. However, the time required 
to solve the constraint problem grow quickly in the initial stage. The solver cost increases mostly due 
to the increased number of BBPGD steps (as shown in the right panels of Appendix 4—figure 2) 
even though the dimension of the constraint problem Equation 53 grows as more kinesin-5 motors 
become doubly bound and more collisions occur as the asters form. The increase in BBPGD steps 
dominates because while the dimension of ‍γ‍ increases, the dimension of ‍M‍ remains constant since 
the number of microtubules does not change and the cost of each BBPGD step mainly depends on 
the cost of applying ‍M‍ when calculating ‍∇f ‍ in solving Equation 53.

Appendix 4—figure 2 continued on next page
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Appendix 4—figure 2. Performance of aLENS for aster formation simulations shown in Figure 7 of main text. The 
left panels show the wall clock time that every timestep takes to simulate the Brownian and Non-Brownian cases. 
The right panels show the number of BBPGD steps to solve the constraint optimization problem at every timestep 
for those two cases.

https://doi.org/10.7554/eLife.74160
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Appendix 5
Aster center analysis of asters formation in bulk
This section provides more details about the simulation in Section Confined filament-motor protein 
assemblies of main text.

Appendix 5—figure 1. The radial distribution function ‍g(r)‍ and structure factor ‍S(q)‍ of identified aster centers at 
steady state, for BMT and NBMT cases. ‘DBSCAN’ and ‘Graph’ refer to two different methods of identifying aster 
centers, based on spatial locations of all microtubule minus ends, and the crosslinking connectivity, respectively. 
500 snapshots at simulation steady state are used to compute ‍g(r)‍ and ‍S(q)‍, for each case.

To quantify the spatial aster center distribution, we identify aster centers for each snapshot of 
data. For cross validation, we use two different methods to identify the aster centers: ‘DBSCAN’ 
and ‘Graph’. The implementation details are discussed in the following. Once aster centers are 
identified, we compute the radial distribution function ‍g(r)‍. Then, we compute structure factor ‍S(q)‍ 
based on ‍g(r)‍ as

	﻿‍ S(q) = 1 + 4πρ 1
q
´

r sin qr
[
g(r) − 1

]
dr,‍� (73)

because the structure of aster centers is isotropic and the orientation of ‍q‍ does not matter.
Appendix 5—figure 1 summarizes the results for BMT and NBMT systems. Both ‘DBSCAN’ and 

‘Graph’ methods generate similar results. According to ‍S(q)‍, there is a clearly length scale for the 
NBMT case at ‍q ≈0.8µm−1

‍. This reflects the spacing between individual asters at approximately 

‍1.2µm‍. This length scale is straightforward to understand. Since we used microtubules of length 

‍0.5µm‍, if two aster centers are smaller than ‍2L‍, then the edge of two asters may touch or overlap, 
and are likely to be crosslinked by kinesin-5 motors and gradually merge into one bigger aster. With 
this length scale argument, we can estimate the total number of asters in the simulation box to be 

‍(Lbox/(2L))3 ≈ 103
‍. This simple estimation agrees with our aster center identification results, which on 

average 1200 aster centers are found for each snapshot of steady state configuration.
The BMT case does not show such a significant special length scale in ‍S(q)‍, but they do show 

larger spacing between asters according to ‍g(r)‍, compared to the NBMT case. This agrees with 
the snapshots shown in Figure 7 in the main text, where asters are larger but more distributed in 
space. Both methods identified on average 280 aster centers for each snapshot of steady state 
configuration.

Identify aster centers by DBSCAN method
DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise and is a method 
to identify clusters from points in space. With a given distance ‍ϵ‍ and a threshold ‍Nmin‍ of minimal 
number of points, DBSCAN searches all clusters such that each cluster has no less than ‍Nmin‍ points 
and no point in one cluster is more than distance ‍ϵ‍ separated from other points in the same cluster.

https://doi.org/10.7554/eLife.74160
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To apply DBSCAN, we first create a point cloud using the location of all microtubule minus ends 
in the system, and then run the algorithm using the function ​cluster.​dbscan from the python package 
scikit-learn. Once clusters have been identified, we compute the aster centers by averaging the 
location of all points in each cluster.

