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Abstract: Compelling epidemiologic data support the critical role of dietary fructose in the epidemic
of obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). The metabolic
effects of fructose on the development of metabolic syndrome and NAFLD are not completely
understood. High fructose intake impairs copper status, and copper-fructose interactions have been
well documented in rats. Altered copper-fructose metabolism leads to exacerbated experimental
metabolic syndrome and NAFLD. A growing body of evidence has demonstrated that copper levels
are low in NAFLD patients. Moreover, hepatic and serum copper levels are inversely correlated with
the severity of NAFLD. Thus, high fructose consumption and low copper availability are considered
two important risk factors in NAFLD. However, the causal effect of copper-fructose interactions as
well as the effects of fructose intake on copper status remain to be evaluated in humans. The aim
of this review is to summarize the role of copper-fructose interactions in the pathogenesis of the
metabolic syndrome and discuss the potential underlying mechanisms. This review will shed light
on the role of copper homeostasis and high fructose intake and point to copper-fructose interactions
as novel mechanisms in the fructose induced NAFLD.

Keywords: copper; fructose; kupffer cell (KC); iron; non-alcoholic fatty liver disease (NAFLD);
metabolic syndrome; gut microbiota

1. Introduction

Accumulating evidence has shown that increased fructose consumption parallels the rises in
the obesity epidemic, metabolic syndrome and NAFLD in the United States and worldwide [1–8].
Moreover, fructose consumption is higher in patients with NAFLD compared to healthy controls and
is associated with severity of fibrosis, suggesting that high fructose intake may be an important risk
factor for the development and progression of NAFLD [9–12]. Fructose is consumed mainly as added
sugars, such as sucrose and high-fructose corn syrup (HFCS), which represents 45% and 41% of the
total added sugars ingested, respectively [13].

Fructose is distinct from glucose due to its unique metabolism [14] and limited absorption [15,16].
The role of fructose in the induction of components of metabolic syndrome, as well as NAFLD, has
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been well documented in numerous animal studies [17–20]. A recent study demonstrated dietary
fructose is primarily metabolized in the small intestine. However, excess fructose ingestion can saturate
intestinal clearance capacity; it then reaches the liver and colon microbiota where it is metabolized [21].
In line with these data, depletion or knockdown of ketohexokinase (KHK), a key enzyme of fructose
metabolism, markedly attenuated high fructose diet-induced NAFLD, obesity and other metabolic
effects [22–24]. Similarly, toll like receptor 4 (TLR4) mutation or oral antibiotics protected against high
fructose diet-induced NAFLD in mice [17,25], highlighting the importance of the gut-liver axis in
the pathogenesis of dietary fructose associated NAFLD and metabolic syndrome. Despite the major
progress that has been made over the past two decades, the mechanisms underlying fructose-induced
NAFLD and metabolic syndrome are still incompletely understood. Even with increased de novo
lipogenesis, only a small amount of fructose (<1%) ingested is converted to plasma triglyceride [26].
Thus, it was proposed that the general activation of lipogenesis and blockade of fatty acid oxidation
signaling might account for the fructose induced fat accumulation in the liver [27]. However, a gap still
remains in our understanding of increased de novo lipogenesis and hepatic fat accumulation during
ingestion of fructose.

Although compelling epidemiologic data support the critical role of dietary fructose in the
epidemic of the metabolic syndrome [2,8,28–31], a causal link between fructose consumption and the
metabolic syndrome has not been firmly established in human studies [32–36]. Most of studies on
fructose are limited by a short term of study and/or a small study population. Moreover, hypercaloric
effects cannot be excluded in some of the studies [37]. Of note, isocaloric dietary fructose restriction has
been reported to be beneficial in improving obesity and metabolic parameters [38–40]. Animal studies
also showed the essential role of fructose in the methionine-choline-deficient (MCD) diet-induced
nonalcoholic steatohepatitis (NASH) model [41,42]. Thus, another key issue is the complexity of the
etiology of NAFLD, which involves multiple metabolic effects. One crucial factor is the nutrition
interactions. Results from animal studies demonstrated that when fructose is ingested with fat, more
severe hepatic steatosis and liver injury or fibrosis was induced compared to high fat diet alone, even
when consumed isocalorically [43]. Similarly, the metabolic effects of fructose are more obvious in
obese patients with NAFLD and insulin resistance [12,32,44–46], suggesting potential interactions
between fructose and other metabolites or a complex interplay with other metabolic pathways. We
and others have demonstrated copper-fructose interactions in inducing the components of metabolic
syndrome and NAFLD in rat model [47–51].

A growing body of evidence indicates that hepatic copper level is lower in NAFLD patients, and
steatosis grades inversely correlate with hepatic copper content [52–56]. Moreover, dietary copper
restriction induces hepatic steatosis and insulin resistance in rats, suggesting that copper availability
may be involved in the development of NAFLD [52]. The mechanism leading to low copper levels
in NAFLD patients is not clear. Multiple factors can lead to copper deficiency, including the amount
of copper in the diet. The Western diet often is low in copper [57,58]. Other factors, including
bariatric surgery, pancreatoduodenectomy, excessive use of denture cream high in zinc and excessive
intake of soft drinks, with added fructose, can also induce copper deficiency by impairing copper
absorption [59–67].

Collectively, high fructose consumption and inadequate copper intake represent two important
nutritional problems in the United States. Although copper-fructose interactions have been well
documented in experimental models [48–51,68–72], limited data are available from human studies.
In this review, we will discuss the role of copper-fructose interactions in the pathogenesis of the
metabolic syndrome and NAFLD and discuss potential underlying mechanisms.