We set ‍ϵ =100 nm‍, because according to Figure 7 in main text, the minus ends of microtubules are 
separated roughly ‍25 + 53nm‍. We also set ‍Nmin = 5‍.

Identify aster centers by Graph method
The entire microtubule-kinesin system can be abstracted as an undirected graph, where each 
microtubule is a node marked by their index and each doubly bound kinesin form an edge. Then, 
one aster is simply abstracted as a connected component of the graph. We use the connected_
components() function in the python package networkx to find all such connected components, 
with minimal number of microtubules ‍Nmin = 5‍. We identify aster centers by computing the average 
location of minus ends of these connected components.

https://doi.org/10.7554/eLife.74160
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Appendix 6
Confined filament-motor protein assemblies
This section provides more details about the simulation in Section Confined filament-motor protein 
assemblies of main text. We simulate 9,216 microtubules and 27,648 crosslinking motor proteins 
in a cylindrical volume. Microtubules are modeled as rigid spherocylinders with length ‍0.25µm‍ and 
diameter ‍25 nm‍ (aspect ratio of ‍10 )‍. Crosslinking motor proteins are modeled as Hookean springs. 
The cylinderical axis is oriented along the ‍+x‍ direction, with a periodic boundary condition. The radial 
direction has a hard confinement boundary. System temperature is fixed at ‍300 K‍ and the simulation 
timestep is ‍10−4 s‍, with the system configuration recorded every 500 steps. Solvent viscosity is set 
at ‍0.01 pNµm−2s‍. Values for the cylinder diameter, ‍Dcyl ∈ {0.25, 0.75}µm‍ are chosen to disrupt the 
self-assembly of an ideal aster. Initially, microtubules were aligned along the ‍x‍ direction (cylinder 
axis) such that the initial nematic order parameter, ‍S = ⟨ 1

2 (3 cos2 θ − 1)⟩‍, was 1. Here, θ is the angle 
between the microtubule orientation vector and the ‍+x‍ axis, and ‍⟨.⟩‍ denotes an average over all 
microtubules. Equal numbers of microtubules are oriented in the ‍+x‍ and the ‍−x‍ direction such that 
the polar order parameter, ‍P = ⟨cos θ⟩ = 0‍.

Structural quantification
To measure the structure of our steady-states, we compute the local packing fraction ‍ϕlocal(x)‍, local 
nematic order, local crosslinker density, and pair distribution functions. For the first three quantities, 
we start by dividing the volume into cylindrical bins with their axis in the ‍+x‍ direction. The diameter 
of the bins is equal to ‍Dcyl‍, and the height is chosen as ‍25 nm‍. The local packing fraction is computed 
by calculating the cumulative volume of all microtubules that fall inside each bin, and then dividing by 
the bin volume. For simplicity, we treat the filaments as cylinders (such that there as no hemispherical 
caps at their ends). For the local nematic order parameter ‍S

x
local(x)‍, we find the total number of 

microtubules, ‍N(x)‍, that pass through each bin at some location ‍x‍. For each microtubule ‍‍ in the bin, we 
compute it’s individual contribution to the local nematic order parameter, ‍S

x
local(x)i = 1

2 (3 cos2 θi − 1)‍. 
We weight each ‍S

x
local(x)i‍ by a factor ‍Wi(x)‍ that depends on the length of microtubule ‍‍ that falls 

inside the bin, normalized by the cumulative length of all other microtubules that traverse the bin. 
We calculate the local nematic order parameter as

	﻿‍ Sx
local(x) =

∑N(x)
i Wi(x)Sx

local(x)i‍�

Local crosslinker density, ‍C(x)‍, is found by counting the number of center points of crosslinking 
motor proteins that fall in each bin, and then dividing by the bin volume. For this calculation, we 
only consider doubly-bound crosslinking motor proteins. Finally, we compute the pair distribution 
functions by finding the distance (using the nearest image convention in ‍x‍) of all microtubules from 
a single reference microtubule. Repeating this for all microtubules as a reference, and averaging 
yields a pair distribution function. The useful dimensions here are ‍x‍ and ‍ρ =

√
y2 + z2 ‍. Due to the 

non-periodic nature in ρ, this pair distirbution function does not decay to 1.