2. Epidemiology of NAFLD, Fructose Consumption, and Dietary Copper Intake

NAFLD is now the most common liver disease in the United States, and accounts for more than
75% of chronic liver diseases. In contrast with the other chronic liver diseases, whose prevalence
has remained stable, the prevalence of NAFLD increased steadily from 5.51% (1988–1994) to 9.84%
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(1999–2004) to 11.01% (2005–2008) [73]. The most recent study showed that global prevalence of
NAFLD is 25.24%, and is 24.13% in North America [8]. The increased prevalence of NAFLD parallels
the increases in obesity, type 2 diabetes (T2D), insulin resistance and hypertension [8,73]—all hallmarks
of the metabolic syndrome. In particular, the prevalence of suspected NAFLD in adolescents increased
at an alarming rate, from 3.9% to 10.7% over the past 20 years [7]. NASH, a more advanced stage of
NAFLD, is the third most common indication for liver transplantation in the United States [74]. Of note,
NAFLD and NASH exhibit age and sex differences, with a higher prevalence in males than in females
in both adolescents and adults until the age of 60. After age 60, the prevalence of NASH is higher
in women [75,76]. Based on NHANES III (1988–1994) data, mean fructose consumption was 54.7 g
per day and accounted for 10.2% of total caloric intake [4], about 50% higher than the mean reported
from the 1970’s (37g/day) [5]. Consumption was highest among adolescents at 72.8 g/day (12.1 % of
total calories) [4]. Although evidence showed that consumption of sugar-sweetened beverages (SSBs),
which are the leading source of added sugars in the diet, has declined recently [77,78], it remains high
among children and adolescents [79]. Moreover, time-trend data over the past 3 decades have shown
that the increased consumption of SSBs parallels the obesity epidemic and is associated with increased
T2D risk in the United States [2]. The prevalence of obesity increased from approximately 5% (early
1970’s) to 17% (2011–2014) in children and adolescents, and from 15% (late 1970’s) to 36.5% (2011–2014)
in adults in the United States [80]. The rise of SSBs intake is mainly due to the dramatic increased
consumption of HFCS, which is the primary sweetener in SSBs [2,13]. The most common forms of
HFCS contain either 42% (HFCS-42) or 55% (HFCS-55) fructose, along with glucose and water, with
HFCS-55 being the most common used form [13,81]. Therefore, SSBs appear to be the major source of
dietary fructose. It was estimated that 184,000 global deaths in 2010 were attributable to consumption
of sugary beverages, with 72.3% from diabetes mellitus, 24.2% from cardiovascular diseases (CVDs)
and 3.5% from cancer. United States is ranked second in SSB-related mortality among the 20 most
populous countries in the world [82]. Accordingly, Dietary Guidelines for Americans recommends
decreasing added sugars from 25% (2010-2015) to less than 10% (2015–2020) of calories per day [31,83].

The Recommended Dietary Allowance (RDA) for copper in adult men and women is 0.9 mg/day
and the Estimated Average Requirement (EAR) for copper is 0.7 mg /day [84]. Klevay summarized
the data from NHANES III and found that at least one fourth of adults consume less than the EAR in
both the United States and Canada [59,85]. A recent study revealed that 62% and 36% of diets of 80
randomly selected adults in Baltimore were below the RDA and EAR, respectively [86], suggesting
that the Western diet is often low in copper. Secondary copper deficiency can be caused by factors such
as gastric bypass surgery and high zinc exposure [87,88].

Copper status is affected by age, gender and hormone use. Plasma copper concentrations
and ceruloplasmin levels were higher in women than in men [89]. Lack of good biomarkers make
it challenging to monitor marginal copper deficiency status [88]. The copper-containing enzyme
activities in blood cells, such as erythrocyte copper/zinc-superoxide dismutase (SOD1) and platelet
or leukocyte cytochrome c oxidase (COX), are sensitive to changes in copper stores and are better
indicators of copper status than plasma copper level and ceruloplasmin activity [89,90]. A recent study
by Heffern et al. revealed that Copper-Caged Luciferin-1(CCL-1), a bioluminescent reporter, can be
used for tissue-specific copper in vivo imaging, thus to monitor copper levels in living animals. They
found that hepatic copper levels were markedly decreased in diet-induced NAFLD mice model [91].

3. Fructose Absorption, Metabolism and Metabolic Fate

Dietary fructose is absorbed in the small intestine, and the absorption of fructose is greater in
the proximal and middle than in the distal small intestine [92]. A murine study with oral gavage of
low dose 13C-fructose demonstrated that labeled fructose 1-phosphate (F1P), a specific metabolite
of fructose, predominantly localized in the small intestine (jejunum > duodenum > ileum). When
high dose of 13C-fructose was orally gavaged to mice, the majority of labeled F1P was detected in
the jejunum and only a small amount of labeled F1P accumulated in the liver, suggesting that most
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of ingested fructose is metabolized in the small intestine and only excess fructose intake flows to
the liver [21]. Fructose is absorbed into enterocytes by the fructose transporter GLUT5 in the apical
membrane and exits to the portal blood via GLUT2 in the basolateral membrane of enterocytes.
The absorption of fructose in the liver is mediated by GLUT2 [93]. Recent studies demonstrated
that GLUT8 also play an important role in the hepatic and intestinal fructose absorption. Moreover,
GLUT8 mediated fructose absorption exhibits sex differences [94–96]. Of note, the distribution of
GLUT2 and GLUT8 in the liver as shown by mRNA abundance is very similar between humans and
mice [95]. GLUT5 is mainly expressed in the small intestine and kidney, while the major sites of GLUT2
expression are the liver, pancreas, intestine, kidney, and brain. The distribution of GLUT5 in the small
intestine exhibits a regional pattern which is greater in the proximal segment compared to the distal
segment [97]. Moreover, GLUT5 is inducible and dramatically stimulated by early introduction of
dietary fructose [97]. Glut5 deletion resulted in more than a 75% reduction in fructose absorption in the
small intestine and a decrease of 90% of serum fructose concentration compared to wild-type mice [98].
In addition, GLUT5 gene expression is tightly regulated by glucocorticoid and thyroid hormones and
circadian rhythm [97,99].