	﻿‍ Dcyl =0.25µm‍�
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Appendix 6—figure 1. Results for the confined microtubule-motor protein assembly simulations with 

‍Dcyl =0.25µm‍. (A) A kymograph of the local microtubule packing fraction ‍ϕlocal(x)‍. Initially, crosslinking motor 
Appendix 6—figure 1 continued on next page
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proteins drive contraction of the system into condensed regions that break into PSBs over time. (B) A kymograph 
of the local nematic order parameter ‍S

x
local(x)‍. (C) A kymograph of the density of the crosslinking motor proteins, 

‍C(x)‍. Condensation of microtubules coincides with condensation of the crosslinking motor proteins. (D) Pair 
distribution function for microtubule plus-ends (top) and microtubule centers (bottom).

The simulation volume is a cylinder with height ‍144µm‍. We measure structural properties of the 
system over the course of the simulation. A kymograph of the local packing fraction is shown in 
Appendix 6—figure 1. The local nematic order (Appendix 6—figure 1B) shows that the polarity-
sorted bilayers (PSBs) have a maximum order parameter equal to 1 The condensation of microtubules 
is mediated by the crosslinking motor proteins. In Appendix 6—figure 1C, we show a kymograph 
of the local density of the crosslinking motor proteins.

The microtubule pair distribution function at steady-state (Appendix  6—figure 1D) shows 
that plus-ends (top plot) are distributed in a ring. The ring radius is set by the length of a single 
crosslinking motor protein. There is negligible density away from the ring. In contrast to asters (that 
contain microtubules isotropically distributed around a core), microtubule centers (bottom plot) are 
distributed in vertically extended regions. Separation between these regions is determined by the 
sum of the microtubule length and the length of the crosslinking motor protein. The presence of 
three regions in this pair distribution plot is evidence for a pair of layers.

	﻿‍ Dcyl =0.75µm‍�

Appendix 6—figure 1 continued
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Appendix 6—figure 2. Results for the confined microtubule-motor protein assembly simulations with 

‍Dcyl =0.75µm‍. (A) A kymograph of the local microtubule packing fraction ‍ϕlocal(x)‍. Crosslinking motor proteins 
drive contraction of the system. Self organization of these regions leads to emergence of the BB-like state. (B) A 
kymograph of the local nematic order parameter ‍S

x
local(x)‍. The negative order parameter suggests that there is 

alignment of microtubules in the radial direction (‍YZ ‍ plane). (C) A kymograph of the density of the crosslinking 
motor proteins, ‍C(x)‍. (D) Pair distribution function for microtubule plus-ends (top) and microtubule centers 
(bottom).

In this case, the simulation volume is a cylinder with height ‍20µm‍. Over time, microtubules 
condense into a bottlebrush-like (BB) state with a hedgehog line defect. This consists of microtubules 
having a degree of alignment in the radial direction. The ends of the BB state contain a half-aster. 
Crosslinking motor proteins are highly concentrated along the central axis of the BB. Here is a 
kymograph for the local microtubule packing fraction, ‍ϕlocal(x)‍ (Appendix 6—figure 2A). We show the 
evolution of the local nematic order parameter, ‍S

x
local(x)‍, in Appendix 6—figure 2B. A negative ‍S

x
local‍ 

indicates a significant degree of radial alignment. Maximum radial alignment (the ideal bottlebrush 
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 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yan et al. eLife 2022;11:e74160. DOI: https://doi.org/10.7554/eLife.74160 � 46 of 51

state) is evidenced by a nematic order parameter value of ‍0.5‍ The condensation of microtubules is 
mediated by crosslinking motor proteins. In Appendix 6—figure 2C, we show a kymograph of the 
local density of the crosslinking motor proteins. Appendix 6—figure 2D depicts the microtubule 
pair distribution function. While there is a ring clearly visible for microtubule plus-ends (top plot), 
showing that this state is aster-like, there is significant density present along the X axis. This indicates 
that there is an accumulation of plus-ends throughout the line defect. Microtubule centers (bottom 
plot) are distributed uniformly along ‍x‍ while there is a decay in density along ρ. The absence of a 
ring indicates that this state is not aster-like. High density at ‍ρ = 0‍ suggests that microtubule centers 
tend to be stacked in ‍x‍.

Ideal bottle-brush state
The ideal bottle-brush state (BB) consists of microtubules aligned in the radial direction directed 
away from a central line defect. A schematic and different views are shown in Appendix 6—figure 
3. Microtubule orientation is indicated by the color wheel. For such a state, the local nematic order 
parameter along ‍x‍ has a value of −0.5 along the length of the BB.

Appendix 6—figure 3. The perfect bottle-brush state. Microtubules are aligned in the ‍XY ‍ planes such that there 
is a line defect along the ‍z‍ axis. (A) 3D view. (B) Side view. (C) Top view. Microtubule orientation is shown by the 
color wheel.

https://doi.org/10.7554/eLife.74160
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Appendix 7
Bending rigidity
A flexible long fiber can be implemented by connecting short rigid segments into chains. The key 
is how to properly implement the force and torque induced by deformation at the rigid segment 
joints. There are two ways to implement this, which we shall detail in the following. The first 
method implements the deformation of each joint with two linear Hookean springs and requires 
no modification to the current codebase. The second method directly incorporates the bending 
rigidity as a new set of constraints in the geometric constraint minimization solver, but requires some 
extensions to the current codebase.

Method 1: use two Hookean springs

Appendix 7—table 1. The parameters of the two springs controlling extension and bending, 
respectively.
The relation between ‍ℓ

0
B‍ and ‍ℓ

0
E‍ determine the equilibrium configuration of the two connected 

filaments. When ‍ℓ
0
B ≥ ℓ0

E + 2dB‍, the straight configuration is the preferred configuration.

Role
spring stiffness 
constant free length

Bending ‍κB‍ ‍ℓ
0
B‍

Extension ‍κE‍ ‍ℓ
0
E‍

Appendix 7—figure 1. The geometry of two short rigid straight fibers connected at a bending joint. The 
separation is exaggerated to clearly show the geometry. ‍p1‍ and ‍p2‍ are the orientation norm vectors of the 
two segments. ‍κE‍ and ‍κB‍ are the stiffness of the spring for extension and the spring for bending. ‍dB‍ is the 
displacement distance from the joint rotation center. In the more detailed view of the deformed geometry 
of the two springs, ‍a, b‍ are the lengths of the two edges of the triangle. ‍ℓE =

√
a2 + b2 + 2ab cosα‍. 

‍ℓB =
√

(a + dB)2 + (b + dB)2 + 2(a + dB)(b + dB) cosα‍.

We can use two permanently bound springs for each joint, as shown in Appendix 7—figure 1, to 
implement the bending rigidity. The separations in the figure is exaggerated to show the geometry 
clearly. The energy of the two springs depend on their lengths ‍ℓE, ℓB‍ geometrically:

	﻿‍ U = 1
2κE(ℓE − ℓ0

E)2 + 1
2κB(ℓB − ℓ0

B)2
‍� (74)

With the deformed geometry, the lengths of the two springs are:

	﻿‍ ℓE =
√

a2 + b2 + 2ab cosα‍� (75)

	﻿‍ ℓB =
√

(a + dB)2 + (b + dB)2 + 2(a + dB)(b + dB) cosα‍� (76)

When ‍α → 0‍, the energy ‍U ‍ of the two springs can be expanded as:

https://doi.org/10.7554/eLife.74160
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	﻿‍

U = 1
2

(
κB(a + b + 2dB − ℓ0

B)2 + κE(a + b − ℓ0
E)2

)

+
[
κB(−a−dB)(b+dB)(a+b+2dB−ℓ0

B)
2(a+b+2dB) − abκE(a+b−ℓ0

E)
2(a+b)

]
α2

+ 1
24κB

(
(a+dB)(b+dB)

(
a2+dB(a+b)−ab+b2+d2

B
)

(a+b+2dB−ℓ0
B)