Fructose is metabolized by KHK or fructokinase. [23,100,101]. Fructose is phosphorylated
by KHK at the 1-position to generate F1P, which consumes ATP and phosphate. F1P is then
cleaved to glyceraldehyde and dihydroxyacetone phosphate (DHAP) by aldolase B. At this point,
glucose metabolism and fructose metabolism converge. Unlike glycolysis, fructolysis bypasses
phosphofructokinase, a rate-limiting step in glycolysis, to circumvent feedback inhibition. Moreover,
KHK is much faster than hexokinase in phosphorylating their substrates [14], thus leading to rapid ATP
depletion and phosphate consumption [102]. There are two KHK isoforms, KHK-C and -A, and both
can metabolize fructose, but KHK-C is considered the primary enzyme involved in fructose metabolism
because of its lower Michaelis constant (Km) [23,101]. Depletion of KHK-C or KHK-A and -C, but
not KHK-A alone, protects against fructose-induced metabolic syndrome [23,103,104]. A reduction
of intracellular phosphate leads to the activation of adenosine monophosphate deaminase (AMPD),
which converts AMP to inosine monophosphate (IMP). IMP is subsequently converted to hypoxanthine
and then to xanthine, ultimately leading to the generation of uric acid [105–107] (Figure 1). Inhibition
of xanthine oxidase (XO), a rate-limiting enzyme that catalyzes uric acid production, protects against
hepatic steatosis in mice [108].

The metabolic fate of fructose has been shown by studies with an isotope tracer. After ingestion of
fructose, approximately 50% is converted into glucose, 25% is converted into lactate, 17% is converted
to glycogen, and only less than 1% is converted to plasma triglyceride. However, most of the tracer
studies are short-term studies. Longer term effects of fructose on the de novo lipogenesis need to be
evaluated [13,26]. It appears that fructose-induced fatty liver is unlikely the direct effect of fructose
metabolism. This leads to the hypothesis that the activation of lipogenesis and blockade of fatty
acid oxidation signaling might account for the hepatic steatosis induced by fructose metabolism [27].
Overall, knowing the fundamentals of fructose biochemistry is crucial for the understanding of fructose
induced metabolic disorders.

Recently, work from animal studies demonstrated that endogenous fructose, generated from
polyol pathway, plays a critical role in the development of metabolic syndrome and NASH (in addition
to dietary fructose) [22,104]. The polyol pathway is an alternate route of glucose metabolism. The
rate-limiting step of this polyol pathway is the reduction of glucose to sorbitol which is catalyzed by
aldose reductase (AR). Under normoglycemia, AR-catalyzed reduction is less than 3% of total glucose
utilization, whereas more than 30% glucose is used by AR under hyperglycemia [109,110].

The causal role of fructose in the pathogenesis of NAFLD has been demonstrated in numerous
animal studies [17,25,111,112] and has been reviewed [113–116]. In this review, we will focus on the
copper-fructose interactions and NAFLD.
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Figure 1. Fructose and Glucose metabolism. AR, aldose reductase; SDH, sorbitol dehydrogenase; 
KHK, ketohexokinase; PFK, phosphofructokinase; AMPD, adenosine monophosphate deaminase; 
IMP, inosine monophosphate; XO, xanthine oxidase; ACC, acetyl-CoA carboxylase; FAS, fatty acid 
synthase; ACSL, long chain acyl-CoA synthetase. 
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COX, SOD1, ceruloplasmin, hephaestin, and lysyl oxidase, etc., which are involved in mitochondrial 
respiration, antioxidant defense, copper and iron export, connective tissue maturation, etc. [117]. In 
addition, copper also functions as a cellular signal to regulate cellular and molecular events, such as 
proteasome degradation of copper chaperone for SOD1 (CCS) and hypoxia inducible factor-1 
(HIF-1) activation [118, 119]. Mammals acquire copper through the diet. Copper absorption, 
distribution, and utilization are tightly regulated to maintain copper homeostasis. Dietary copper is 
primarily absorbed from the small intestine via copper transporter 1 (Ctr1). Ctr1 is considered the 
major copper transporter in mammalian cells [120-122]. Mice with intestinal-specific deletion of Ctr1 
died of severe weight loss within three weeks, and these mice can be rescued by a single 
intraperitoneal injection of copper [123]. Similarly, cardiac-specific knockout of the Ctr1 results in 
cardiac copper deficiency and severe cardiomyopathy [124], suggesting that Ctr1 is required for 
copper absorption. Ctr2 was originally identified based on its sequence homology to Ctr1. However, 
Ctr1 and Ctr2 exhibit distinct functions in copper metabolism. Ctr2 knockout mice exhibit increased 
tissue copper levels and are defective in accumulation of truncated Ctr1. Thus, Ctr2 plays a 
significant role in Ctr1 degradation and functions as a regulator of Ctr1 [125, 126]. In human adults, 
the amount of copper absorption is inversely correlated with dietary copper intake; high dietary 
copper intake results in low copper absorption [127]. After import, the copper ion in the cytoplasm is 
stored either in a complex with metallothioneins (MT) mediated by GSH, or is distributed to 
proteins or organelles by specific Cu chaperone proteins that function in the delivery of Cu to 
mitochondrial COX (via Cox17), to SOD1 (via CCS), and to the cytosolic Cu binding domain of the 
P-type Cu-transporting ATPases, ATP7A or ATP7B (via Atox1) [128]. ATP7A and ATP7B are 
required for transport of copper into the trans-Golgi network (TGN) for biosynthesis of several 
secreted cuproenzymes and for efflux of copper. ATP7A is required for copper efflux in the intestine 
and ATP7B is required for the biliary excretion of excess copper in the liver [128] (Figure 2). 