(a+b+2dB)3 + 3(a+dB)2(b+dB)2

(a+b+2dB)2

)
α4

+ 1
24κE

(
ab

(
a2−ab+b2)(a+b−ℓ0

E)
(a+b)3 + 3a2b2

(a+b)2

)
α4

+O(α6). ‍�

(77)

Here in the first term is simply the linear extension of both springs when α is small. The two-
spring system generate a equivalent extensional rigidity ‍κB + κE‍. The second ‍α2‍ term governs the 
bending energy. We can tune the five parameters ‍ℓ

0
E, ℓ0

B, dB,κE,κB‍ such that the connected segments 
reproduce the desired mechanical behavior of a flexible filament. Although the expansion Equation 
77 is general and can be fitted to many different models by tuning the five parameters, it is too 
complicated to be conveniently used in an actual simulation. In the following we discuss simpler 
special cases which are more relevant to biological filaments.

Special case 1 When model some bio-filaments such as microtubules, we sometimes assume 
filaments are inextensible, i.e., ‍κE = ∞‍ and ‍ℓE = ℓ0

E‍. In this special case, the energy of the two springs 
depends only on ‍U = 1

2κB(ℓB − ℓ0
B)2

‍. By imposing ‍ℓE = ℓ0
E‍, we can solve for ‍b‍:

	﻿‍
b = 1

2

(√
2
√

a2 cos(2α) − a2 + 2ℓ0
E

2 − 2a cos(α)
)

‍�
(78)

Then in this case ‍U ‍ depends on ‍α4‍ in the limit of ‍α → 0‍. To simplify the notations of the expansion, 
we define:‍s = ℓ0

B − ℓ0
E − 2dB.‍

The value ‍s‍ defines three cases of the equilibrium configuration:
•	 ‍s > 0‍. The equilibrium configuration of the joint is a straight line, and the bending spring is 

compressed at equilibrium.
•	 ‍s = 0‍. The equilibrium configuration of the joint is a straight line, and the bending spring is not 

compressed nor stretched at equilibrium.
•	 ‍s < 0‍. The equilibrium configuration of the joint is bent.

For the first two cases, the equilibrium configuration is a straight line and we can expand ‍U ‍ in the 
limit of ‍α → 0‍:

	﻿‍

U = κBs2

2

+ dBκB
(

2a2−2aℓ0
E+ℓ0

E(dB+ℓ0
E)
)

2ℓ0
E(2dB+ℓ0

E) sα2

+ d2
BκB

(
2a2−2aℓ0

E+ℓ0
E(dB+ℓ0

E)
)2

8ℓ0
E

2(2dB+ℓ0
E)2 α4

+
[

3a4d2
BκB

2ℓ0
E

2(2dB+ℓ0
E)3 + a4d3

BκB

ℓ0
E

3(2dB+ℓ0
E)3 − a3d2

BκB
ℓ0

E(2dB+ℓ0
E)3 − 4a2d2

BκB
3(2dB+ℓ0

E)3 − 11a2d3
BκB

6ℓ0
E(2dB+ℓ0

E)3

+ a4dBκB
4ℓ0

E(2dB+ℓ0
E)3 − 7a2dBκBℓ

0
E

12(2dB+ℓ0
E)3 + 5ad3

BκB
6(2dB+ℓ0

E)3 + 5ad2
BκBℓ

0
E

6(2dB+ℓ0
E)3 + adBκBℓ

0
E

2

3(2dB+ℓ0
E)3

− d2
BκBℓ

0
E

2

12(2dB+ℓ0
E)3 − d3

BκBℓ
0
E

12(2dB+ℓ0
E)3 − d4

BκB
24(2dB+ℓ0

E)3 − dBκBℓ
0
E

3

24(2dB+ℓ0
E)3

]
sα4

+O(α6). ‍�

(79)

With this form, it is clear that the bending energy is tunable with the parameter ‍s‍, that is, how 
much the bending spring is strained in the equilibrium configuration. Note that ‍s‍ here is a constant 
determined by the lengths ‍ℓE, ℓB, dB‍ only. Therefore, the first term ‍frac12κBs2

‍ only ‘shifts’ the zero-
point of the energy. This term does not contribute to the stretching or bending energy of the joint. 
When ‍s = 0‍, the leading order terms all vanish and ‍U(α) ∝ α4

‍. When ‍s > 0‍, the leading order terms 
are non-zero and the energy is asymptotically a quadratic function of α: ‍U(α) ∝ α2

‍.
Special case 2 If we further assume that ‍κE = ∞‍ and ‍ℓE = ℓ0

E = 0‍, we have that ‍a = b = 0‍. This 
means the extension spring degenerates into a point joint between the two segments. In this case 
the energy ‍U ‍ can be further simplified:

	﻿‍
U = 1

2κB

(
−
√

2dB cosα(dB + ℓ0
E) + 2d2

B + 2dBℓ
0
E + ℓ0

E
2 + 2dB + ℓ0

E + s
)2

‍� (80)
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The expansion of ‍U ‍ as ‍α → 0‍ is also further simplifed:

	﻿‍

U = κBs2

2 + dBκBs(dB+ℓ0
E)

2(2dB+ℓ0
E) α2

+
dBκB(dB+ℓ0

E)
(

3dB(dB+ℓ0
E)(2dB+ℓ0

E)−s
(

d2
B+dBℓ

0
E+ℓ0

E
2
))

24(2dB+ℓ0
E)3 α4

+O(α6) ‍�

(81)

Here we have the same conclusion as the previous special case, that the dependence of ‍U ‍ on α 
can be tuned between ‍α4‍ and ‍α2‍ by choosing a proper value of ‍s‍.

Method 2: use bilateral constraints

Appendix 7—figure 2. The geometry of two short rigid straight fibers connected at a bending joint. The 
separation is exaggerated to clearly show the geometry. ‍p1‍ and ‍p2‍ are the orientation norm vectors of the two 
segments. ‍ω1‍ and ‍ω2‍ are the rotational angular velocities. ‍UB‍ is the bending energy of this joint. α is the angle 
from ‍p1‍ to ‍p2‍. E is the bending rigidity modulus.

Here we briefly derive the constraint optimization formulation for handling the bending rigidity of 
flexible fibers with bilateral constraints. To fit in the geometric constraint formulation, we represent 
a long and flexible fiber as many short rigid straight fibers chained together by joints. The linear 
extension of each joint can be straightforwardly handled by the bilateral spring constraints as for 
those doubly bound motors. For the bending rigidity, we first realize that for each joint the two norm 
orientation vectors ‍p1‍ and ‍p2‍ form a plane. This plane is orthogonal to a unit norm vector

	﻿‍
T̂ = p1×p2

|p1×p2|‍� (82)

For most relevant biological filaments, the bending rigidity is isotropic along different directions 
on a cross-section of the filament. In other words, the recovering torque is always co-linear with 
the vector ‍p1 × p2‍ and the recovering deformation is always in plane spanned by ‍p1‍ and ‍p2‍. This is 
important because we can simplify the deformation to in-plane rotations in the following derivations. 
Note that this plane can be different for each joint since each joint is handled as an independent 
constraint in our method.

There are different models of how the bending energy depends on the deformation, ‍p1 · p2‍.
Case 1:

	﻿‍ UB = E(1 − p1 · p2)2.‍�

When the angle α between ‍p1‍ and ‍p2‍ is small, we have:

	﻿‍ UB ≈ E(1 − (1 − α2/2))2 ∝ α4.‍�

Case 2:

	﻿‍ UB = E(1 − p1 · p2).‍�

In this form when ‍α → 0‍ the energy depends on the second order instead of the fourth order of 
the angle:

	﻿‍ UB ≈ E(1 − (1 − α2/2)) ∝ α2.‍�

The following derivation and method still applies.
The two cases can be handled in the same way. In the following we derive the equations for the 

first case, where the second case only requires a simpler small α expansion in the derivation.

https://doi.org/10.7554/eLife.74160
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There is one more relation we can utilize to simplify the derivation. Assume that ‍ω1‍ and ‍ω2‍ have 
arbitrary directions, and to the first order of ‍∆t‍ the orientation vectors ‍p1‍ and ‍p2‍ rotates within ‍∆t‍:

	﻿‍ p1 → p1 + ω1 × p1∆t‍� (83)