Figure 1. Fructose and Glucose metabolism. AR, aldose reductase; SDH, sorbitol dehydrogenase;
KHK, ketohexokinase; PFK, phosphofructokinase; AMPD, adenosine monophosphate deaminase; IMP,
inosine monophosphate; XO, xanthine oxidase; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase;
ACSL, long chain acyl-CoA synthetase.

4. Copper Absorption, Distribution and Utilization

Copper is an essential trace element. It serves as a cofactor for a number of enzymes, including
COX, SOD1, ceruloplasmin, hephaestin, and lysyl oxidase, etc., which are involved in mitochondrial
respiration, antioxidant defense, copper and iron export, connective tissue maturation, etc. [117].
In addition, copper also functions as a cellular signal to regulate cellular and molecular events, such as
proteasome degradation of copper chaperone for SOD1 (CCS) and hypoxia inducible factor-1 (HIF-1)
activation [118,119]. Mammals acquire copper through the diet. Copper absorption, distribution,
and utilization are tightly regulated to maintain copper homeostasis. Dietary copper is primarily
absorbed from the small intestine via copper transporter 1 (Ctr1). Ctr1 is considered the major copper
transporter in mammalian cells [120–122]. Mice with intestinal-specific deletion of Ctr1 died of severe
weight loss within three weeks, and these mice can be rescued by a single intraperitoneal injection
of copper [123]. Similarly, cardiac-specific knockout of the Ctr1 results in cardiac copper deficiency
and severe cardiomyopathy [124], suggesting that Ctr1 is required for copper absorption. Ctr2 was
originally identified based on its sequence homology to Ctr1. However, Ctr1 and Ctr2 exhibit distinct
functions in copper metabolism. Ctr2 knockout mice exhibit increased tissue copper levels and are
defective in accumulation of truncated Ctr1. Thus, Ctr2 plays a significant role in Ctr1 degradation
and functions as a regulator of Ctr1 [125,126]. In human adults, the amount of copper absorption
is inversely correlated with dietary copper intake; high dietary copper intake results in low copper
absorption [127]. After import, the copper ion in the cytoplasm is stored either in a complex with
metallothioneins (MT) mediated by GSH, or is distributed to proteins or organelles by specific Cu
chaperone proteins that function in the delivery of Cu to mitochondrial COX (via Cox17), to SOD1
(via CCS), and to the cytosolic Cu binding domain of the P-type Cu-transporting ATPases, ATP7A or
ATP7B (via Atox1) [128]. ATP7A and ATP7B are required for transport of copper into the trans-Golgi
network (TGN) for biosynthesis of several secreted cuproenzymes and for efflux of copper. ATP7A
is required for copper efflux in the intestine and ATP7B is required for the biliary excretion of excess
copper in the liver [128] (Figure 2).
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Figure 2. Cellular copper distribution. Ctr1, copper transporter 1; MT, metallothionein; GSH, 
glutathione; CCS, copper chaperone for SOD1; COX, cytochrome c oxidase; Atox1, antioxidant 
protein 1. 
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5. Copper Homeostasis and NAFLD

Disturbance of copper homeostasis is associated with a variety of clinical manifestations. In this
review, we focus on the copper dyshomeostasis associated NAFLD and its risk factors.

Analysis of 124 adult biopsy-proven NAFLD patients revealed that serum copper as well as
liver copper levels are lower compared to healthy controls and patients with other types of liver
diseases, including hepatitis C virus (HCV) infection, autoimmune hepatitis, and alcoholic liver
disease. Among these NAFLD patients, NASH patients displayed even lower hepatic copper levels
than those with simple steatosis. Hepatic copper level is lower in NAFLD patients with the metabolic
syndrome and T2D compared to those without metabolic syndrome and T2D [52]. Moreover, NAFLD
patients with lower serum copper and lower liver copper exhibited higher serum ferritin levels and
hepatic iron levels, which were associated with decreased mRNA expression of liver ferroportin-1
(FP-1) [53]. Similar results were obtained from pediatric NAFLD patients [54,56]. More severe NAFLD
(NAFLD activity score, NAS ≥5) patients, particularly in those with ballooning hepatocytes, displayed
significantly lower serum copper and ceruloplasmin levels compared to the patients with less severe
NAFLD (NAS < 5) [56]. A recent study from 751 Korean adults revealed that lower hair copper
concentration was associated with higher body mass index, waist circumference, blood pressure, and
lower levels of high-density lipoprotein cholesterol. Of note, NAFLD patients displayed significantly
lower hair copper concentrations [129]. Moreover, dietary copper restriction induces hepatic steatosis
and insulin resistance in rats, further suggesting that copper availability may be involved in the
development of NAFLD [52].

Mutations in the ATP7B gene leads to Wilson’s disease (WD), an inherited autosomal recessive
disorder of copper dyshomeostasis, characterized by excessive hepatic copper accumulation and
decreased serum ceruloplasmin levels. In the earlier stage, it manifests as hepatic steatosis which is
often indistinguishable from NAFLD [130]; it may progress to hepatic fibrosis and cirrhosis, and
eventually liver failure [131]. The mechanism(s) by which hepatic copper accumulation leads
to hepatic steatosis are not clear, but likely involve mitochondrial damage [132], global DNA
hypomethylation [133], and/or nuclear receptors [134]. In addition to WD, evidence from animal
studies indicates a critical role of copper homeostasis in the pathogenesis of liver fibrosis. Bile duct
ligation results in copper accumulation in the liver. High copper levels were also observed in the late
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stage of NAFLD patients, including cirrhosis and hepatocellular carcinoma [135]. Treatment with a
copper chelator protects against bile duct ligation-induced liver fibrosis. However, overdose of copper
chelator results in copper deficiency and accentuates liver injury and fibrosis [136,137]. Thus, both
copper deficiency and excess may lead to hepatic steatosis and, in some cases, more severe distinct
liver pathology. The relationship between copper and NAFLD has recently been reviewed [138,139].

6. Copper-Fructose Interactions.

Extensive studies in 1980’s demonstrated that dietary copper-fructose interactions worsened
copper deficiency-induced metabolic syndrome. The severity of experimental copper deficiency was
exacerbated by a diet containing high fructose compared to animals with diets containing high glucose
or starch [50,51,69–71], and this was characterized by lower body weight and hematocrit, and increased
liver weight, blood urea nitrogen, ammonia, cholesterol and triglycerides. Switching the type of dietary
carbohydrate from fructose to either starch or glucose ameliorated the severity of copper deficiency [50].
In line with animal studies, a human study demonstrated that adult males displayed significantly
reduced SOD1 activity in erythrocytes after consumption of a low copper (1.03 mg/day/2850 kcal)
and high fructose (20% calorie) diet for 11 weeks compared to those who consumed diets with low
copper and starch [60], suggesting dietary fructose intake can affect indices of copper status.

6.1. Copper-Fructose Interaction and NAFLD

Our studies demonstrated that dietary high fructose intake further impaired copper status and
exacerbated liver injury and fat accumulation in marginally copper deficient rats (Figure 3) [48]. Similar
results were obtained in rats fed with high sucrose and copper deficient diet [140]. Moreover, we found
that not only high dietary fructose (30% (w/v) fructose in the drinking water) impairs copper status,
but also modest fructose consumption (3% (w/v) fructose in the drinking water) has a similar adverse
effect on copper status [48,49]. The limitation of these studies is the AIN-76 based rodent diet which
contains 49% sucrose, which could be a potential confounding factor. However, when extra fructose
was given from drinking water, it still worsened the copper status.

Of note, the expression of copper transporter, Ctr-1, in duodenum was markedly upregulated
when animals were exposed to a marginal copper deficient diet, and this upregulation was abrogated
by high fructose feeding [48], suggesting that high fructose intake may impair copper absorption,
which is likely a mechanism underlying copper-fructose interactions. Results from previous studies
also support the concept that impaired copper absorption from gut might account for the more severe
copper deficiency associated with copper-fructose interaction [61,62]. How dietary fructose impairs
copper absorption and whether it is mediated by Ctr-1 remain open questions.

The mechanisms by which copper-fructose interaction induces NAFLD are not clear. Marginal
copper deficient diet with high fructose feeding (CuMF) significantly upregulates hepatic fatty acid
synthase (FAS) protein expression compared to either marginal copper deficient diet or high fructose
feeding alone [48]. Copper-fructose interaction induced hepatic steatosis is completely abrogated by
Kupffer cell (KC) depletion, which is associated with the downregulation of hepatic sterol regulatory
element-binding protein-1 (SREBP-1) [48,141]. Upregulation of FAS and SREBP-1 by copper deficiency
was also observed in other studies [142–144]. Pretreatment of KCs isolated from CuMF rats with
an intracellular lysosomal iron chelator significantly attenuated lipopolysaccharide (LPS)-induced
monocyte chemoattractant protein-1 (MCP-1) production in culture medium, suggesting that the
MCP-1 signaling pathway was mediated, at least partially, by intracellular iron (141). A role for MCP-1
in inducing steatosis in hepatocytes has been described [145,146]. The precise mechanism underlying
the role of KC in CuMF induced hepatic steatosis remain to be defined.

Iron overload is considered as a partial potential mechanism underlying copper deficiency and
fructose induced metabolic syndrome [147–150]. We showed that marginal copper deficient and
high fructose diet markedly increased liver iron level (Figure 4) [49] as well as plasma ferritin level
in rats [48]. Similarly, NAFLD patients with low copper levels had hepatic iron overload [52,53].
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Mechanism(s) by which copper deficiency induces iron overload have been partially elucidated.
Cellular iron export requires members of a family of copper-containing ferroxidases, including
ceruloplasmin and hephaestin which oxidize iron from the ferrous to ferric forms. The ferric
form of iron binds to Apo-transferrin, thereby facilitating transferrin delivery to peripheral organs.
Hephaestin functions to move iron across the basolateral membrane of intestinal epithelial cells into
the circulation. Hephaestin-deficient mice display iron deficiency anemia with accumulation of iron
in enterocytes [151]. Ceruloplasmin exerts its action on intestinal iron absorption, iron release from
macrophages and hepatocytes [152,153]. A clinical phenotype of NAFLD that we regularly see is a
young adult male with modestly decreased serum ceruloplasmin, increased serum ferritin, and high
fructose intake via sugared pop.