	﻿‍ p2 → p2 + ω2 × p2∆t‍� (84)

Then, the bending energy after this rotation is:

	﻿‍ UB = E
[
1 − p1 · p2 −∆t

(
p2 · (ω1 × p1) + p1 · (ω2 × p2)

)]2
‍� (85)

	﻿‍ = E
[
1 − p1 · p2 −∆t

(
ω2 − ω1

)
· (p2 × p1)

]2 ,‍� (86)

where we have utilized the vector triple product identity:

	﻿‍ a · (b × c) = b · (c × a) = c · (a × b).‍� (87)

This means, to the first order of ‍∆t‍ only the component of rotation ‍ω1‍ and ‍ω2‍ that is inside this 
plane spanned by ‍p1, p2‍ affect the bending energy. Therefore, to the first order of ‍∆t‍ we can simplify 
the bending rigidity problem inside this spanned plane, although in reality the filament segments 
have true 3D rotations.

We denote the current and next timesteps by ‍n‍ and ‍n + 1‍. We have, to the first order:

	﻿‍ αn+1 = αn + (ωn+1
2 − ωn+1

1 )∆t.‍� (88)

The rotational mobility matrix for these two rods is:

	﻿‍

M =


MR

1 0

0 MR
2


 ,

‍�
(89)

where ‍M
R
1 ‍ and ‍M

R
2 ‍ are inverse of rotational drag coefficients for those two segments. The torque 

generated by the joint on each segment can be calculated by the derivative of bending energy ‍UB‍. 
More specifically:

	﻿‍ ωn+1
1 = −MR

1 Tn+1T̂ ‍� (90)

	﻿‍ ωn+1
2 = MR

2 Tn+1T̂,‍� (91)

where the scalar torque ‍Tn+1‍ is:

	﻿‍
Tn+1 = −Eαn+1,3 = −E

[
αn + (ωn+1

2 − ωn+1
1 )∆t

]3

‍�
(92)

	﻿‍
= −E

[
αn,3 + 3αn,2ωn+1

2 ∆t − 3αn,2ωn+1
1 ∆t

]
‍� (93)

where the higher order terms in ‍∆t‍ have been neglected. If the bending energy Case 2 is used, 
instead of ‍Tn+1 ∝ −Eαn+1,3‍ we have ‍Tn+1 ∝ −Eαn+1‍. We can replace the expansion accordingly and 
the derivation remains valid.

Combining all of the above, we are effectively integrating the dynamics of all rods while ensuring 
Equation 90. Skipping the timestep index ‍n‍, we can write the result in the same way as the bilateral 
Hookean spring constraints as:

	﻿‍

0 =


DT


MR

1 0

0 MR
2


D + 1

K




[
T
]

+ 1
3α

n 1
∆t ⊥ T ∈ R,

‍� (94)

where ‍K = 3Eαn,2‍ and the geometric matrix ‍D‍ defines the direction of torque on each rod:
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	﻿‍

D =


−T̂

T


 .

‍�
(95)

The left side of Equation 94 means the motion of filament segments must satisfy the torque-
deformation relation, while the right side means the torque can take any values.

Equation 94 is mathematically identical to the Hookean spring constraints and can be incorporated 
in the constraint minimization problem in the same way.

We can solve this two-segment problem analytically if the constraint optimization problem 
contains only Equation 94, in the absence of collisions and Hookean springs:

	﻿‍
(ω2 − ω1)∆t = − 1

3
MR

1 +MR
2

2(MR
1 +MR

2 )+ 1
K
α.

‍�
(96)

This simply means that if a straight fiber is bent to angle α, its recovering motion within each 
timestep is proportional to the current angle α. More importantly, ‍K → ∞‍ as the bending rigidity 
modulus ‍E‍ increases to infinity. In this case, ‍1/K → 0‍ and the above solution is still stable, and is 
simplified to ‍(ω2 − ω1)∆t = − 1

6α‍. This means the solution to Equation 94 has very strong temporal 
integration stability even when the deformation force is infinitely stiff, the same as what we discussed 
for the infinitely stiff Hookean spring case.

https://doi.org/10.7554/eLife.74160
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