Decreased activities of cuproenzymes, such as SOD1 and COX [154,155], may lead to decreased
antioxidant defense and mitochondrial dysfunction, which are likely mechanisms leading to liver injury
and hepatic fat accumulation. A previous study showed that the hepatocytes from rats with moderate
copper deficiency (liver copper level of 4–8 µg/g dry weight, equal to marginal copper deficiency in
our study) [48] have enlarged, bizarre-shaped mitochondria and disarranged endoplasmic reticulum
(ER) as assessed by electron microscopy [156]. In rats with severe copper deficiency (liver copper
level of <2 µg/g dry weight), the hepatocyte ultrastructure displayed dramatic changes characterized
by the giant, misshapen mitochondria which occupy most of the cytoplasmic space and squeeze
out and obscure otherwise normal-looking organelles. The mitochondrial matrix is less dense than
normal [156]. These apparent morphological alterations of mitochondria appear to be linked to their
abnormal functions. Whether and how severe copper deficiency affects ER and lysosome function
leading to ER stress and defective autophagy remain elusive.

Pharmacological suppression of systemic copper levels with a chelating drug impaired
mitochondrial energy metabolism and decreased ATP levels despite induction of glycolysis [157].
Of note, it is well documented that fructose metabolism also leads to ATP depletion [102,105,106].
Thus, one may postulate the additive or synergistic effect of copper deficiency and high fructose intake
could be lethal. In fact, this effect has been demonstrated in experimental animals [158,159]. However,
the effects of severe copper deficiency in rats fed with fructose can be reversed by replacing fructose
with either glucose or starch [50,71].

Fructose and glucose are distinct in several aspects, including intestinal absorption, metabolic
pathways and the organ of its major metabolism. The unique features of fructose absorption and
metabolism provide clues for mechanisms of copper-fructose interactions. Rats treated with allopurinol,
a competitive inhibitor of xanthine oxidase, displayed improved symptoms induced by copper deficient
and high fructose diet, including anemia and decreased mortality, and this was associated with a
dramatic reduction of uric acid. The beneficial role of allopurinol is likely attributable to protection
against the catabolism of purines and increased nucleotides pool [160], suggesting the complexity of
copper-fructose interactions in NAFLD.

Copper is required for the activity of COX, and copper deficiency was associated with decreased
COX activity in multiple organs, including heart, liver, intestine, in mouse and rat models [124,154,161].
Whether or not copper deficiency induced metabolic phenotypic alteration through COX deficiency
mediated mitochondrial dysfunction and the potential molecular mechanisms are not clear. COX
(or complex IV) is the terminal enzyme of the electron transport chain in the inner mitochondrial
membrane and catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen.
Complex IV is composed of 14 subunits, and three of these (subunits I–III) form the highly conserved
catalytic core of the enzyme encoded by mitochondrial DNA. The remaining less conserved subunits
are encoded by nuclear genomes and were considered to be related to structural stability and enzyme
activity. Highly conserved domains within subunit I include two heme moieties (heme a and a3)
and a copper binding site (CuB), and subunit II also contains a copper binding site (CuA). The
assembly of the complex IV protein is achieved by more than 20 different assembly proteins [162,163].
SCO2 encodes a copper chaperone required for the insertion of copper into the active site of subunit
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II of complex IV, but it is not essential for complete holoenzyme formation. SCO2 deficient mice
exhibit increased adiposity, hepatic steatosis and insulin resistance along with 20%–60% reduction in
complex IV activity [164]. In vitro research in human myoblasts demonstrated that COX deficiency
due to mutations in SCO2 can be rescued by copper supplementation [165]. Whether the copper
deficiency-induced reduction in COX activity is through SCO2 remains to be elucidated. However,
mice lacking SURF1, a complex IV assembly protein, displayed an improved metabolic phenotype,
including reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis despite of
more than 50% reduction in COX activity [166–168].

In addition, previous studies from ATP7B knockout mice revealed that copper accumulation
dysregulated nuclear receptors which contribute to liver function and lipid metabolism, such liver X
receptor (LXR), farnesoid X receptor (FXR), retinoid X receptor (RXR), and small heterodimer partner
(SHP) [134,169]. However, the effects of copper deficiency and high fructose on the regulation of
nuclear receptors remain elusive.
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Figure 3. Effects of marginal copper deficiency and fructose feeding on liver injury and lipid
accumulation in male weanling Sprague-Dawley rats. (A) Plasma AST. (B) Representative
photomicrographs of the H&E and Oil Red O staining of liver section (200×). Data represent
means ± SD (n = 5–9) and analyzed by two-way ANOVA, * p < 0.05; #, interaction between copper and
fructose is significant (p < 0.05). AST, aspartate aminotransferase; A, adequate copper diet; M, marginal
copper deficient diet; AF, adequate copper diet + 30% fructose drinking; MF, marginal copper deficient
diet + 30% fructose drinking.
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6.2. Copper-Fructose Interaction and Hyperlipidemia

Copper-fructose interactions-induced hypercholesterolemia and hypertriglyceridemia have
been well demonstrated [48,50,72,142,147,148,170–173]. In a population-based cohort study with
1197 subjects, dietary copper intake was inversely associated with plasma total cholesterol and
LDL-cholesterol. Serum copper levels from a randomly identified subgroup of 231 men were also
inversely associated with plasma total cholesterol and LDL-cholesterol, implying a crucial role of
copper in cholesterol metabolism [170]. Rats exposed to a copper deficient diet for 3–4 weeks developed
hypercholesterolemia, and this effect was more significant when the diet carbohydrate component
was solely fructose, but not the starch, suggesting that a copper-fructose interaction is instrumental in
the development of hypercholesterolemia. Moreover, hypercholesterolemia is further worsened by a
diet high in saturated fat, but not polyunsaturated fat. However, copper-fructose interaction induced
hypertriglyceridemia can be exacerbated by both high saturated fat diet and high polyunsaturated
fat diet [72,171,173]. Of note, both hypertriglyceridemia and hypercholesterolemia are associated
with hepatic iron overload and are ameliorated by dietary iron restriction [147,148]. Restriction of
dietary iron intake significantly decreased blood cholesterol and triglyceride levels associated with
decreased lipid peroxidation in rats fed with a copper deficient and high fructose diet. Similarly,
the severity of copper deficiency was attenuated by the iron chelator, deferoxamine [147,150,174].
Moreover, increased iron intake further increased blood cholesterol and triglyceride levels in copper
deficient diet fed rats [148]. Copper deficiency induced hypercholesterolemia is likely due to increased
cholesterol synthesis [172]. Hepatocytes isolated from rats fed with a copper deficient diet for 7-8
weeks exhibited 90% reduction of copper content compared to those from adequate copper fed rats.
After three hours incubation, these cells displayed 2–3 fold increase in the intracellular glutathione
(GSH) synthesis rate along with the increased intracellular and extracellular GSH [175]. Treatment with
L-buthionine sulfoximine (BSO), a specific GSH synthesis inhibitor, abolished the hypercholesterolemia
and increased HMG-CoA reductase (HMGCR) activity in rats fed with copper deficient diet [142].
These results suggest that copper deficiency induced hypercholesterolemia and increased HMG-CoA
are the consequence of increased GSH synthesis. Moreover, the induction of FAS expression was
also prevented by BSO in copper deficient rats [144]. One hypothesized mechanism for the increased
synthesis of GSH is a compensatory mechanism to the decreased antioxidant defenses due to the
decreased cuproenzymes [48,154].
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6.3. Copper-Fructose Interaction and Glucose Tolerance

Copper-deficient rats displayed improved glucose tolerance when they were switched from high
fructose diet to high glucose diet for four weeks after being fed with a high fructose diet for five weeks.
Similarly, changing the dietary carbohydrates in the copper-deficient diet from fructose to starch
increased insulin levels and decreased blood glucose in response to a glucose tolerance test compared
to rats continuously fed fructose. These results suggest that the copper-fructose interaction was more
diabetogenic compared to copper-glucose. [71]. In addition, a copper deficient or a marginally copper
deficient diet induced impaired glucose tolerance compared to an adequate copper diet, suggesting
that copper deficiency may interfere with glucose utilization [176,177].

6.4. Copper-Fructose Interaction and Gut Permeability

Our recent study demonstrated that expression of the tight junction proteins, claudin-1 and
occludin, was significantly downregulated in the ileum of rats fed with marginal copper deficient
diet. This effect was synergistically or additively enhanced by high fructose feeding, suggesting
copper-fructose interaction in the small intestine may play a vital role in gut barrier function [47].
A recent study showed that the metabolism of microbiota-derived butyrate in the gut epithelial
cells through β-oxidation results in the depletion of oxygen and contributes to the maintenance
of “physiologic hypoxia”, which, in turn, leads to the stabilization of HIF-1 [178]. HIF-1 is a
transcription factor which plays a central role in the protection of gut barrier function in multiple
ways, including transcriptional regulation of tight junction protein expression [179,180], induction
of Tregs activation [181], and differentiation via transcriptional regulation of FoxP3 [182]. It is known
that copper is required for the activation of HIF-1 [119,183]. Our previous study demonstrated
that the fecal short chain fatty acid (SCFA), butyrate, was significantly decreased in high fructose
fed male rats [184]. However, questions of whether or not decreased fecal SCFAs play a causal
role and whether or not copper-fructose interaction induced gut barrier dysfunction is mediated
by HIF-1 remain to be elucidated. In addition, in vitro studies demonstrated that increased copper
concentration in the culture medium may induce Caco-2 cell apoptosis and increased permeability
of the Caco-2 cell monolayer [185–187]. Collectively, copper homeostasis plays a crucial role in
maintaining intestinal integrity.

6.5. Copper-Fructose Interaction and Gut Microbiome

Our data showed that the gut microbiome of rats fed with 30% fructose (w/v) in the drinking water
and AIN-76 based rodent diet (ad libitum) for four weeks exhibited an obesity phenotype characterized
by a markedly increased ratio of Firmicutes/Bacteroides, and this effect was further exacerbated with
a marginal copper deficient diet, associated with increased gut permeability, exacerbated hepatic
steatosis and liver injury [47,48]. These findings indicate that copper-fructose interaction may alter the
gut microbiome. The mechanisms involved are not clear. Several lines of evidence indicate that copper
might be involved in the regulation of gut microbiota and gut barrier function. First, copper has been
used as an antimicrobial agent throughout the ages [188], and the response to copper stress varies
among different bacteria species [189,190]. Second, one of the copper containing enzymes, diamine
oxidase, was found in high concentrations in intestinal mucosa and its circulating enzyme activity
serves as a marker of mucosal maturation and integrity, as does the copper level [191–193]. Thus,
decreased copper levels may exacerbate dietary fructose-induced gut microbiota dysbiosis and/or gut
barrier dysfunction. Whether copper-fructose interaction induced gut barrier dysfunction is the direct
role of copper-fructose interaction in the intestine and/or mediated by the gut microbiota requires
further investigation.
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6.6. Sex Difference in the Copper-Fructose Interaction

Sex differences in the metabolic effects of fructose and/or copper deficiency have long been
noted in the animal studies [158,194–196] as well as in humans [197,198], with males being sensitive
to the deleterious effects of fructose and/or copper deficiency, and females being protected, which
is consistent with the sex differences in NAFLD prevalence [75,199]. However, the mechanistic
link between fructose, copper deficiency and sex is not well established. Experimental study
from rats implies the level of testosterone in the males may play a role in the severity of copper
deficiency [195]. In line with this, evidence from a murine study demonstrated that testosterone
robustly suppressed hepcidin transcription through epidermal growth factor receptor (Egfr) signaling,
and these suppressive effects were more obvious in male mice than in female mice [200]. Our work also
showed significantly decreased plasma hepcidin levels in CuMF male rats compared to controls [141].
Sex differences in the copper-fructose interaction were also shown with regard to the enzyme activities
involved in fructose metabolism pathway and their relevant metabolites [201,202]. A previous study
showed that female rats displayed lower hepatic KHK and triose kinase activities, but higher triose
phosphate isomerase activity compared to male rats in response to high fructose with either adequate
copper or copper deficient diet [201]. Moreover, F1P levels were elevated to a greater extent in male
rats compared to female rats on copper deficient diet [202]. In addition, high fructose feeding resulted
in markedly elevated serum uric acid levels in male rats compared to female rats, and it was further
increased by copper deficient diet compared to adequate copper diet [201]. However, inhibition of
uric acid generation with allopurinol showed beneficial effects on copper-fructose interactions [160].
Recent studies pointed out that sexual dimorphism in glycerol metabolism and aquaglyceroporins
(AQPs) contribute to the lower prevalence of NAFLD in premenopausal women as well as in rodents.
However, whether these mechanisms contribute to the sex difference in the copper-fructose interactions
remain to be determined (reviewed by Rodriguez et al.) [203]. Collectively, a sex difference in
copper-fructose interactions likely contributes to sex variances in fructose metabolism and susceptibility
to NAFLD/metabolic syndrome.

7. Conclusions

High fructose consumption and low copper availability are two risk factors identified in NAFLD
patients. Evidence of copper-fructose interactions comes largely from animal studies. Hepatic iron
overload and mitochondrial dysfunction are two important mechanisms. The causal role of high
fructose consumption on the impaired copper status in humans as well as copper-fructose interactions
in the pathogenesis of NAFLD patients remain to be firmly established. Therefore, larger cohort studies
are needed to examine the correlation between copper status and fructose consumption in healthy
controls, obese and NAFLD patients. However, we suggest that there are multiple NAFLD phenotypes,
with one such NAFLD phenotype being relatively young males with high sugar sweetened beverage
(and high fructose) consumption and modestly depressed serum copper/ceruloplasmin. A beneficial
role for restricting dietary fructose intake to improve obesity and the metabolic syndrome has been
clearly demonstrated and further studies may confirm the additional role of low copper availability.
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Abbreviations

NAFLD nonalcoholic fatty liver disease
KC Kupffer cell
HFCS high-fructose corn syrup
KHK ketohexokinase
TLR4 toll like receptor 4
MCD methionine choline deficient
NASH nonalcoholic steatohepatitis
T2D type 2 diabetes
SSBs sugar-sweetened beverages
CVDs cardiovascular diseases
RDA Recommended Dietary Allowance
EAR Estimated Average Requirement
SOD1 copper/zinc-superoxide dismutase
COX cytochrome c oxidase
F1P fructose 1-phosphate
DHAP dihydroxyacetone phosphate
AMPD adenosine monophosphate deaminase
IMP inosine monophosphate
AMPK adenosine monophosphate-activated protein kinase
XO xanthine oxidase
AR aldose reductase
CCS copper chaperone for SOD1
HIF-1 hypoxia inducible factor-1
Ctr1 copper transporter 1
MT metallothionein
Atox1 antioxidant protein 1
TGN trans-Golgi network
HCV hepatitis C virus
FP-1 ferroportin-1
NAS NAFLD Activity Score
WD Wilson’s disease
FAS fatty acid synthase
SREBP-1 sterol regulatory element-binding protein-1
BSO L-buthionine sulfoximine
LPS lipopolysaccharide
MCP-1 monocyte chemoattractant protein-1
LXR liver X receptor
FXR farnesoid X receptor
RXR retinoid X receptor
SHP small heterodimer partner
ER endoplasmic reticulum
GSH glutathione
GSSG glutathione disulfide
HMGCR HMG-CoA reductase
GPx glutathione peroxidase
SCFA short chain fatty acid
Egfr epidermal growth factor receptor
AQPs aquaglyceroporins
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